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Abstract

The population of truck drivers plays a key role in the spread of HIV and other infectious diseases in

sub-Saharan Africa. Truck drivers thereby affect the health and lives of many, but also suffer from poor

health and significantly reduced life expectancy themselves. Due to professional circumstances, their

health service needs are generally not well addressed. Therefore, the non-governmental organization

North Star Alliance builds a network of healthcare facilities along the largest trucking routes in sub-

Saharan Africa. This paper studies the problem where to place additional facilities, and which health

service packages to offer at each facility. The objective combines the maximization of the patient

volume at these facilities and the maximization of the effectiveness of the health service delivery to the

population served. The latter criterion is modeled through three novel access measures which capture

the needs for effective service provisioning. The resulting optimization problem is essentially different

from previously studied healthcare facility location problems because of the specific mobile nature of

health service demand of truck drivers. Applying our model to the network of major transport corridors

in South-East Africa, we investigate several prominent questions managers and decision makers face.

We show that the present network expansion strategy, which primarily focuses on patient volumes, may

need to be reconsidered: substantial gains in effectiveness can be made when allowing a small reduction

in patient volumes. We furthermore show that solutions are rather robust to data impreciseness and

that long term network planning can bring substantial benefits, particularly in greenfield situations.
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1 Introduction

Sub-Saharan African truck drivers work under difficult conditions. Their trips last up to several

weeks, during which time they are separated from their spouses and social-cultural norms and in

which they are challenged by monotonity, risk of hijacking, loneliness, and long waiting times at

border posts. This working environment has been shown to be conducive to their engagement in

behaviors that bring about high risks of communicable diseases such as tuberculosis (TB), malaria,

HIV, and other sexually transmitted infections (STIs) (Botão et al. 2015, Delany-Moretlwe et al.

2014, Gomez et al. 2013, Apostolopoulos and Sönmez 2007). For instance, Ramjee and Gouws

(2002) report a study on a population of 310 truck drivers in South Africa, 70% of whom had wives

or girlfriends in rural areas, 13% used a condom during their last sexual encounter, and 56% were

HIV positive. Similar behaviors and high prevalences of communicable diseases in general and STIs

in particular are also reported for truck driver populations in India (Pandey et al. 2008, Roa et al.

1997), Brazil (Malta et al. 2006, Lacerda et al. 1997), China (Wong et al. 2007, Chen et al. 2006),

the Baltic Region (Kulis et al. 2004), and the USA (Lichtenstein et al. 2008, Solomon et al. 2004,

Stratford et al. 2000).

The high prevalence of communicable diseases among sub-Saharan truck drivers and their sex

partners has a dramatic impact on their health and life expectancy (Delany-Moretlwe et al. 2014,

Matovu and Ssebadduka 2012, Apostolopoulos and Sönmez 2007). For example, Wilson (2005)

mentions a firm that “lost 39 out of 144 drivers in the last three years”. Moreover, because of

their mobility and behaviors, truck drivers have substantially contributed to the spread of HIV and

other communicable diseases among the sub-Saharan population at large (Ramjee and Gouws 2002,

Gomez et al. 2013, Apostolopoulos and Sönmez 2007, Morris and Ferguson 2007, 2006, Laukamm-

Josten et al. 2000, Caldwell et al. 1999, Hudson 1996). In addition, the disease burden has impov-

erishing effects on patients, decreases labor productivity of firms, and slows down economic growth

(Sachs and Malaney 2002, Ahlburg 2000, Stover and Bollinger 1999).

Delivering prevention, diagnosis, and treatment services to sub-Saharan truck drivers is consid-
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ered highly effective to reduce their burden of disease (Matovu and Ssebadduka 2012, ILO 2005,

Ramjee and Gouws 2002). Unfortunately, traditional healthcare facilities struggle to provide these

services as they are often not easily accessible by trucks, have insufficient parking space, require

detours, have long waiting times, and are only open during the day whereas drivers usually stop

during the evening (Delany-Moretlwe et al. 2014, Gatignon and Van Wassenhove 2008, Ferguson

and Morris 2007, IOM 2003, Ramjee and Gouws 2002, Ferguson and Morris 2007, ILO 2005).

The non-governmental organization (NGO) North Star Alliance (North Star) aims to improve

the health of the sub-Saharan truck driver population and roadside communities. It operates 55

Roadside Wellness Centers (RWCs) or “Blue Boxes”, which are easily accessible by truck and

located at major truck stops and border crossings along sub-Saharan Africa’s main transport corri-

dors. The RWCs provide primary care services, behavior change communication, condom distribu-

tion, HIV and STI voluntary counseling and testing, screening for TB and malaria, and treatment

for HIV, malaria, TB, and STI. Part of these services are provided during outreach sessions at

“hotspots” (e.g., parking lots, bars, and brothels).

This paper focuses on important managerial network design challenges/ questions that were

identified during our collaboration and conversations with North Star and were not addressed in

earlier work related to our topic (see Ares et al. 2016, and our discussion below). The first relates

to the criteria considered when expanding the network – i.e., adding new RWCs. The NGO has so

far based location decisions mostly on patient volume, positioning new RWCs where the expected

number of patient visits is highest. Because of the long travel times and the relative sparsity of the

network of roadside clinics, however, the effectiveness of health service provisioning – the degree

to which it improves health – is often hampered by access discontinuities. In other words, travel

time gaps between RWCs along a truck route are often too large. Hence, maximizing patient

volume solely may not bring maximum gains in health effects for the population. To incorporate

effectiveness in future network expansions, it is key to precisely define how it relates to access. Doing

so is, however, far from trivial, partly since the relationship differs per health service. Accessibility

requirements for “effective” HIV care may differ from those for primary care. Our first research

objective is to develop models for health service effectiveness that capture this variety.

Second, North Star has been offering virtually identical health services at all of its RWCs. As

indicated, accessibility requirements differ per health service and disease prevalence varies across the
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network. In view of the scarce financial resources, this suggests that differentiation or centralization

of certain service packages may be beneficial. Next to a standard primary care service package,

North Star considers to introduce optional service packages. For example, North Star has piloted

offering a package of HIV treatment services (see Gomez et al. 2013, Lalla-Edward et al. 2017).

Evidently, potential locations of service packages are determined by locations of new facilities (and

current facilities), which makes integrated decision making beneficial. Our second research objective

is to model and solve the problem of optimizing integrated location and service differentiation

choices.

Third, we aim to explore trade-offs between volume and effectiveness for this problem. How

does the present network expansion strategy, which primarily focuses on patient volumes, perform

in terms of effectiveness? How would an increased focus on effectiveness affect patient numbers?

Answers to these questions form important inputs for strategic choices on objectives (cf. Ferdows

and De Meyer 1990). They also fuel discussions with donors, which commonly evaluate impact

through volume indicators rather than actual health impacts (Bolton et al. 2007).

Our fourth research objective is to assess the importance of long term network planning. The

NGO makes expansion decisions sequentially and has not explicitly accounted for future expansions

while doing so. The advantage of this method is its simplicity: advanced solution methods may

not be required when choosing locations of few new facilities. On the other hand, the present

myopic approach may lead to sub-optimality in the long run. At present, scientific and practical

understanding of this matter is lacking.

Finally, North Star operates in a context where data on truck routes and volumes is scarce and

imprecise. Quantification of objectives may also be biased. Impreciseness generally impedes trust

in data-driven decision making (De Vries and Van Wassenhove 2019). Our fifth research objective

is to inform decision makers on the magnitude of this risk by assessing robustness of “optimal”

location decisions.

We pursue these five objectives by modelling and studying the roadside healthcare facility

location problem (RHFLP): Given an existing transportation network and set of RWCs, and a

limited expansion budget, where to place additional RWCs, and which service packages should each

of the RWCs offer, so as to maximize a weighted sum of health service effectiveness and volume of

truck drivers served? We present both analytical and numerical results, using the network of major

4

This article is protected by copyright. All rights reserved. 



A
cc

ep
te

d
 A

rt
ic

le
transport corridors in South-East Africa as a case study.

Our work is the result of the network design project we started in 2011, together with the

NGO and ORTEC Consulting Group. The research presented by Ares et al. (2016) forms a first

publication that spun off from this project. They analyze the problem of locating a fixed number

of clinics based on the objectives to enhance equity of access to healthcare and to maximize patient

volume and effectiveness. Our research advances on Ares et al. (2016) in the first place by dis-

tinguishing multiple health service packages and analyzing service differentiation, which motivate

research objectives 1 and 2. As our aim is to address key managerial challenges posed to us by

practitioners, which deal with volume and effectiveness measures, we especially focus our analyses

on these two criteria, and present corresponding extensive trade-off analyses (see research objective

3). In section 5.8, we turn our attention to equity considerations along the lines of Ares et al.

(2016). Our comparison between long-term and incremental planning approaches and sensitivity

analyses on data impreciseness (see research objectives 4 and 5) are also novel contributions. To

these purposes, we extend the mixed-integer linear programming (MILP) formation presented by

Ares et al. (2016) and use a more elaborate case study: it incorporates more recent demand data

and adds two major truck corridor networks that span eight East African countries.

