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The effect of forest structure and health on the relative surface temperature captured by
airborne thermal imagery was investigated in Norway Spruce-dominated stands in Southern
Finland. Airborne thermal imagery, airborne scanning light detection and ranging (LiDAR)
data and 92 field-measured sample plots were acquired at the area of interest. The surface
temperature correlated most negatively with the logarithm of stem volume, Lorey’ s height and
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the logarithm of basal areaat aresolution of 254 m? (9-m radius). LiDAR-derived metrics: the
standard deviations of the canopy heights, canopy height (upper percentiles and maximum
height) and canopy cover percentage were most strongly negatively correlated with the
surface temperature. Although forest structure has an effect on the detected surface
temperature, higher temperatures were detected in severely defoliated canopies and the
difference was statistically significant. We also found that the surface temperature differences
between the segmented canopy and the entire plot were greater in the defoliated plots,
indicating that thermal images may also provide some additional information for classifying
forests health status. Based on our results, the effects of forest structure on the surface
temperature captured by airborne thermal imagery should be taken into account when
developing forest health mapping applications using thermal imagery.

Keywords. Remote sensing; defoliation; airborne thermal imagery; | ps typographus; forest mensuration and
management; airborne laser scanning; forest health

Introduction

The world' s climate has changed in the last decades due to human activities, causing arise in global
surface temperatures (Solomon et al. 2007). The rising temperatures are affecting-insect pests
distribution and phenology, which, along with other climate-induced stress factors, has resulted in
increased forest damage (Allen et al. 2010; Seidl et al. 2008). The rate of change in mean annual
temperature is greater at higher |atitudes than around the equator (Solomon et a. 2007); hence, the
effects of climate change on insect species are stronger in boreal forests. Therefore, novel methods are
required to accurately monitor and predict changesin the distribution of and damage from pest
organismes.

The European spruce bark beetle (I ps typographus, L.) is a common species in Europe. The bark
beetle requires fresh spruce timber to reproduce, but.it can attack weakened living spruce trees or even
healthy spruce trees when they appear in abundant numbers (Helidvaara et al. 1998). Bark beetle
damage can be detected as discoloration and defoliation of the crown and as holes and resin flow
traces on the bark. The European spruce bark beetle causes the largest economic losses to forest
owners among insect pests in Eurasia(Wermelinger 2004). The last several decades have been marked
by many storms, which have weakened and fallen vast amounts trees (Vastaranta et a. 2012). This has
enabled reproduction of bark beetles resulting in large areas of damaged forest with high timber value.
In Finland, Sweden and Norway, one generation of |. typographusis normally produced per year
(Annila 1969; Bakke 1983). During the warm summers of 2010 and 2011, second generations of |.
typographus were observed in southern Finland, causing more damage to forests (Neuvonen et al.
2014; Pouttu & Annila 2010). Increasing spring temperatures have affected the onset of the first I.
typographus generation’ s devel opment, supporting the development of a second generation (Faccoli
2009). One-third (30%) of the total stem volume of Finnish forestsis comprised of Norway spruce
(Korhonen et al. 2013); thus, it isimportant to develop methods to avoid and monitor probable bark
beetle damages inthe future.

The extent of forest damages varies from individua treesto several thousands of hectares; thus, the
methods used to detect damages are different, depending on the scale and required level of detail
(Vastaranta et al. 2012; Wulder et al. 2006). The intensity of forest management also varies between
countries, and thus so too do the objectives of mapping forest damages. In countries where extensive
forest management is applied, thousands of hectares of forest may be damaged and the only
operational method of mapping is the use of remote sensing. Satellite-based (e.g. MODIS, Landsat)
remote-sensing methods are widely used in these countries (Coops et al. 2006; Coops et al. 2009z;
Coops et a. 2009b; Eklundh et al. 2009; Luther et a. 1997; Radeloff et al. 1999; Townsend et .
2012; White et al. 2005; Wulder et a. 2008), although the output accuracy may only be suitable for
large-scale mapping. In Finland and other countries where intensive forest management is practiced,
detailed mapping of the damagesis required. For example, even asmall group of damaged trees has to
be removed from the forest by the forest owner due to legislation and forest owners can receive
compensation from insurance companies if the amount of damaged wood is over 10 m*ha.
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For a detailed mapping of defoliation (i.e., tree or sample plots), possibilities involving both active and
passive airborne sensors have been investigated. Airborne scanning light detection and ranging
(LiDAR)—based methods can capture vegetation heights and thus may have some potential because
LiDAR pulses seem to penetrate defoliated canopies more than they do healthy canopies (Kantola et
a. 2013; Kantola et al. 2010; Solberg et al. 2006; Vastaranta et al. 2013a). However, these methods
have many uncertainties, since the canopy density is also affected by factors other than defoliation.
Lausch et al. (2013) studied hyperspectral remote-sensing techniques to predict the potential for bark
beetle outbreaks based on the mapped spruce forest’ s vitality at different scales. The hyperspectral
remote-sensing data used had 4-m and 7-m ground resolutions. Based on the study, they were able to
recognize three different vitality classes of spruce forest from the hyperspectral data, indicating the
different stages of |1ps typographus attack. However, the accuracy of the predicted observed effects
was 69%, which can be considered insufficient for many forestry practices. Fassnacht et al. (2014)
were able to develop a method using hyperspectral imagery with 5-m and 7-m ground resolutions for
mapping bark beetle-induced tree mortality. The mapping of dead trees was possible with notably
higher overall accuracies (84%—96%). The detection of dead and defoliated spruceswas studied using
aerial photography at the single-tree level (Haara & Nevalainen 2002). When using a three-class
classification scheme for the defoliation, 89.5% of the plots were classified correctly. Kantola et al.
(2010) investigated the combination of airborne scanning LiDAR and aeria (photography in
classifying the defoliation of pines at the single tree-level. They showed that the inclusion of aerial
photography improved the accuracy of defoliation classification.

Asfar aswe know, the effect of forest structure on airborne thermal.imagery has not been studied
intensively. Sader (1986) studied the effective radiant temperaturesin a mountainous Pacific
Northwest forest at stand-level using thermal infrared multispectral scanner (TIMS) dataat 10 m
resolution. He found that old growth forest stands (undisturbed forest) with greater amounts of
biomass and closed canopies had temperatures that were 2.5°C-and 8-9°C lower than younger, less
dense stands aged 25-33 and 012 years, respectively. Sader (1986) also found that the aspect and
slope gradient had greater effects on thermal emission in younger reforested clearcuts than in older
stands, where the effects were minor. Peterson et al. (1986) analysed forest structures at plot-level (0.1
ha) using the Daedalus Airborne Thematic Mapper (ATM) data at 23-m resolution and found long-
wave thermal radiation to be negatively correlated with basal area and canopy closure. Scherrer et al.
(2011) studied the drought-sensitivity of several deciduous tree species based on high-resolution (20
cm resolution) thermal imagery. They found that canopy architecture had an influence on canopy
temperature, dense canopies being warmer than open canopies in the warm summer climatein
Switzerland.

Thermal imagery measures thermal emissions from surfaces and could be a useful method for forest
health and defoliation mapping. As atree losesits needles, its evaporative surface area decreases and
canopy and |eaf architecture changes causing microclimatic conditions to transform as air space
increases inside the tree crown. This causes changes in the temperature of the tree canopy, which can
be detected through thermal imaging (Dennison et a. 2009; Scherrer et a. 2011). Higher canopy
temperatures were found in pine trees under moisture stress and bark beetle attack than in healthy trees
in the same area (Olson 1972; Weber 1971). Stressed trees were as much as 6 °C warmer than the
control-trees but the average temperature differences between the stressed and the healthy control trees
were minor—only 1 °C; they were also unable to determine if the differences were due to
physiological stress or variation in the microclimate (Olson 1972; Weber 1971).

More recent studies investigating the use of thermal imagery in plant health monitoring suggests the
potential of thermal imaging in operational plant management (Bulanon et al. 2008; Grant et al. 2006;
Grant et a. 2007; Zarco-Tgjada et al. 2012). A rise in the surface temperature of defoliated tree crowns
can be visible due to the reduction of leaf stomatal conductance or defoliation (Calderdn et a. 2013;
Clark et a. 2012; Dennison et al. 2009; Hernandez-Clemente et al. 2011). Canopy structure also
affects surface temperature acquired with thermal infrared imaging (Scherrer et al. 2011); thus, there
may be a possibility of mapping defoliation on athermal basisin boreal spruce forests.
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Here, the effect of forest structure and health status of a Norway spruce (Picea abiesL.) forest on
high-resolution (1 m x 1 m) thermal imagery was studied using 9-m radius field plots in southern
Finland. The forest health status in the study areavaried due to a bark beetle (Ips typographusL.)
infestation, causing defoliation of the trees. The hypothesis was that defoliated stands could be
distinguished as warmer plots than healthy plots using airborne thermal imagery. Although defoliated
trees and canopies could be detected as warmer, presumably many uncertainties also exist due to the
possible effect of the forest structure on the recorded temperatures. Thus, we also aimed to investigate
the effect of forest structure on the detected temperature.