Our results show that standard software solves real life RHFLP instances within reasonable

computation times (less than 2.5 hours). This is an important finding, given that we prove that

RHFLP is strongly NP-hard. We also show that the current practice of selecting locations primar-

ily based on patient volumes may need to be reconsidered. Substantial gains in effectiveness can be

made when allowing a small reduction in patient volumes (e.g., +13.3% vs. -1.7% for our baseline

case). A third key insight is that solutions are rather robust to various types of data impreciseness.

We analyze hundreds of instances in which “true” parameter values differ substantially from as-

sumed values (up to 100%), and show that the resulting optimality gap rarely exceeds 4%. Fourth,

we show that long-term network planning can bring substantial benefits in greenfield situations

(up to 7.3% in the instances considered). These benefits tend to disappear when the density of the

network increases. Our results suggest the existence of a “tipping point” at which one can switch to

consecutive decision making without risking substantial suboptimality. This suggests that there is

no need to invest in expensive decision support software in such cases, which is again an important

finding.
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The remainder of this paper is organized as follows. Section 2 presents a literature review. In

Section 3 we present measures of access to health services for mobile patients. A MILP formulation

of the location problem and some analytical results are presented in Section 4. The results of our

numerical experiments are described in Section 5. Finally, in Section 6 we summarize our findings

and present conclusions.

2 Literature Review

Our work extends the growing literature on operations research applications in global health/public

health in low and middle income countries (see Yadav (2010) and White et al. (2011) for reviews).

Papers from this field typically deal with the use or allocation of resources that improve health in

heavily resource-constrained contexts. Kraiselburd and Yadav (2013) stress the importance of this

field by describing the deficiencies in global health supply chains. The World Health Organization

(WHO) also acknowledges the added value these disciplines can have for global health (Royston

2011).

Applications that use facility location models in this context have been reviewed by Daskin and

Dean (2004), Rahman and Smith (2000). The authors show that existing models are variants of

the set covering model, the maximal covering model, and the P-median model, which optimize or

put constraints on some function of the patients’ distance or travel time to nearby health facilities.

The applicability of these models in the context at hand is, however, rather limited. Truck drivers

are highly mobile, so that their distance or travel time to a facility is constantly changing. In more

recent work, Deo and Sohoni (2015) develop a model for allocating a health service to health clinics,

Smith et al. (2009) consider the problem of locating primary healthcare workers, Griffin (2012)

constructs strategies to allocate treatments to health centers and populations, and McCoy and Lee

(2014) consider the allocation of motorcycle capacity to outreach sites. McCoy and Johnson (2014)

investigate how to optimally allocate clinic capacity over time, and explicitly model the impact on

HIV treatment adherence. None of these articles, however, considers optimizing access to mobile

patients.

Our work is also related to mobile healthcare facility planning problems (see e.g. Doerner et al.

2007, Hachicha et al. 2000, Hodgson et al. 1998), as these problems also consider the time intervals
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between moments of health service provisioning. These papers, however, consider the optimization

of routing decisions whereas we consider location decisions.

Our problem seems to most closely resemble a facility location problem which balances the

maximization of the total node demand covered by the facilities with the maximization of the total

flow demand covered by the facilities. Such flow represents a collection of truck drivers traveling the

same route and demanding a given service. Their “degree of coverage” represents the effectiveness

of service provisioning, i.e. the resulting improvement in health, which we define as a function

of the level of access to the service along the route. Our problem is therefore closely related to

flow interception facility location problems (FIFLPs), which have the objective of intercepting

demand units on their pre-planned paths (see Boccia et al. (2009) and Hodgson (1998) for reviews

of FIFLPs). Most FIFLPs assume that a demand unit is covered if and only if there exists at least

one “conveniently located facility”, such as a facility along its path or within a given distance from

its path. The fact that it is beneficial to offer a service at multiple locations along a path makes

our problem a multi-coverage FIFLP. Other than the aforementioned work of Ares et al. (2016),

an extensive search yielded only two other multi-coverage FIFLPs: the billboard location problem

(Averbakh and Berman 1996) and the flow refueling location problem (De Vries and Duijzer 2017,

Kuby and Lim 2005). Though these problems show much similarity to the RHFLP, it is not possible

to directly apply models for these problems to solve the RHFLP. As we will explain in the next

sections, we measure the benefits of providing access to facilities by means of a continuous variable

which depends on the travel time intervals between adjacent facilities along a route. In contrast,

the billboard location problem measures these benefits based on the number of billboards along a

route. The flow refueling location problem considers the driving times between adjacent facilities

but differs from our problem in that it defines that a fixed amount of benefits are obtained if and

only if specified travel time interval constraints are met. For a comprehensive literature review on

related facility location problems, we refer to De Vries (2011).

Finally, the closely related paper by Ares et al. (2016) considers the problem of locating a

fixed number of roadside clinics using a three-criteria objective function which considers volume,

effectiveness and equity. They propose an advanced column generation algorithm to deal with the

computational complexities induced by equity considerations. The model considered in their work

differs from our model in that 1) it includes an equity criterion and 2) it does not consider service
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differentiation decisions and the corresponding variety of effectiveness models (their work uses one

of the access measures elaborated below, following expert opinion). See Section 1 for our discussion

on how our work builds and advances upon theirs.

3 Continuous Access

We collected expert opinion by interviewing ten of North Star’s staff members from the headquar-

ters and regional offices on model objectives and requirements. See Appendix A for interviewee

characteristics. Interviewees were added till saturation was reached (Saunders et al. 2017). These

interviews confirmed the importance of capturing the relationship between access and effectiveness,

and revealed how this relationship varied among diseases.

For some health services, a critical time limit (CTL) exists which defines a time limit for access

to healthcare. For instance, providing antimalarial drugs within 24 hours of onset of symptoms is

essential for treatment effectiveness (Khatib et al. 2013, Johnson et al. 2013). The dichotomous

variable of having access to a health service facility within 24 hours is therefore commonly used

as performance indicator (see e.g. Chuma et al. 2009, WHO/UNICEF 2003). A critical time-limit

may also apply to health services that need to be accessed at fixed time-intervals. One example is

directly observed therapy for TB patients, in which a health provider frequently monitors a patient

swallowing the required drugs (Volmink and Garner 2007).

For many services, however, responsiveness is less dichotomous. Instead, health impacts of

postponing access gradually build up over time. In such cases, a recommended time limit may

apply, in addition to a critical time-limit. Such a distance-decay relationship has been confirmed

in a variety of studies (see e.g. McLaren et al. 2014, Cooke et al. 2010, Tanser et al. 2006), and are

common for STIs (see e.g. Meyer-Weitz et al. 2000, Moses et al. 1994), for which a positive relation

exists between treatment delay and disease progression and transmission (Hook III et al. 1997).

Thirdly, there are services for which specific time limits are lacking, but improved access is

associated with higher utilization, less treatment delay, and improved treatment adherence, which

in turn lead to lower mortality and morbidity, less drug resistance, and less disease transmission.

Examples include HIV testing and treatment services (De Vries et al. 2014, Mills et al. 2006).

8
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3.1 Types of Service Packages

On the basis of the three aforementioned relationships between access and effects, we now propose

a classification of service packages in three service package types. The mapping of North Star’s

service packages to the three service package types is presented in Section 5.1.

CTL. Service packages with a critical time-limit of access.

This package type corresponds to diseases for which access within a time-limit from the moment

of (self) diagnosis is crucial and to health services that need to be accessed at fixed time-intervals.

RCTL. Service packages with a recommended time-limit and a critical time-limit of access.

This service package type refers to health service packages for diseases for which a recommended

time-limit and a critical time-limit are well defined, and that are also characterized by a continuous

relationship between access and effects.

ASAP. Service packages that are to be accessed as soon as possible when needed.

This last package type corresponds to health service packages for diseases for which there exists a

distance-decay relationship without a clear time-limit of access.

3.2 Access Measures

We now propose access measures corresponding to the service package types introduced in the

previous section. Following interview results we assume that truck drivers cyclically travel from

origin O to destination D and back to origin O (cf. Ferguson and Morris 2007, Orubuloye et al.

1993). Figure 1 illustrates the access measures for part of such a round trip.

The boxes with the cross represent a moment at which some service package s is passed. Let us

consider a given moment t during a trip. We define the truck driver’s access time to package s as

the travel time to the next facility along his route that offers package s. (Our interviews revealed

that returning to a facility the driver already passed is generally not an option.) We refer to a

facility that offers package s as a package s location from now on.

Suppose that service package s is of package type CTL. At a given point in time, we say

that a truck driver is “covered” if his access time to package s is at most the critical time-limit.

9
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Not covered Covered

Not covered Partially covered Covered

Figure 1: Three ways to measure continuity of access. Upper: time within critical time-limit
(CTL). Middle: time within recommended/critical time-limit (RCTL). Lower: average value of
the access time (ASAP ).