Material and methods
Study area

The study siteislocated in the Askola municipality in Southern Finland (60°31'59” N, 25°36'00" E,
Figure 1). The location was selected, with assistance from the Finnish Forest Center, due to existing
defoliation damages caused by |. typographus during the last several years. The area of the study site
is 3,450 hectaresin total, comprising 2,340 hectares of forest and 1,110 hectares of ‘agricultural and
built land. Norway spruce (Picea abies, L.) mainly dominates forestsin this area, with mixtures of
silver birch (Betula pendula, Roth), downy birch (Betula pubescens, Ehrh.), Scots pine (Pinus
sylvestris, L.) and, to alesser degree, rowan (Sorbus aucuparia, L.), aspen (Populustremula, L.) and
common juniper (Juniperus communis, L.). Scots pine-dominated forests are less common in the study
area. The forest types represented here mainly range from heath with rich grass-herb vegetation to
heath with blueberry-dominated vegetation. These types are from OMT toMT on Cajander’s
classification, and are quite eutrophic to Finnish forests (Cajander 1926).

An additional 39 plots were obtained from the Finnish Forest Center (FFC) and were added to the
analyses, in order to obtain more information from healthy forests. These plots were measured in 2011
in asimilar manner and included respective forest inventory attributes, but without information on the
forest health.

Aeria imagery provided by the National Land Survey (NLS) from 2013 was used to visually evaluate
if the FFC plots were healthy and did not have defoliated trees. Eye calibration was done with the
defoliation data measured in the fall of 2013, enabling a coarse visua classification of damages or no
damages. Three plots were visually classified as damaged and were not included (n = 3) in the data
analysis due to missing data.onthe amount of defoliated stem volume, as the healthy plots were used
in the forest structure analysis.

It should be noted that there was atwo-year gap between the two ground plot datasets; the effect of the
gap was therefore examined by re-measuring 11 plots that were measured in 2011. The average
growth after two yearswas 0.5 cm in Dg and 0.2 m in Hg at plot-level. Thus, the effect of growth was
considered to be marginal in our analyses, and the plots from 2011 and 2013 were merged.

Thermal data

The thermal imaging data were acquired from an airplane on 25" of September in 2013 between 16:40
and 18:15 local time (GMT+2). The thermal survey camera used was an Optech CM-LW®640 (Optech
International Inc., Kiln, Mississippi, USA), with a35 mm lens delivering images at 1-meter spatial
resolution from 2,000 meters above ground. It is based on an uncooled microbolometer sensor with a
resolution of 640 x 480 pixels. The camerais designed to perceive thermal emissions at the longer
thermal infrared wavelength area of 8-14 um and is geometrically calibrated. Temperature
stabilization is ensured with integrated parameterized nonuniformity corrections (NUC) and an
athermal lens design. The flying altitude was 2,000 meters above sealevel. The sensor did not have a
self-calibration procedure. Weather conditions affect surface temperature; therefore, weather data were
collected from aroad wesather station operated by the Finnish Meteorological Institute (FMI), ~10 km
from the research area. The average temperature at the time of the thermal data acquisition was 2.5 C°,
with arelative humidity of 89%. Some drizzle occurred before the data collection and the wind speed
was around 2—3 meters/second. Transpiration rate at this temperature and humidity is near to zero.
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The thermal survey camera only recorded relative temperatures on one 8-bit channel, with values
ranging from O to 255. In-situ temperature measurements were not performed; thus, the relative values
cannot be transformed into absolute temperature values. The individual images were normalized by
the data provider (Fugro Survey Ltd.) using an in-house calibration method based on image overlap to
create athermal image mosaic for the whole study area at 1-m resolution. Geolocation accuracy of the
thermal imagery was 1-meter (1 pixel).

LiDAR data

The LiDAR data were collected at the same time as the thermal data. The system was set to record
multiple echoes. The LiDAR returns included the coordinates (X, y), height values (2), intensity values
(from 1 to 180), flight line numbers and echo types. The echoes were classified into four classes: 1 =
only echo, 2 = first echo, 3 = intermediate echo and 4 = last echo. The scanner used was an Optech
LW640. Thefield of view was 13 degrees, the pulse rate was 50 kHz, the scanning frequency was 42
Hz and the beam divergence was 0.25 mrad. The average pulse density of the resulting datawas 1.8
pulses/ mz2.