Obviously, the larger the part of the time-line the truck driver is covered, the more effective the

service provisioning can be. Therefore, we define aCTLs , the access measure for a package s that

is of package type CTL, as the fraction of time the truck driver is covered (see the upper part of

Figure 1: the truck driver is covered in the light parts of the time-line). More formally, letting

T denote the duration of the round trip, τCTLs the critical time-limit for accessing package s, and

∆s(t) the access time to package s at time t ∈ [0, T ], measure aCTLs is calculated as:

aCTLs =
1

T

∫ T

t=0
1(∆s(t)≤τCTL

s )dt (1)

Second, suppose that service package s is of package typeRCTL. Now, we say that a truck driver

is “covered” if his access time is smaller than the recommended time-limit, that he is “not covered”

if his access time exceeds the critical time-limit, and that he is “partially covered” otherwise. We

assume that the degree of coverage with package s decreases linearly from 1 (covered) to 0 (not

covered) as the access time increases from the recommended time-limit to the critical time-limit (see

the middle part of Figure 1: the lower the truck driver’s degree of coverage, the darker the shade of

grey). Next, we define aRCTLs , the access measure for a package s that is of package type RCTL,

as the average degree of coverage with package s during a trip. Formally, let the recommended

time-limit and the critical time-limit of access be represented by τRCTL1s and τRCTL2s , respectively.

Then aRCTLs is calculated as:

10
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1

T

∫ T

t=0
1(∆s(t)<τRCTL

1s ) + 1(τRCTL
1s ≤∆s(t)≤τRCTL

2s ) ·
(
τRCTL2s −∆s(t)

τRCTL2s − τRCTL1s

)
dt (2)

For later use, we refer to the value of the integral
∫

(. . . )dt in equation (2), taken from t1 to t2, as

the “effective” time the truck driver is covered during the period [t1, t2].

Finally, suppose that the service package is of package type ASAP . Then, for each point of time

during the truck driver’s trip, the following holds: the lower the access time, the more effective the

health service accessed can be. Based on this observation, we define aASAPs , the access measure for

a package s of package type ASAP , as the average value of the truck driver’s access time during

his trip (i.e., the average length of the arrow in the lower part of Figure 1):

aASAPs =
1

T

∫ T

t=0
∆s(t)dt (3)

One may interpret aASAPs as the expected travel time to the next package s location from the

moment the truck driver needs this service package.

4 Model

In this section, we formally model the RHFLP. Some notations are introduced in Section 4.1.

Section 4.2 models the value of a set of location decisions in terms of volume of truck drivers served

and effectiveness of healthcare provision. Next, Section 4.3 introduces a MILP formulation of the

problem. Finally, Section 4.4 provides a worst case analysis with respect to data inaccuracy.

4.1 Notation

We model a problem instance by means of a graph G(L,E), where L and E denote a set of vertices

and a set of edges connecting these vertices, respectively. Table 1 introduces the notations we use to

denote the graph, service packages, demand parameters, decision variables, and auxiliary variables.

Here, a truck flow q represents a collection of truck drivers who travel the same long distance

route. A route defines a path in the graph, starting from origin Oq, visiting the ordered set of
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General:
p number of roadside health facilities to be newly located
ps number of facilities service package s can be newly allocated to
Ω set of all feasible solutions ω = (x,y) = ({xk}, {yks})
r relative importance of the patient volume criterion
1− r relative importance of the effectiveness criterion
Network:
KC set of current facility locations
KP set of potential facility locations
KPs set of potential locations for package s
K set of facility locations: K = KC ∪KP
O set of truck route origins, O ∩K = ∅
D set of truck route destinations, D ∩K = ∅
L set of locations: L = KC ∪KP ∪O ∪D
Q set of long distance truck flows
Oq origin of flow q ∈ Q, Oq ∈ O
Dq destination of flow q ∈ Q, Dq ∈ D
Kq ordered set of facility locations along the route of flow q ∈ Q, Kq ⊆ K
χks parameter indicating whether a current facility at location k offers package s (χks = 1)

or not (χks = 0)
Service packages:
S set of health service packages
J set of service package types j = {CTL,RCTL,ASAP}
Sj set of service packages that are of service package type j, Sj ⊆ S
αj
s, α

j
s break points of piecewise linear function eqs = gjs

(
ajqs(y)

)
τCTL
s critical time-limit for accessing package s, s ∈ SCTL

τRCTL
1s , τRCTL

2s recommended & critical time-limit for accessing package s, s ∈ SRCTL

ws maximal attainable effectiveness per truck driver demanding package s
Demand parameters:
dk expected daily patient volume at facility location k
fqs number of truck drivers in flow q who need service package s
fq number of truck drivers in flow q
θqs fraction of truck drivers in flow q who need service package s
Decision variables:

xk
{

1 if a health facility is placed at location k
0 otherwise

yks
{

1 if service package s is offered at location k
0 otherwise

Auxiliary variables:
ZPV expected daily number of patient visits captured by the facilities in the network
Zs effectiveness of package s provisioning
ZE effectiveness score
eqs effectiveness of health service provisioning per truck driver in flow q demanding service

package s, given solution ω, eqs ∈ [0, ws]
ajqs(y) level of access to package s provided for truck drivers in flow q, given package allocation

decisions y and the access measure corresponding to the selected service package type j

Table 1: Table of Notations.
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facility locations Kq, and ending at destination Dq. Note that, although Oq (or Dq) may physically

represent the same location as a facility location k ∈ Kq, we regard them as separate locations. Kq

may include potential locations from the set KP as well as locations from the set of locations which

are currently already in use, KC. The latter may include facilities operated by other organizations.

For instance, if a facility is accessible, and contributes to continuity of access, it can be viewed as

being part of the NGO’s network. Finally, we note that allocation of new service packages can be

restricted to the newly located facilities only (by setting KPs = KP ) or to any existing or newly

located facility (by setting KPs = {k : yks = 0}).

4.2 Optimization Criteria

A solution ω = (x,y) ∈ Ω specifies a network of roadside healthcare facilities, including all current

and new facilities and their service packages. The network expansion budget allows for placing

p new facilities and assigning service package s to ps facilities. For a given solution ω, we define

the patient volume ZPV as the expected daily number of patient visits captured by the roadside

healthcare facilities in this network. Network expansion is commonly preceded by extensive assess-

ments of potential locations in terms of truck volumes, layout of the truck stop, existing healthcare

infrastructures, etc. This data can be used to estimate daily patient volumes. This can include

visits by truck drivers, as well as sex workers and other roadside communities, which are also target

groups for North Star. Hence, letting dk denote the daily patient volume at location k, we derive

that (cf. Ares et al. 2016):

ZPV =
∑
k∈K

dkxk (4)

This definition of ZPV implicitly assumes that the patient volume at a given location is inde-

pendent of our location decisions.

Let us now quantify for a given solution ω ∈ Ω the effectiveness of health service provisioning.

We denote the number of truck drivers in flow q demanding service package s by fqs. This can be

estimated as a package-specific fraction of the volume of flow q, where the latter can be measured

through vehicle tracking data, mobile phone data, and traffic counts. For each of these truck drivers,
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eqs represents the effectiveness of service package s provisioning. Then the total effectiveness, i.e.,

the total health improvement – of package s provisioning is defined as (cf. Ares et al. 2016):

Zs =
∑
q∈Q

fqseqs (5)

We let functions gjs define the relationship between effectiveness and access. More precisely,

for package s, we firstly select the most fitting of the three proposed service package types and

corresponding access measures. Let j ∈ {CTL,RCTL,ASAP} denote the selected service package

type. Furthermore, given package allocation decisions y, let ajqs(y) denote the level of access

to package s for flow q, as measured by the access measure corresponding to package type j (see

Section 3.2). Then, the effectiveness of package s provisioning for truck drivers in flow q is measured

as:

eqs = gjs
(
ajqs(y)

)
s ∈ Sj (6)

These functions gjs(·) reflect which levels of access are ineffective, partially effective, and effective

(cf. Ares et al. 2016). Lacking empirically or theoretically validated alternatives and for ease of

modeling, we define gjs(·) as piecewise linear functions. Figures 2a and 2b illustrate these functions.

In case that ajqs(y) is to be maximized (i.e., when j ∈ {CTL,RCTL}), we define that eqs increases

linearly from 0 to the maximal attainable effectiveness ws when ajqs(y) increases from a given lower

bound threshold αjs (ineffective access) to a given upper bound threshold αjs (effective access). In

case that this variable is to be minimized (i.e., when j = ASAP ), eqs decreases linearly from ws to

0 when ajqs(y) increases from the lower bound threshold αjs (effective access) to the upper bound

threshold αjs (ineffective access). Section 5.1 discusses the calibration of these parameters.

Parameters ws can represent the expected health improvement per truck driver demanding

service package s due to effective access to this package. This improvement can for instance be

expressed in terms of the commonly accepted effectiveness measure of quality-adjusted life years

(QALYs) gained. In practice, obtaining reliable QALY estimates may well be infeasible or too

14
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ajqs(y)0 αjs αjs

ws

Effective access Ineffective access

eqs

(a) Function for j = ASAP .

ajqs(y)0 αjs αjs

ws

Ineffective access Effective access

eqs

(b) Function for j ∈ {CTL,RCTL}.