The LiDAR data were classified into ground and non-ground points using the standard TerraScan
approach, where afiltering algorithm based on triangular irregular networks (TIN) is applied
(Axelsson 2000). A digital elevation model (DEM) was created using classified ground points for the
study area. A canopy height model (CHM) was created using the highest laser points for the whole
study area at a 1-m resolution.

Field measurements

The field measurements were carried out during October and November in 2013. A total of 53 plots
(Table 1) with 9-m radius (~254 m?) were established in Norway: spruce-dominated forest stands. The
sampling of the plots was based on following steps:

(1) Theforest attribute maps provided by the Finnish National Forest Inventory were used to
locate Norway spruce-dominated stands (Korhonen et al. 2013). The structural criteriafor plot
selection were spruce dominance (over 70% of total volume) and age (over 30 years old).

(2) Prior to going to the field, the plots were positioned approximately, according to the thermal
imagery, to maximize the variability of the thermal image data.

(3) Clusters of three plots were formed so that local variability of the thermal imagery would be
maximized; local maximum, minimum and mean temperature values were represented.

Then, the plots were positioned with a Trimble Pro XH (Trimble Navigation Ltd., Sunnyvale,
California, USA), which can reach an accuracy of 30 cm. Differential correction of the plot centers
was applied with the GPS Pathfinder Office software (Trimble Navigation Ltd., Sunnyvale, California,
USA).

The forest inventory attributes were measured from the sample plots. The basal-area (G) and basal-
area weighted mean diameter (Dg) was calculated from the diameter at breast height (dbh)
measurements of all trees with dbh > 5 cm. Calipers were used to measure dbh. The heights of the
species-specific basal-area median trees were measured using a Vertex tree height—measuring device.
Then, the heights of all trees were calculated using Veltheim’ s height models (Veltheim 1987). The
mean heights (Hg) of the trees within the sample plots were calculated as the basal area—weighted
mean height, or the so-called Lorey’ s height. The stem volume (Vol) was calculated as the sum of the
tree-wise stem volumes, computed with allometric stem volume functions (L aasasenaho 1982). The
stand age was computed using functions based on site index from Véhéasaari (1988).

The health status of each tree was visually assessed. Three classes were used: defoliation,
discoloration and the presence of bark beetles, in addition to classifying the trees as dead or aive.
Each of these had two classes: present or not present. Defoliation and discoloration were marked as
present when they were noticeabl e to the naked eye. The threshold level of defoliation was 20%
(compared to a healthy tree within the same site type), which is considered to be visually noticeable
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The percentage of stem volume of defoliated trees (Defol V) in a sample plot was computed by
summing the stem volumes of the damaged trees and dividing it by sample plot’ s total stem volume.
The percentage of stem volume of dead trees (Dead_V) was computed respectively.

An additional 39 plots were obtained from the Finnish Forest Center (FFC) and were added to the
analyses, in order to obtain more information from healthy forests. These plots were measured in 2011
in asimilar manner and included respective forest inventory attributes, but without the information.on
forest health.

Aerial imagery provided by the National Land Survey (NLS) from 2013 was used to visually eval uate
if the FFC plots were healthy and did not have defoliated trees. Calibration of visual interpretation was
done with the defoliation data measured in the fall of 2013, enabling a coarse visual classification of
damaged and undamaged sample plots. Three plots were visualy classified as damaged and were not
included (n = 3) in the data analysis due to missing data on the amount of defoliated stem volume, as
the healthy plots were used in the forest structure analysis.

It should be noted that there was a two-year gap between the two ground plot datasets; the effect of the
gap was therefore examined by re-measuring 11 plots that were measured in 2011. The average
growth after two yearswas 0.5 cmin Dg and 0.2 min Hg at plot-level. Thus, the effect of growth was
considered to be marginal in our analyses, and the plots from 2011 and 2013 were merged.

Data processing
Thermal data

Statistical features from the thermal data were calculated for the plots (Table 2). Two different
approaches were applied: 1) First, mean temperatures and their standard deviations were calculated at
256-m? resol ution; 2) second, a forest mask was created from the CHM, and thermal metrics were
calculated for responses above 3 m without the ground or the understory vegetation. By using this
approach, it was possible to estimate the rel ative surface temperature of the tree crowns for the plots.
The ground surface temperature was estimated using the same method, but only responses below three
meters were included.

The plOtmean, CaNOPY-0NlYmean and ground-onlymean Values represent the arithmetic mean of the relative
surface temperature values calculated for the entire plot, the ssgmented canopy and the ground,
respectively. The min values represent the minimum temperature value measured from the plot or the
canopy. The max values represent the maximum temperature value measured from the plot or the
canopy.

LiDAR

A suite of 30 LiDAR features (Table 3) describing canopy height and density was extracted using the
ArboLiDAR software package (Arbonaut Oy, Joensuu, Finland) according to Junttilaet a. (2010).
The LiDAR metrics were designed to predict forest stand characteristics, such as mean height, stem
number and stem volume (Junttila et al. 2010; Naesset 1997; Naesset & Bjerknes 2001). The most
suitable LiDAR features were selected from the suite according to preliminary analysis. In addition,
slope, aspect and forest canopy cover percentage were calculated from the LiDAR data.

Statistical analyses
Effect of forest structure on relative surface temperature

The effect of forest structure on relative surface temperature was studied using only the healthy plots
(n=43) that had less than 3% of Defol _V and less than 6% of Dead V. Linear regression analyses
were used to explore the empirical relationships between the thermal features as our response, along
with forest structural variables (Vol, Age, Hg, Dg, G and stem number) as the predictors. The analyses
were performed for both in-situ measured forest structural variables and the LiDAR variables (i.e.,
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CHM, H90 and CHM_std).
Effect of forest structure and health on relative surface temperature

The sample plots measured in fall 2013 with information on defoliation were used to analyse
dependencies between surface temperature, forest structure and forest health. The plot data was
supplemented with 10 randomly selected healthy plots from the FFC data to obtain an even
distribution of the defoliated and healthy plots. The total number of plots in these analyses was 63.

Then, healthy and defoliated plots were compared in four groups by stem volume (Table 4). A plot
was counted as “healthy” if it had less than 3% of Defol_V and as “ defoliated” if it had over 10% of
Defol_V. The relative mean surface temperatures of the plots within groups were then compared with
t-tests. The differences between the thermal responses from the canopy and the ground were al'so
examined.

Groups with different amounts of Defol_V were formed, using only plots with over 100 m*/ha of stem
volume to partialy hinder the effect of forest structure . Healthy plots (n = 11) were determined using
the same limit of Defol_V as before (3%). The “Defoliated 10%” group (n =12) had 10-20% of
Defol_V, while the “Defoliated 20%" group (n = 11) had over 20% of Defol V.

Finally, multiple regression analysis was used to examine the dependencies between surface
temperature, forest structure and forest health. Forest structural variables including airborne scanning
LiDAR features were entered into the multiple regression analysis with Defol_V one at atime as
explanatory variables, in addition to surface temperature as‘a dependent variable.

Results
The effect of forest structure on relative surface temperature

A negative linear relationship was found between canopy. height and relative surface temperature (r =
—0.72) (Figure 2), i.e., mature trees are colder than young, short ones. The Hg had a respective linear
relationship, with a correlation of —0.67. The logarithmic transformation of number of stems were also
correlated with the temperature (r = 0.49). The logarithmic transformations of basal area and stem
volume were correlated with surface temperature, with correlations of —0.75 and —0.78, respectively.
Tree age was correlated with the surface temperature with a correlation of —0.58.

In addition to the field-measured forest structural variables, LiDAR-derived metrics describing canopy
characteristics were used in the investigations (Figure 3). Height features such as CHM _mean,
CHM_max and H90 were negatively correlated with the relative mean temperature, with correlations
of —-0.71, —0.73 and=0.73, respectively. Thisis consistent with the mean height measured in-situ. The
standard deviation of CHM explained the variation in the relative mean temperature, with a correlation
of —0.77. CHM _std was highly correlated with the CHM_max feature (r = 0.91); however, the
standard deviation takes gaps in the canopy into account, which could explain the better correlation.
Forest canopy cover percentage (FCC), as calculated from CHM, was nearly equal in explaining the
variation in'the relative mean temperature (r = —0.72). Asforest cover percentage increased, the
relative surface temperature decreased. CV, calculated as CHM_mean divided by CHM_std, was also
correlated-with the relative surface temperature (r = 0.65). CV decreased as height increased, and
temperature increased as CV increased.

Theeffect of defoliation on relative surface temperature

The defoliated plots showed higher surface temperaturesin all volume classes (Figure 4a). The
defoliation damage was more severe in larger stem volume classes; the surface temperature differences
between healthy and defoliated plots were also greater in these classes. However, the surface
temperature varied inside the classes, especially in the volume classes with over 320 m>/ha, which
could partialy hide the effect of defoliation on relative temperature.

The relative mean surface temperature was higher in the defoliated plots (Figure 4b). The plots with
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over 20% of Defol _V (Defoliated 20%) had significantly (p = 0.04) higher surface temperatures than
the healthy plots. The surface temperatures of the less defoliated plots (Defoliated 10%) had alarger
interquartile range compared to the healthy and severely defoliated plots. Thus, athough the mean
surface value was higher than in the healthy plots, the difference was not statistically significant using
Student’ st-test (p = 0.05).