Figure 2: Effectiveness of package s provisioning as a function of ajqs(y).

expensive. Reliable QALY estimates are, however, not necessary as long as decision makers can

balance the two main optimization criteria. Multiplying ws by a given constant does not change

optimal location decisions in that case. Consequently, it suffices if ws represents relative effective-

ness, which is significantly easier to estimate. Moreover, ws can also be chosen so as to mimic the

strategic objectives of the NGO’s donors, who may have preferences to address certain disease(s). In

this case, effectiveness is to be interpreted as the extent to which the service provisioning increases

weighted health improvements, where the weights represent donor preferences.

For later use, we represent the total effectiveness of health service provisioning by ZE , and refer

to this variable as the effectiveness score:

ZE =
∑
s∈S

Zs (7)

4.3 MILP Formulation

The measures presented in Section 4.2 allow us to introduce the following problem formulation,

which we refer to as the Roadside Healthcare Facility Location Problem (RHFLP). Here, parameters

r ∈ [0, 1] and (1 − r) ∈ [0, 1] capture the relative importance of the patient volume criterion and

the effectiveness criterion, respectively:
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∑
k∈K

dkxk + (1− r)
∑
s∈S

∑
q∈Q

fqseqs (8)

s.t. eqs = gjs
(
ajqs(y)

)
q ∈ Q, j ∈ J, s ∈ Sj (9)∑

k∈KP
xk = p (10)∑

k∈KPs

yks = ps s ∈ S (11)

xk ≥ yks k ∈ K, s ∈ S (12)

xk = 1 k ∈ KC (13)

yks = χks k ∈ KC, s ∈ S (14)

xk, yks ∈ {0, 1} k ∈ K, s ∈ S (15)

The objective function (8) maximizes a weighted sum of ZPV and ZE . Constraints (10) and (11)

specify the number of new facilities and the number of service packages s to be allocated to potential

facility locations. Note that these constraints could easily be replaced by a more general budget

constraint, restricting the costs of network expansions. Constraints (12) define that a service

package can only be allocated to facility location k if a health facility is located there. The current

network of health facilities is described in constraints (13) and (14). Constraints (15) define our

decision variables as binary variables. Effectiveness variables eqs (see Section 4.2) are defined in

equations (9).

The non-linearity of these equations makes (8) - (15) a mixed-integer nonlinear programming

(MINLP) model, which is generally very hard to solve. In Appendix B we show how this model can

be non-trivially transformed into a mixed integer linear programming (MILP) model. Specifically,

it suffices to replace equations (9) by constraints (20) - (23) and (25) - (39). We also prove that

the vast majority of the binary variables needed to perform this transformation can be relaxed to

continuous variables, since the corresponding constraint matrix is totally unimodular (TU). This

substantially decreases the model complexity.
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In Online Appendix D, we prove the following by reduction from the problem CLIQUE:

Proposition 1. The RHFLP, as formulated by (8) - (15), is strongly NP-hard, even in case that

|S| = 1.

Compared to the model presented by Ares et al. (2016), model (8) - (15) has a simplified

objective function (8), as it disregards equity. Section 5.8 discusses how this criterion can be

added to model (8) - (15). At the same time, constraint (9) now captures three instead of one

effectiveness modalities, allowing for the introduction of service package differentation, as expressed

in constraints (11), (12), and (14). Constraints (20) - (39) in Appendix B form the non-trivial

linearization of (9). See section 1 for our discussion on contibutions of both papers.

4.4 Worst-case Effect of Imprecise Input Data

Parameters fqs, the number of truck drivers in flow q who need package s, and dk, the expected

daily patient volume at location k tend to be imprecise in the data-scarce environment North Star

operates in. Though this does not affect the feasible solution space, it may affect the value of a

solution and thereby induce an optimality gap.

Proposition 2 provides an upper bound on this gap (see Online Appendix E for the proof).

Here, ω# denotes the true optimal solution and ω∗ the optimal solution based on the presently

used parameter values. We denote the value function using the true parameters by v#, and the

value function using the presently used parameters by v∗. For instance, v#(ω∗) denotes the value

of the solution ω∗ in case that the true parameter values were used.

Proposition 2. If the true values of fqs and dk deviate at most by a fraction δ from the presently

used parameter values, then v#(ω#)
v#(ω∗)

≤ 1+δ
1−δ . This bound is tight.

To illustrate this bound, let δ be equal to 0.1. Then in the worst case, the true value of ω∗ is

about 18% lower than the true value of ω#. As this bound is only attained with equality under

three very specific circumstances (see Online Appendix E), Section 5.5 investigates realistic levels

of sensitivity by means of a real life case study.

Let us now analyze the optimal solution’s sensitivity with respect to the parameters ws, the

maximal attainable effectiveness of package s provisioning, and parameters r and 1−r, the relative

17
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values of the patient volume criterion and the effectiveness criterion, respectively. Suppose that

there exists an “optimal” value of these parameters. For example, optimal values could be those

values yielding the largest health improvement. As it is very difficult to identify these values, it

is likely that the chosen parameter values deviate from them. An upper bound on the resulting

optimality gap is given in Proposition 3 (see Online Appendix F for the proof). Here, wob ∈

{r} ∪ {(1− r)ws} and γ denotes some instance-dependent constant between 0 and 1.

Proposition 3. If the “optimal” values of wob deviate at most a fraction δ from the presently used

parameter values, then v#(ω#)
v#(ω∗)

≤ (1+δ)2

(1−δ)·(1+δ+2δγ) . This bound is tight.

For example, if γ = 0.5 and δ = 0.1, then in the worst case, the optimality gap is at most 11%.

It is easy to see that, in the worst case, the true value of a given parameter is either the fraction

δ larger or the fraction δ smaller than the presently used values. Let an extreme realization of the

parameters of interest be represented by ψ ∈ Ψ, and let vψ(ω) denote the resulting value function.

An instance-specific bound can be found by solving the following problem, as we do in Section 5.5:

max
ω∈Ω,ψ∈Ψ

vψ(ω)− vψ(ω∗) (16)

5 Numerical Analysis

This section illustrates how our model can be used for strategic planning and reveals practical

insights for decision makers. We use CPLEX 12.6.2 to solve our MILP model, on a PC with a 3.4

AMD A4-5300 processor and 8 GB RAM.

5.1 South-East Africa Case

We base our baseline case on the network of major transport corridors in South-East Africa. This

network of roads spans 14 sub-Saharan countries and connects the main ports in the region with

the main inland cities and other areas of economic importance such as the copper belt in the DRC.

It consists of three subsets of corridors: (1) the North-South Corridor, which spans the region from

Tanzania to South Africa, (2) the Central Corridor, which runs from the port of Dar es Salaam

(Tanzania) into Burundi, Rwanda, and the DRC, and (3) the Northern Corridor, which connects
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This article is protected by copyright. All rights reserved. 



A
cc

ep
te

d
 A

rt
ic

le
the port of Mombasa (Kenya) with landlocked countries lying east and north of Kenya. Figure 3

depicts the corridor network as a graph consisting of the 29 RWCs North Star operated in this

network at the time our case study was finalized (August 2016) and 85 potential RWC locations.

The case study data sources are summarized in Table 2 and a full description of the data is

provided in Online Appendix I. In line with package allocation choices currently faced by North

Star, we choose the primary care (PC) package to be a standard service package and the HIV care

(HC) package to be the only optional service package. Hence, in the baseline case, S = {PC,HC}.

The data sources identify 95 major truck flows, and their health service needs are calculated as

fqs = fqθqs. Here, fq and θqs denote the number of truck drivers in flow q and the fraction of

truck drivers in flow q who need service package s, respectively. For truck flows making use of the

Northern and the Central Corridor, estimates of fq were obtained from inter-country cargo volumes

presented by Nathan Associates Inc. (2011) and Berger (2011), respectively. For the North-South

Corridor, we use least squares optimization to fit fq to annual average daily truck volume (AADT)

estimates (R2 = 0.93), which Odoki and Anyala (2014) provide for most arcs in the network, and

to a “target matrix” describing road-based inter-country cargo volumes (R2 = 0.81), as presented

by the SADC (2012). The use of such a target matrix is a common way to deal with the limitations

of OD matrix estimation methods (Peterson 2007). We choose θq,PC = 1, reflecting the assumption

that every truck driver has a potential need for primary care, and estimate θq,HC as 1.41 times the

average of the adult HIV prevalence in the flow’s origin country and the prevalence in the flow’s

destination country. The multiplier 1.41 reflects the difference between the prevalence levels in the

general population and the truck driver population, and is based on data for South Africa and

Mozambique (see Online Appendix I). A truck flow is assumed to take the shortest route from

origin to destination.

Finally, we use least squares optimization to fit the relationship between truck volume along

current RWC locations (AADTk) and daily patient volume at these locations (dk) (R2 = 0.33).

This yields the following estimation method for patient volume at potential RWC locations: dk =

10.65 + 0.31 ·
√
AADTk.

Our calibration of the relationship between access and effectiveness is based on structured expert

surveys. Specifically, we asked two experts from North Star to quantify the relative importance

w(s) of the two service packages s, to connect to each service package a corresponding package
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Figure 3: Map of the South-East African Transport Corridor Network.

type, yielding Sj , and to assign scores to 10 configurations of RWCs offering the PC package along

an imaginary truck route and to 10 configurations of RWCs offering the HC package along an

imaginary truck route. The functions gjs(·) providing the best fit to these scores are determined by

least squares optimization (R2 = 0.77 for PC, R2 = 0.69 for HC). The resulting parameter values

are given in Table 3, and the survey we used for the PC package can be found in Online Appendix

J.

When asked to elaborate on their service type allocation – PC to the RCTL type and HC to

the ASAP type – the experts made references to the criticality of corresponding health services,

the aforementioned distance decay relationship, and the benefits of repeatedly passing a health
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Data Source Value

Network:
KC, χks North Star, Gomez et al. (2013) Onl. App. I
KP Inspection of corridor network Onl. App. I
Q, tkl, AADTk North Star (via partner organizations), TTCA (2015), Onl. App. I

Odoki and Anyala (2014), JICA (2013, 2010), SADC (2012),
Ranganathan and Foster (2011), Nathan Associates Inc. (2011),
Berger (2011), Teravaninthorn and Raballand (2009)

Service packages:
S North Star Table 3
Sj Expert survey Table 3
ws Expert survey Table 3
τRCTL
1s , τRCTL

2s Expert survey Table 3
αj
s, α

j
s Expert survey Table 3

Demand parameters:
dk North Star Onl. App. I
fq Odoki and Anyala (2014), SADC (2012) Onl. App. I

Nathan Associates Inc. (2011), Berger (2011)
θq,PC Assumption Onl. App. I
θq,HC WHO (2016), Botão et al. (2015), Delany-Moretlwe et al. (2014) Onl. App. I

Table 2: Data sources baseline case.

facility:

Expert 1 about truck drivers accessing the PC package (translated): Generally, the

people do not go to the clinic for nothing. Certainly not the truck drivers. They have a problem

that builds up till a certain critical level. Then they decide to come, and if they cannot access

a clinic within two days, they have a very big problem.

Expert 2 about the benefits of continuous access to the HC package (translated):

One is biomedical, two is psychological – a sense of urgency among the patients – (...) and

there is a third (...) the power of repetition is in that, if he thinks “should I do it or not” [go

to a clinic] (...) the third time [he passes a clinic] he thinks “oh no, now I’m gonna do it”

(...). So when it comes to HIV, you never have too many [clinics].

Expert 1 about the time criticality of the HC package (translated): The problem

evolves rather gradually. Problems arise when they run out of medication. Then you got a

problem... then you need to come (...). When they get an opportunistic infection (...) it builds

up rather slowly.

Experience suggests that decision makers will vary the parameter r in the software package we

developed (see North Star Alliance 2011) until one or more satisfactory solutions are obtained. This
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is essentially a basic way to calibrate parameter r. We initially assume that decision makers can

identify the “optimal” value. Sensitivity towards this assumption is analyzed in Section 5.6. Under

this assumption, it suffices that parameters ws represent the relative importance of the different

service packages (i.e., the scaling of these parameters does not matter).

The service package type allocation obtained from the expert surveys – PC to the RCTL

package type and HC to the ASAP package type – is largely influenced by the time criticality of

the corresponding health services, the aforementioned distance decay relationship, and the benefits

of repeatedly passing a health facility, as reflected by the quotes in Section 3.

Package s Service package type j Service package type parameters (days) αj
s αj

s ws

PC RCTL τRCTL
1PC = 1.29 τRCTL

2PC = 3.00 0.09 1.00 1 · σ
HC ASAP 0.40 5.48 2 · σ
MC CTL τCTL

MC = 1.00 0.50 0.90 5 · σ
TC RCTL τRCTL

1TC = 1.00 τRCTL
2TC = 2.00 0.50 0.90 2 · σ

SC RCTL τRCTL
1SC = 1.00 τRCTL

2SC = 2.00 0.50 0.90 1 · σ
Note: the TC, SC, and MC packages are only used in Section 5.7. W.l.o.g. we set scaling factor σ = 1/25

Table 3: Parameters describing the relationship between access and effectiveness of package s
provisioning.

We finally note that the parametrization for HC is much more conservative than the requirement

of facilitating monthly or bimonthly follow-up visits for drivers under HIV treatment.

5.2 Network Expansion Strategies

Based on the parameter values from the baseline case, we optimize locations of 4 new RWCs and

the allocation of the HC package among two established RWCs (i.e., p = pPC = 4, pHC = 2), which

represents a realistic network expansion scenario. We analyze two network expansion strategies,

characterized by the parameter r. The first strategy is the “balanced strategy”, which we model

by setting r = 0.5. Many Pareto efficient solutions that balance both objectives are found around

this value, as we show in Section 5.3. The second investment strategy reflects the strategy North

Star had been employing before this research was implemented. The main focus of this strategy

was put on maximizing the patient volume served, which we mimic by setting r = 1.0. We refer to

this strategy as the “patient volume strategy”. Finally, we also consider the case in which we not
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only locate new RWCs and service packages, but also allow current clinics to be relocated. Here,

we again use r = 0.5.

(a) Balanced solution. (b) Patient volume solution.

Figure 4: Optimal location decisions for the baseline case.

Solution ZPV ZPC ZHC

Initial 562 19840 1646
Balanced 632 (12.3%) 22964 (15.7%) 2353 (43.0%)
Patient volume 662 (17.6%) 20070 (1.2%) 1652 (0.4%)
Redesigned 682 (21.2%) 24342 (22.7%) 2673 (62.4%)
Note: The percentage improvement with respect to the initial network is

given between brackets.

Table 4: Daily patient volume (ZPV ), effectiveness of primary care provisioning (ZPC), and
effectiveness of HIV care provisioning (ZHC) in the initial network, the networks obtained by the
balanced strategy and the patient volume strategy, and in the redesigned network.

Figures 4a and 4b and Table 4 describe the optimal solutions yielded by the balanced strategy

and the patient volume strategy. We see that the “balanced solution” results in a relatively lower
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expected daily patient volume (5.3 percentage points lower) but also in a substantially higher

effectiveness (14.5 and 42.6 percentage points higher for PC and HC, respectively). The latter

is illustrated by the bubble plots in Figures 5a and 5b, which depict the solutions’ impact on the

effectiveness of package PC provisioning for the 95 truck flows separately. The reason is that the

patient volume solution places RWCs in the busiest parts of the network, which are already well-

served by current RWCs (see Figure 4b). The balanced strategy, instead, yields locations that fill

up gaps in the RWC network. For example, Figure 6 shows how the new RWCs improve the degrees

of coverage with the PC package during trips along the routes connecting the ports of Durban,

Beira, Nacala, and Dar es Salaam with the copper belt (Kolwesi, DRC).
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(a) Balanced solution.
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(b) Patient volume solution.

Figure 5: Effectiveness of package PC provisioning for the 95 truck flows before and after imple-
menting the balanced solution and the patient volume solution. A bubble’s size reflects the number
of truck drivers in the corresponding flow.

The optimal network obtained when relocation of clinics is allowed moves 17 of the current 29

clinics and all of the 6 current HC packages to a different location. Compared to the case when

relocation is not allowed, this significantly increases patient volume (8.9 percentage point increase)

and the effectiveness of PC provisioning (7.0 percentage point increase) and HC provisioning (19.4

percentage point increase). This provides a strong argument for critically assessing the fitness of

the current network.

Finally, the optimal solutions illustrate an important property of the RHFLP: adding a given
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93   92 89          85    75 74 58 57 52

Before

After
44   46 48 49 58 57 52

69 58 57   52 
Before

After

After
114 111 84       58 57 52

Before

Degree of coverage Driving days RWC

0 0.5 1 0 1 2 3 4 5

Beira Port - Kolwesi

Dar es Salaam Port - Kolwesi

Nacala Port - Kolwesi

Durban Port - Kolwesi

Figure 6: Degree of coverage (see Section 3.2) with the PC package before and after locating the
new RWCs at each point of time during a trip from a major regional ports (Durban, Beira, Nacala,
and Dar es Salaam) to the copper belt (Kolwesi, DRC). The numbers correspond to the location
numbers introduced in Figure 3.

package to multiple locations can bring about synergy effects. For instance, when adding the PC

package to Kasumbalesa North or to Kasumbalesa South only, the effectiveness of package PC

provisioning to truck flow Nacala Port - Kolwesi increases by 0.09, whereas it increases by 0.27 if

this package is added to both locations. This is a direct implication of the assumption that a certain

level of access is required before this translates into a strictly positive level of effectiveness. These

effects suggest that long term network planning instead of making location decisions consecutively

can be beneficial, as we further explore in Section 5.4.