The temperature differences between the segmented canopy and the entire plot were greater by one
relative temperature unit on average in the defoliated plots than in the healthy plots; however, the
differences between the groups were not statistically significant (p = 0.07) (Figure 5a). The canopy.
seemed to be warmer where defoliation occurred, but deviation in surface temperature inside the
groups diminished the differences, which could be caused by differences in the structure of the forest.

The surface temperature seemed to vary more in the defoliated plots than in the healthy plots, The
standard deviations calculated for the entire plots seemed to increase in plots with over 10% defoliated
tree volume (Figure 5b). However, no significant differences were found between the groups (p =
0.16).

Dependencies between surface temperature, forest structure and forest health Inthe data, logarithmic
transformation of stem volume had the strongest correlation with the surface temperature (r = —0.78)
and was further used as a variable in the multiple regression analysis, together with Defol_V to
investigate dependencies between surface temperature, forest structure and amount of defoliation. The
results showed that the amount of Defol_V had a statistically significant effect on the surface
temperature (Table 5). Asthe Defol_V increased, the relative surface temperature increased as well,
according to the regression analysis (Table 6). Increase in stem volume resulted in a decrease in the
relative surface temperature. According to the analysis, the structural effect on relative surface
temperature dominated over the effect of defoliation, asthe p-value was lower for the logarithmic
transformation of stem volume (p < 0.001).

Among the LiDAR features, the standard deviation in CHM had the strongest correlation with the
mean relative temperature. Thus, it was also tested in the multiple regression analysis, together with
the defoliated stem volume, to investigate their effects on the measured surface temperature. The
estimates of Defol_V coefficients were similar between the analyses. It seemed that the relative mean
temperature increased as the ratio of defoliated volume increased (Table 7). The structural effect on
the relative surface temperature seemed to dominate over the effect of defoliation.

Discussion

In this study, the applicability of thermal imagery in mapping and monitoring forest structure and
health status was investigated. Based on the analyses, it seems that the relative surface temperature
decreases as the forest matures, i.e., stem volume, height, age, canopy closure and basal area increase.
Thisis also supported by Peterson et al. (1986) and Sader (1986). Peterson et al. (1986) studied the
effect of forest structure on thermal data from the Thematic Mapper Simulator (TMS) in the Sierra
Nevadas, where canopy closure was negatively correlated with the thermal data (r = —0.65) and basal
area (r =—0.31). Sader (1986) showed that younger age classes were contributing most of the
variability in surface temperature related to terrain and that older stands had lower surface
temperatures. Thisis consistent with our study, as the change in temperature was highest in young
stands with low volume and decreased with age.

The sample plot data mainly included spruce-dominated forest, with some mixture of pine and birch.
There was not enough data to analyse the effect of tree species on the surface temperature, which has
been studied with broad-leaved trees by Scherrer et a. (2011). The canopy structure varies between
the main tree species in Finland. Spruce canopies are denser than those of other species, which could
affect the surface temperatures of tree canopies. Thus, more research is heeded on the effect of tree
species on thermal imagery in boreal forests.

Regarding the health status, our main finding was that the effects of forest structure on the surface
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temperature hinder the mapping of defoliation; however, severely defoliated plots may be possible to
map using thermal imagery. When the main aim is to map defoliation, the effect of the forest structure
has to be taken into account. In this study, forest structural variables were measured in the field. In an
operational application, detailed plot data are not usually available. However, many forest structural
variables are highly correlated with LIiDAR data (Vastaranta et al. 2013b) and can be used to
normalize the effect of the forest structure. In our study, similar correlation coefficients were detected
between the LiDAR features and surface temperature as with the forest structural variables. The
strongest negative correlation was found between the standard deviations of CHM within the sample
plots and mean surface temperatures. Height features, such as H90, CHM_max and CHM_mean, were
also strongly correlated with surface temperature. Forest structural variables and LiDAR featureswere
equal in explaining the surface temperature.

Higher surface temperatures were detected in the defoliated plots than the healthy plotsin the thermal
data. The mean surface temperatures were examined in four volume classes (to roughly normalize the
effect of the forest structure), and the general trend was that the defoliated plots had a greater mean
surface temperature than the healthy plots. The mean surface temperature was a so examined in groups
by defoliated stem volume. Severely defoliated plots showed significantly higher surface temperatures
than the healthy plots (p = 0.04), although the mean temperature of the healthy-and defoliated groups
overlapped. The mean surface temperatures of the moderately defoliated plots were more dispersed,
indicating that moderately defoliated plots may be difficult to distinguish from healthy plots with
thermal imagery aone. The difference between the canopy mean.and the entire plot mean surface
temperature was greater in the defoliated than the healthy plots, but-not statistically significant (p =
0.15). The difference increased as defoliation increased.