5.3 Importance of Balancing Patient Volume and Effectiveness

Let us analyze the trade-off between the two main objectives in some more detail now. Figure 7

summarizes the results when solving the RHFLP for the baseline case with the number of facilities

(with PC packages) to be placed p ∈ {2, 4, 8, 12, . . . , 44, 48, 50}, the number of HC packages to be

allocated pHC = p
2 , and relative importance parameter r ∈ {0.0, 0.1, . . . , 1.0}. All other parameters

are kept as before.

The results show that focusing solely on one criterion – i.e., choosing r = 0.0 or r = 1.0 – results
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Figure 7: Pareto curves for various values of p, with pHC = p
2 .

in significant sub-optimality in terms of the other criterion. When also assigning some weight to

the other criterion, large gains in effectiveness (patient volume) can be made at a marginal loss in

patient volume (effectiveness). The “irregular behavior” of the effectiveness score for r = 1.0 (i.e.,

the lowest point of each curve) is caused by the indifference on where to place the HC package,

leading to more or less random package allocation decisions.

5.4 Importance of Network Planning

To assess the added value of long term network planning over consecutive decision making, we

now calculate for the baseline case the optimality gap when locating clinics one at a time for

p ∈ {2, 4, . . . , 50} and pHC = p
2 . Specifically, we allocate a clinic to the potential location for which

the objective value increase is largest till p clinics are added. The first pHC clinics that are located

also offer package HC and parameter r again equals 0.5.

The results show that consecutive decision making yields near-optimal location decisions: the

optimality gap does not exceed 0.28%. This seems surprising, given the earlier observation that

network planning allows for a better exploitation of synergy effects. We note, however, that such

effects are only attainable for a given truck flow when its current level of access is lower than the

“access threshold”: the level of access required for a strictly positive level of effectiveness (e.g.

αRCTLPC ). In the baseline case, this applies to few truck flows.
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We hence argue that network planning is mostly beneficial when the network of clinics is still

small and/or when relatively many clinics are required to exceed the access threshold. To assess

this, we calculate the optimality gap for consecutive decision making when no clinics are presently

in the network and when p = pPC = 20 and pHC = 10. Two subcases are considered: one where

all parameters are assigned their baseline value and one where access threshold αRCTLPC is increased

to 0.50 (baseline value: 0.09). We refer to the corresponding solutions as “greenfield baseline” and

“greenfield synergistic”.

Solution Opt. gap (%) Gap ZPV (%) Gap ZPC (%) Gap ZHC (%)
Greenfield baseline 1.3 -0.1 1.4 3.2
Greenfield synergistic 7.3 -15.2 17.6 10.0

Table 5: Optimality gap (%) for consecutive decision making in a greenfield situation; overall and
for seperate objectives.

Table 5 describes the results, which confirm our hypothesis. Consecutive decision making can

substantially underperform in greenfield situations, in particular when the access threshold is large.

The effectiveness increase attainable when locating a single clinic is comparatively small in such

cases, so that location decisions are mostly determined by patient volumes. As a consequence, the

solutions perform well in terms of patient volume, but weakly exploit possible gains in effectiveness.

These observations suggest the existence of a tipping point: a point at which most of the synergy

effects have been obtained and from which one can switch to consecutive decision making without

risking substantial suboptimality. To further investigate this, we analyze the optimality gap when

switching to consecutive decision making, depending on the density of the network. Specifically,

we again consider the greenfield synergistic situation and p = 20. We perform network planning in

the startup phase, corresponding to pswitch clinics. Next, we switch to consecutive decision making

for the remaining p− pswitch clinics. Figure 8 shows the resulting optimality gaps.

The results show that the optimality gap drops to almost 0% when pswitch exceeds 16. Switching

to consecutive decision making before that can induce a serious optimality gap of up to 7.7%. The

percentage of truck drivers for which the access threshold is not met indeed serves as an indicator

of this tipping point. E.g., substantial optimality gaps are attained while this percentage exceeds

20% for the PC package, whereas (near-)optimality is attained as this percentage approaches zero.
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Figure 8: Blue: optimality gap when performing network planning for the first pswitch clinics and
applying consecutive decision making for the remaining p− pswitch clinics. Orange: the percentage
of truck drivers for which the access threshold was not attained after the first pswitch clinics were
placed.

5.5 Sensitivity Analysis on Demand Parameters

Proposition 2 proves worst-case bounds for the optimality gap induced by impreciseness in the

demand parameters dk and fqs. To gain insight into the actual sensitivity, we randomly generate

the “true” values of the parameters in the baseline case, and determine the resulting optimality

gap for the balanced solution (see Section 5.1) expressed as a percentage of the “true” optimal

solution value. Specifically, we draw for each of these parameters from the uniform distribution

on the interval [−δ, δ], represented by U [−δ, δ], and determine the true values of fqs and dk as

f#
qs = fqs · (1 + U [−δ, δ]) and d#

k = dk · (1 + U [−δ, δ]). We test different values of δ, and generate

50 demand scenarios for each of them. Table 6 shows for each value of δ the resulting average

optimality gap, the maximum optimality gap, the non-parametric worst case bound on this gap

(which is not tight for our specific instance) and the tight parametric bound. The latter is obtained

by solving a MILP formulation of the problem defined in (16).

δ
Optimality gap 0.2 0.4 0.6 0.8 1.0
Avg. (%) 0.2 0.5 0.9 1.6 1.7
Max. (%) 0.5 1.2 2.7 2.9 3.8
Worst Case Par. (%) 2.5 4.2 10.7 26.6 36.9
Worst Case Nonpar. (%) 33.3 57.1 75.0 88.9 100.0

Note: Worst Case Par.: tight bound found by solving (16).

Worst Case Nonpar.: non-tight bound provided by Proposition 2.

Table 6: Optimality gap (%) by imprecise demand data.
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The results indicate that the optimal solution is highly insensitive to impreciseness. Even when

the true values of the demand parameters deviate by up to 100% from the presently used values, the

maximum optimality gap attained in the 50 demand scenarios is only 3.8%. This can be explained

by the fact that near-optimal solutions tend to locate facilities along the busiest truck routes and

at the busiest truck stops. The location decisions in these solutions therefore tend to overlap

considerably. As implied by the proof of Proposition 2 (see Online Appendix E)), the effects of

impreciseness are strongly correlated for such overlapping solutions, thus reducing the maximum

optimality gap.

5.6 Sensitivity Analysis on Model Parameters

As argued, setting “optimal” values for r and ws is challenging, which begs to question the impact

of impreciseness. Figure 9a depicts the optimality gap when using r = 0.5 while the optimal

value r# differs, expressed as a percentage of the “true” optimal solution value. We consider

r# ∈ {0.0, 0.1, . . . , 1.0}. Similarly, Figure 9b depicts the optimality gap when the optimal ratio

wPC/wHC is a factor ρ ∈ {2−5, 2−4, . . . , 25} times the presently used ratio 2. Specifically, we

analyze the impact of using wHC = 2 instead of the optimal value w#
HC = ρ · wHC .
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Figure 9: Optimality gap (%) when using baseline parameter values for r and the relative impor-
tance of service packages instead of the “real” values.

The results show that solution values are very robust with respect to impreciseness in r and ws.

Up to a substantial level of impreciseness in r, the optimality gap remains below 1.5%. For ws, the

optimality gap does not exceed 1.0%.
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Selecting the “true” package type to a given package s may be subject to errors as well, as

understanding of access requirements is still in early stages of development. We therefore assess

the potential impact of assigning the “wrong” package type to package PC. For each package type

j ∈ J , we determine the parameters of function gjPC(·) providing the best fit to the assigned network

scores (see Section 5.1). Next, we assess the optimality gap when choosing package type j while the

“true” package type is j#. To assess the impact of building a substantial network with a “wrong”

package type choice, we analyze this for the baseline case with p = pPC = 20 and pHC = 10.

Selected package type j
j# CTL RCTL ASAP
CTL x 0.33 0.43
RCTL 0.25 x 0.40
ASAP 0.98 0.18 x

Table 7: Optimality gap (%) when choosing package type j while the “true” package type is j#.

Table 7 summarizes results, which show that selecting a wrong package type can induce an

optimality gap of up to approximately one percent for the case considered. This on the one hand

makes it beneficial to adequately assess the package type, but on the other hand suggests that

solution values are rather robust with respect to wrong package type choices. For example, applying

the three functions to the 10 configurations of RWCs included in the survey yields rather similar

function values (see Online Appendix G).

5.7 Model Statistics

Table 8 describes the solution times and model statistics of 12 problem instances. The problem

instances are defined by the number of truck flows (55 or 95), the number of different service

packages (2 or 5), and the structure of the network (baseline, dense, or sparse). The three additional

service packages are: tuberculosis care (TC), STI care (SC), and malaria care (MC). Table 3 shows

the definitions of the corresponding effectiveness variables. The fractions of truck drivers who need

these packages were again estimated based on data from the global health data repository (WHO

2016) and are provided in Online Appendix I. The sparse network is generated by selecting the

minimum spanning tree of our graph G(L,E), and the dense network is generated by adding for

each vertex two imaginary edges that connect this vertex with the two closest neighbor vertices

it was not connected to in the baseline network. We generate the time needed to traverse such
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imaginary edge by dividing the Euclidian distance of the edge by the average speed of 40 km/hour.