Boreal forest landscapes in Finland are heterogeneousin structure, and many factors affect the thermal
radiation measured by thermal infrared cameras and scanners. Boreal forests are moist, and many peat
lands have been drained for forest management, in order to'improve forest growth. Wetness and
moisture in forest canopies and soil affect the'surface temperature and upcoming thermal radiation, as
ditches could be distinguished from the thermal imagery as cold spots. Mira et al. (2009) found that
the thermal emissivity of soil is strongly correlated with the soil moisture content, thus affecting the
recorded surface temperature. Surface temperature has also been used in studies of soil moisture and
water stress among plants (Alchanatis et al. 2010; Soliman et al. 2013).

Factors causing the differencesinthe surface temperature could derive from the weather condition
which was cold and humid (relative humidity ~ 80-90%). Air temperature during the thermal imagery
acquisition was low (~'3 °C) , hence stomatais nearly closed and transpiration rate close to zero
(Halgren et a. 1982; Schwarz et al. 1997). Thus; it can be assumed that the differences in the surface
temperature are not caused by changes in the transpiration rate. Surface water was seen as cold spots
on the thermal imagery so it can be assumed that moisture on needles decreased their surface
temperature. Defoliated canopies have less foliage and thus less leaf surface areafor moisture to
adhere. This couldresult in defoliated canopies having a higher surface temperature than healthy
canopies. No.in-situ moisture measurements were conducted; therefore we cannot validate this theory.

Initially the thermal imagery data acquisition was intended to take place in warmer weather conditions
(13-20°C), but practical issues with the data provider and unusually cold weather lead to delays
resulting in the discussed weather conditions on the data acquisition date. However, the results of this
study are promising considering future investigations in warmer temperatures as changes were
detectable despite the cold weather during the data acquisition. The optimal timing for thermal
imagery acquisition has not been studied in boreal forests and climate. More research is needed on the
effect of the timing of thermal imagery acquisition and the effect of soil moisture on thermal imagery
in boreal forests for optimal usage of the data.

A two-class classification scheme was used for defoliation in the ground plot measurements
(defoliated or not), in which totally defoliated trees (~80—90% needle-loss) and slightly defoliated
trees (~10-20% needle-loss) could both be assigned to the same class. This could have affected the
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results, asit is not possible to separate the plots that have suffered more severe needle loss from the
only slightly defoliated plots. Classification of healthy and defoliated forest stands cannot be done
based solely on thermal imagery, as the surface temperature values of the healthy and the defoliated
plots overlapped; however, monitoring of surface temperatures could possibly assist in locating
stressed or defoliated aress.

In conclusion it was found that forest structure affects the relative surface temperature in addition to
defoliation. In our study, the detected surface temperatures were partly overlapping between healthy
and defoliated plotsin moist and below 5 °C weather conditions, which hindered the detection of
defoliation. More research is needed on the effect of weather conditions on thermal imagery for further
analyses on the applicability of the studied methods for detecting defoliated forest areas. Forest canopy.
structure, as measured by scanning LiDAR, can be used to normalize structural effects, sincethe
LiDAR features showed similar correlation with surface temperature as the field measured forest
structural attributes.
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Table 1. The plot-wise (n = 53) averages and the variation of basal-area weighted mean diameter (Dg),
Lorey’s height (Hg), basal area (G), stem volume (Vol), age, percentage of defoliated stem volume
(Defol_V) and percentage of dead stem volume (Dead_V) of the field data acquired in the fall of 2013.

Variable Min M ax Mean StDev
Dg (cm) 12.6 40.3 24.3 6.4
Hg (m) 115 30.7 20.6 4.3

G (m?/ha) 12.2 62.4 317 115
Vol (m*/ha) 115.2 697.2 318.2 156.5
Age (years) 28.7 76.5 49.5 111
N (stemsg/ha) 275 3615 1175 710
Defol_V (%) 0 72.7 11.2 14.1
Dead V (%) 0 94.0 129 194
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Table 2. Statistics of the extracted thermal features for al plots.
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Variable Min M ax Mean StDev
Pl Otmean 42.2 224.1 139.7 37.0
Canopy-0nlYimean 41.8 224.1 138.9 35.9
Ground-onlYmean 50.9 224.2 1375 38.3
Plotmin 0.0 196.0 98.9 40.4
Canopy-0nlYrin 0.0 210.0 103.1 43.2
Pl Otmax 78.0 254.0 174.9 37.0
Canopy-onl Yimax 78.0 243.0 171.2 33.7
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Table 3. Statistics of the extracted light detection and ranging (LiDAR) features for all plots.

Feature Description Min Max Mean StDev
CHM_mean (m) Mean height of all first-echo points 0.42 21.04 0.52 4.98
CHM_max (m) |Maximum height of the laser points 3.45 34.33 20.83 6.94
CHM _std (m)  |Standard deviation of the heights 0.68 10.59 6.12 2.23
Ccv CHM_std divided by CHM_mean 0.31 2.78 0.80 0.38
AS (M) Mean height of the ground points above sea level 45.15 81.90 64.11 8.10
ASL_std (m) Standard deviation of the ground points 0.06 179 0.63 0.41
Sope The average degree of slope, calculated from DEM 1.66 20.50 8.48 4.55
Aspect The direction of the slope, calculated from DEM 48.5 309.2 1794 69.5
FCC (%) Forest canopy cover percentage (over 3 meters from CHM) 1.18 94.90 66.03 22.61
H90 (m) Heights of first-echo points at 90" percentile 2.73 30.02 18.27 6.29
H80 (m) Heights of first-echo points at 80" percentile 232 2910 17.05 6.13
H70 (m) Heights of first-echo points at 70" percentile 201 27.61 16.07 5.97
H60 (M) Heights of first-echo points at 60" percentile 1.73 26.91 15.20 5.83
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Table 4. Stem volume classes for comparison of defoliated and healthy plots.
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Name Stem volume (m%ha) n
Healthy 160 160-240 6
Defoliated 160 160-240 6
Healthy 240 240-320 4
Defoliated 240 240-320 5
Healthy 320 320400 4
Defoliated 320 320400 5
Healthy 400 > 400 4
Defoliated 400 > 400 5
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Table 5. The coefficients of determination (R?) and root-mean-squared-errors (RMSE) for the
regression models with logarithmic transformation of stem volume (log(Vol)), defoliated stem volume
(Defol_V) and standard deviation of canopy height model (CHM _std) as predictors, when mean

surface temperature is predicted.

Predictors R? RMSE
log(Vol) 0.16 33.62
log(Val) + Defol_V 0.25 31.60
CHM _std 0.06 35.65
CHM sd + Defol V 0.12 34.14
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Table 6. The parameter estimates for intercept, logarithmic transformation of stem volume (log(Vol))

and defoliated stem volume when mean temperature is predicted using multiple regression analysis.

Predictor Estimate Std. error t value p value
Intercept 152.749 8.69 17.574 < 0.0001
log(Vol) -16.304 3.654 —4.463 3.63*10°
Defoliated volume (%) 0.8907 0.317 2.809 0.0067
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Table 7. The parameter estimates for intercept, CHM_std and defoliated stem volume when mean

temperature is predicted using multiple regression analysis.

Predictor Estimate Std. error t value p value
Intercept 178.767 16.80 10.641 < 0.0001
CHM_std —7.233 2.486 —-2.910 0.0051
Defoliated volume (%) 0.8033 0.346 2.322 0.0236
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Figure 1. @) Location of the study site. The background maps were provided by the National Land
Survey of Finland. b) The thermal image mosaic with plot locations.

Figure 2. Relative mean surface temperature (Plotmean) VS. forest structural variables in healthy plots (n
=43).

Figure 3. Relative mean surface temperature (Plotmen) VS. LIDAR features in healthy plots (n = 43).

Figure 4. a) Defoliated plots vs. healthy plotsin four stem volume classes. b) Relative mean
temperature (plotmen) in the healthy and the defoliated plots with 10-20% (Defoliated 10%) and over
20% (Defoliated 20%) of defoliated stem volume. N.B. Only plots with stem volumes over 100 m*ha

were included.

Figure 5. a) Relative temperature difference between the canopy and the entire plot, plot-wise
(canopy-0onlymean — Plotmean), iN the healthy and the defoliated plots with 10-20% (Defoliated 10%) and
over 20% (Defoliated 20%) of defoliated stem volume. b) Standard deviation of the surface
temperature recordings (plotmean) in the healthy and the defoliated plots with 10-20% (Defoliated 10%)
and over 20% (Defoliated 20%) of defoliated stem volume. N.B. Only plots with stem volumes over

100 m*ha were included.
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