For both alternative network structures, we determine the shortest origin-destination routes. All

other parameters are kept as before.

Instance |Q| |S| Structure Variables (Integer) Constraints LP gap (%) CPU (sec.)

D55 55 2 Dense 5679 (558) 2933 0.5 0.6
D95 95 2 Dense 9123 (798) 4825 0.5 0.7
B55 55 2 Baseline 9769 (558) 3625 2.2 7.8
B95 95 2 Baseline 15871 (798) 5977 1.8 4.2
S55 55 2 Sparse 13725 (558) 4109 3.0 19.5
S95 95 2 Sparse 22665 (798) 6837 3.3 73.7
D55e 55 5 Dense 14196 (1395) 7502 4.9 60.4
D95e 95 5 Dense 22806 (1995) 12232 5.2 91.3
B55e 55 5 Baseline 24421 (1395) 9232 8.2 274.4
B95e 95 5 Baseline 39676 (1995) 15112 8.6 364.5
S55e 55 5 Sparse 34311 (1395) 10442 11.2 3577.9
S95e 95 5 Sparse 56661 (1995) 17262 11.7 7868.0

Table 8: Model statistics for 12 problem instances.

We observe that the CPU time needed to solve an instance tends to grow rapidly when |Q|

increases, when |S| increases, and when the network becomes sparser. This is well explained by the

observations that, in each of these cases, the number of variables and constraints increase and the

LP relaxation of the MILP becomes weaker, which tends to negatively impact the performance of a

branch-and-bound algorithm. Note that sparser networks bring about many additional variables in

(25) and additional constraints in (20)-(23), because the number of RWC locations along a route,

|Kq|, tends to increase when the network gets sparser.

5.8 Incorporating Equity

The presented MILP model could be extended to include equity of access to healthcare as an

additional objective along the lines of Ares et al. (2016). Their paper proposes to take a weighted

sum of pairwise absolute differences in effectiveness between different truck flows as a measure

of equity. As effectiveness is calculated for each service package in our context, we propose to

additionally sum the equity terms over the packages. Specifically, letting ZPV&E denote our initial

objective function, as defined in (8), and wEQ ∈ [0, 1] the importance of the equity term, we propose

the following objective function:
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where ZEQ = δEQ
∑

s∈S
∑

q1,q2∈Q|q2>q1 fq1sfq2s
(
Λ+
q1q2s + Λ−q1q2s

)
. Here, δEQ denotes a scaling fac-

tor, which we set equal to −10−5 in our experiments. Furthermore, Λ+
q1q2s = max{eq1s−eq2s, 0} and

Λ−q1q2s = max{−(eq1s − eq2s), 0}, so that Λ+
q1q2s + Λ−q1q2s represents the absolute difference between

eq1s and eq2s. This relationship is enforced by adding the following constraints to the MILP:

eq1s − eq2s = Λ+
q1q2s − Λ−q1q2s q1, q2 ∈ Q|q2 > q1, s ∈ S (18)

Λ+
q1q2s,Λ

−
q1q2s ≥ 0 q1, q2 ∈ Q|q2 > q1, s ∈ S (19)

To analyze sensitivity of optimal solutions towards equity, we assess the trade-off between

ZPV&E and ZEQ. Specifically, we repeat the numerical experiments from Section 5.3 with r = 0.5

and wEQ ∈ {0.0, 0.1, . . . , 1.0}. Figure 10 depicts the results. Note that ZEQ = 0 represents the

situation in which no differences in effectiveness between truck routes exist. As a first observation,

the equity criterion is quite aligned with the other objectives while p < 16. For the short term,

improvements in equity hence seem to be a matter of making the network grow rather than assigning

importance to this criterion. For the longer term, substantial gains in equity can be made at a

marginal loss in the other criteria, which is in line with the findings of Ares et al. (2016). On

average, moving from wEQ = 0.0 to wEQ = 0.2 increases ZEQ by 25.3% and decreases ZPV&E by

0.3% only. This provides a strong argument for incorporating equity in future facility location and

package allocation decisions.
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Figure 10: Pareto curves for ZPV&E vs. ZEQ for various values of p, with pHC = p
2 .

To assess the impact of incorporating equity on computation times, we repeat the numerical

experiments from Section 5.7, using wEQ = 0.1. Results are provided in Online Appendix H.

Interestingly, despite the fact that the number of constraints and linear variables approximately

doubled and the LP gap in the root node is much larger, solution times remain relatively low (up

to 1161 sec.). This is in line with findings by Ares et al. (2016), who show that solving their similar

MILP only gets challenging for very large networks.

6 Discussion and Conclusions

This paper considers the design problems arising when developing an integrated network of roadside

healthcare facilities to meet health service needs of truck drivers, as operated by NGO North Star

Alliance. More specifically we consider the problem of choosing optimal locations for clinics that are

added to the existing network, and allocating service packages to clinics. The optimization considers

two criteria: the number of truck drivers served and the effectiveness of the service delivery to the

population served. We model the latter criterion through three novel access measures.

The resulting optimization problem differs from previously studied healthcare facility loca-

tion problems, which typically assume patients to be static instead of mobile. This paper devel-

ops a mixed-integer linear programming model which captures the three access measures. This
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model has been implemented in a software package called POLARIS and installed at headquar-

ters (North Star Alliance 2011). We also present computational analyses and address prominent

managerial questions and challenges, using the network of major transport corridors in South-East

Africa as a case study.

One such question deals with the suitability of heuristic approaches to make network design

decisions. North Star NGO has predominantly made such decisions based on the first objective:

maximize patient volumes. While intuitively appealing, our experiments indicate that this approach

may need to be reconsidered, as such decisions may be quite different from those maximizing health.

We show that solutions that are close to optimal for both patient volume and effectiveness can

be obtained by balancing the weights of the criteria in the objective function. In other words,

considerable gains in effectiveness of the services are attainable when taking the second criterion

into account, without having to reduce the number of truck drivers served much.

We also analyze the heuristic of making decisions consecutively, as is current practice, as op-

posed to planning ahead future expansion decisions. In a context where many clinics are presently

operating, consecutive decision making is shown to yield near-optimal decisions. This is an impor-

tant finding, as it suggests that advanced and possibly expensive optimization tools might not be

needed in such contexts. Long term network planning, however, substantially outperforms such

heuristic in greenfield situations and in cases when synergy effects of placing multiple locations are

substantial.

Impact of impreciseness in data and model parameters on solution quality presents another

prominent question. Availability and quality of data is essentially limited in sub-Saharan Africa.

Moreover, understanding the relationship between access to services and effectiveness is still in early

stages of development and parameter calibration may be weak. We present extensive theoretical

and computational analyses on the relationship between data inaccuracy and solution values. These

reveal that the solutions found are highly robust to impreciseness, suggesting that difficulties in

acquiring precise input data do not necessarily hinder effective location choices.

Although, as we prove, the RHFLP is strongly NP-hard, our numerical experiments show

that the real life test instances can be solved within reasonable computation times using standard

software. Further research on approximation and exact solution methods will be valuable if future

applications consider more complex and larger problem instances.
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As access to health services is a human right laid down in the WHO constitution (United Nations

1946), we advocate that, once the high volume needs are addressed, equity considerations are taken

into account in future network expansions. Along the lines of Ares et al. (2016), our work proposes

how to extend our model to include this criterion and shows that substantial gains in equity can

be attained at a marginal loss in the other criteria. Much additional work is yet to be done to

better understand adequate models and assess trade-offs. One specific challenge is to develop

methods that identify so-called equitably efficient solutions (see Ogryczak 2000). Our model also

does not capture possible effects of location and service package decisions on patient volumes.

These may include competition effects, marketing or repetition effects, and effects of offering a

more comprehensive set of health services. For example, Morris and Ferguson (2007) show that

demand is partly affected by the availability of public healthcare providers. Follow-up research could

investigate the magnitude of such effects for the truck driver population, propose richer models for

ZPV , and analyze the benefits of incorporating them in network design decisions. Likewise, models

which include stochastic parameters can be of value to solve practical instances, given the many

uncertainties in the data.

The proposed model captures the effectiveness of services provided via three newly proposed

measures of access. The validity of these measures and their parametrization should be strength-

ened. For example, there is much room for improvement in terms of understanding the mechanisms

relating access to effectiveness and the role of the composition of a package in these relationships.

For instance, integrating HIV and TB care is known to bring about significant synergy effects. One

specific area is to investigate possibilities to calibrate model parameters through empirical research

relating differences in health outcomes to differences in access. We believe that the models, and

subsequently the solutions proposed and health services provided to the truck drivers can greatly

benefit from advancing scientific understanding in this area.
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A Interviewee Characteristics

Role

1. CEO∗

2. Partner relations manager
3. Public health and medical advisor∗

4. International health expert
5. Finance and HR manager
6. Regional director East Africa
7. West Africa manager
8. Site coordinator Southern Africa region
9. IT & information manager
10. Manager IT strategy
∗ Surveyed for calibration of model parameters.

Table 9: Interviewee characteristics.
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B Linearization of Effectiveness Variables eqs

In order to model eqs by means of a set of linear constraints, we now introduce additional no-

tations and definitions related to the the trip of a truck driver in flow q (see Table 10 for an

overview). For a given solution ω, we represent this trip by the following vector of vertices: πqs =

[πqs(1), πqs(2), . . . , πqs(n− 1), πqs(n)]. Here, πqs(1) and πqs(n) are the start vertex Oq and the end

vertex Dq, respectively. The vector [πqs(2), . . . , πqs(n − 1)] is the sequence of package s locations

that are passed during a trip from Oq to Dq. Recall that for a given solution ω a package s location

is a location k with a facility that offers package s, and note that πqs(1) and πqs(n) are not a

package s location. As motivated in the main text, we make the following assumption:

Assumption 1. A truck driver cyclically travels from Oq to Dq to Oq to Dq et cetera, as follows:

[πqs(1), πqs(2), . . . , πqs(n− 1), πqs(n), πqs(n− 1), . . . , πqs(2), πqs(1), πqs(2), . . . ]

tkl travel time between two locations k and l
Lq set of vertices in the path of flow q, Lq = {Oq ∪Kq ∪Dq}
Lkq set of locations that are passed after passing location k during a trip from Oq to Dq

πqs set of vertices representing a trip from Oq to Dq, πqs = [Oq, package s locations along path, Dq]

iklqs
{

1 if location l is the immediate successor of location k in vector πqs
0 otherwise .

tcCTL
kl total time a truck driver in flow q is covered in segment k → l, (k, l) ∈ Kq ×Kq

tcCTL
kDq

total time a truck driver in flow q is covered in segment k → Dq → k, k ∈ Kq

tcCTL
Oql

total time a truck driver in flow q is covered in segment l→ Oq → l, l ∈ Kq

tcRCTL
kl effective time a truck driver in flow q is covered in segment k → l, (k, l) ∈ Kq ×Kq

tcRCTL
kDq

effective time a truck driver in flow q is covered in segment k → Dq → k, k ∈ Kq

tcRCTL
Oql

effective time a truck driver in flow q is covered in segment l→ Oq → l, l ∈ Kq

Note: see Section 3.2 for the definition of the effective time covered during period [t1, t2]

Table 10: Table of Notations.

Let us consider the case when |πqs| ≥ 3 (i.e., there is at least one package s location along the

path). Because of Assumption 1, we know that a truck driver in flow q always returns to πqs(1)

after reaching πqs(n), and vice versa. We refer to the cycle from πqs(1) via πqs(n) to πqs(1) as the

flow q cycle. This cycle could be regarded as a set of paths between successively passed package s

locations. This set is given by: {πqs(h) → πqs(h + 1)|2 ≤ h ≤ n − 2} ∪ {πqs(n − 1) → πqs(n) →

πqs(n − 1)} ∪ {πqs(h + 1) → πqs(h)|2 ≤ h ≤ n − 2} ∪ {πqs(2) → πqs(1) → πqs(2)}. We refer to

these paths as package s cycle segments from now on. The length of a cycle segment represents the

travel time of the truck driver for that segment, and is obtained via the parameters tkl.
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Let variable iklqs be equal to 1 if location l is the immediate successor of location k in vector

πqs and equal to 0 otherwise. In Online Appendices A, B, and C we prove the following results:

Proposition 4. Constraints (20) - (24) ensure that variable iklqs is equal to 1 if and only if location

l is the immediate successor of location k in vector πqs.

∑
l∈Lq

iklqs = yks q ∈ Q, k ∈ Kq, s ∈ S (20)

∑
l∈Lq

iklqs = 1 q ∈ Q, k ∈ Oq, s ∈ S (21)

∑
k∈Lq

iklqs = yls q ∈ Q, l ∈ Kq, s ∈ S (22)

∑
k∈Lq

iklqs = 1 q ∈ Q, l ∈ Dq, s ∈ S (23)

iklqs ∈ {0, 1} q ∈ Q, k ∈ Lq, l ∈ Lkq, s ∈ S (24)

Lemma 1. For solution ω, the polyhedron PB(ω) = {i|0 ≤ i ≤ 1, (20)− (23)} is a singleton.

Lemma 2. The constraint matrix B defined by the left-hand side of constraints (20)-(23) is totally

unimodular (TU).

Note that, for a given a solution ω, the right-hand side of constraints (20)-(23) is integral. It

follows from the unimodularity of B that the polyhedron PB(ω) is integral as well (Schrijver 1998).

By Lemma 1 we know that this polyhedron consists of one feasible solution, which must hence

be integral. This shows that the solution space remains the same when defining variables iklqs as

continuous variables instead of binary variables:

iklqs ∈ [0, 1] q ∈ Q, k ∈ Lq, l ∈ Lkq, s ∈ S (25)

Variables iklqs hence provide a complete description of the package s cycle segments. Let us

consider a given segment k → l for which iklqs = 1. For this cycle segment the average access time

is given by 1
2 t

2
kl, and the the total time covered tcCTLkl and the effective time covered tcRCTLkl (see

equation (3)) are calculated as:
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{
tkl, τ

CTL
s

}

tcRCTLkl =



tkl if tkl < τRCTL1s

tkl − 1
2

(tkl−τRCTL
1s )

2

τRCTL
2s −τRCTL

1s
if τRCTL1s ≤ tkl ≤ τRCTL2s

τRCTL2s − 1
2

(
τRCTL2s − τRCTL1s

)
if tkl > τRCTL2s

For segments k → Dq → k and l → Oq → l the values are obtained by replacing tkl in these

definitions by their durations: tkDq + tDqk and tOql + tlOq , respectively. Using these parameters

and the variables iklqs, the value of access measure ajqs(y) is calculated by auxiliary (linear) con-

straints (26) - (28). For conciseness, we refer to this variable as ajqs from now on. The idea behind

these constraints is that they calculate the value of ajqs per package s cycle segment and aggregate

these in the correct way (the aggregation for aCTLqs and aRCTLqs is obvious, the aggregation for aASAPqs

is explained in De Vries (2011)):

aCTLqs =
1

Tq

∑
l∈Kq

iOqlqstc
CTL
Oql +

∑
k∈Dq

ikDqqstc
CTL
kDq

+
∑
k∈Kq

∑
l∈Kq

iklqs
(
tcCTLkl + tcCTLlk

) (26)

aRCTLqs =
1

Tq

∑
l∈Kq

iOqlqstc
RCTL
Oql +

∑
k∈Dq

ikDqqstc
RCTL
kDq

(27)

+
∑
k∈Kq

∑
l∈Kq

iklqs
(
tcRCTLkl + tcRCTLlk

)

aASAPqs =
1

2Tq

∑
l∈Kq

iOqlqs

(
tOql + tlOq

)2
+
∑
k∈Dq

ikDqqs

(
tkDq + tDqk

)2
(28)

+
∑
k∈Kq

∑
l∈Kq

iklqs
(
t2kl + t2lk

)+ iOqDqqsM

Here, M is a large number that sets aASAPqs to a large constant if service package s is not offered

along the path of flow q. Namely, constraints (21) and (23) ensure that iOqDqqs = 1 in this case.
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Let Mqs represent an upper bound on ajqs. The set of auxiliary (linear) constraints that model

eqs as a piecewise linear function of ajqs can be formulated using the so-called Lambda Method (Lee

and Wilson 2001):

eqs = λ3qs + λ4qs q ∈ Q, j ∈ {CTL,RCTL}, s ∈ Sj (29)

eqs = λ1qs + λ2qs q ∈ Q, j = ASAP, s ∈ Sj (30)

λ1qs + λ2qs + λ3qs + λ4qs = 1 q ∈ Q, j ∈ J, s ∈ Sj (31)

λ1qs0 + λ2qsα
j
s + λ3qsα

j
s + λ4qsMqs = ajqs q ∈ Q, j ∈ J, s ∈ Sj (32)

λ1qs ≤ z1qs q ∈ Q, j ∈ J, s ∈ Sj (33)

λ2qs ≤ z1qs + z2qs q ∈ Q, j ∈ J, s ∈ Sj (34)

λ3qs ≤ z2qs + z3qs q ∈ Q, j ∈ J, s ∈ Sj (35)

λ4qs ≤ z3qs q ∈ Q, j ∈ J, s ∈ Sj (36)

z1qs + z2qs + z3qs = 1 q ∈ Q, j ∈ J, s ∈ Sj (37)

λiqs ≥ 0 i ∈ {1, 2, 3, 4} (38)

ziqs ∈ {0, 1} i ∈ {1, 2, 3} (39)

Summarizing, to transform model (8) - (15) into a mixed-integer linear programming model, it

suffices to replace equations (9) by constraints (20) - (23) and (25) - (39).
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