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The effect of forest structure and health on the relative surface temperature captured by 
airborne thermal imagery was investigated in Norway Spruce-dominated stands in Southern 
Finland. Airborne thermal imagery, airborne scanning light detection and ranging (LiDAR) 
data and 92 field-measured sample plots were acquired at the area of interest. The surface 
temperature correlated most negatively with the logarithm of stem volume, Lorey’s height and 
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the logarithm of basal area at a resolution of 254 m2 (9-m radius). LiDAR-derived metrics: the 
standard deviations of the canopy heights, canopy height (upper percentiles and maximum 
height) and canopy cover percentage were most strongly negatively correlated with the 
surface temperature. Although forest structure has an effect on the detected surface 
temperature, higher temperatures were detected in severely defoliated canopies and the 
difference was statistically significant. We also found that the surface temperature differences 
between the segmented canopy and the entire plot were greater in the defoliated plots, 
indicating that thermal images may also provide some additional information for classifying 
forests health status. Based on our results, the effects of forest structure on the surface 
temperature captured by airborne thermal imagery should be taken into account when 
developing forest health mapping applications using thermal imagery. 
Keywords: Remote sensing; defoliation; airborne thermal imagery; Ips typographus; forest mensuration and 
management; airborne laser scanning; forest health 

Introduction 

The world’s climate has changed in the last decades due to human activities, causing a rise in global 
surface temperatures (Solomon et al. 2007). The rising temperatures are affecting insect pests’ 
distribution and phenology, which, along with other climate-induced stress factors, has resulted in 
increased forest damage (Allen et al. 2010; Seidl et al. 2008). The rate of change in mean annual 
temperature is greater at higher latitudes than around the equator (Solomon et al. 2007); hence, the 
effects of climate change on insect species are stronger in boreal forests. Therefore, novel methods are 
required to accurately monitor and predict changes in the distribution of and damage from pest 
organisms. 

The European spruce bark beetle (Ips typographus, L.) is a common species in Europe. The bark 
beetle requires fresh spruce timber to reproduce, but it can attack weakened living spruce trees or even 
healthy spruce trees when they appear in abundant numbers (Heliövaara et al. 1998). Bark beetle 
damage can be detected as discoloration and defoliation of the crown and as holes and resin flow 
traces on the bark. The European spruce bark beetle causes the largest economic losses to forest 
owners among insect pests in Eurasia (Wermelinger 2004). The last several decades have been marked 
by many storms, which have weakened and fallen vast amounts trees (Vastaranta et al. 2012). This has 
enabled reproduction of bark beetles resulting in large areas of damaged forest with high timber value. 
In Finland, Sweden and Norway, one generation of I. typographus is normally produced per year 
(Annila 1969; Bakke 1983). During the warm summers of 2010 and 2011, second generations of I. 
typographus were observed in southern Finland, causing more damage to forests (Neuvonen et al. 
2014; Pouttu & Annila 2010). Increasing spring temperatures have affected the onset of the first I. 
typographus generation’s development, supporting the development of a second generation (Faccoli 
2009). One-third (30%) of the total stem volume of Finnish forests is comprised of Norway spruce 
(Korhonen et al. 2013); thus, it is important to develop methods to avoid and monitor probable bark 
beetle damages in the future. 

The extent of forest damages varies from individual trees to several thousands of hectares; thus, the 
methods used to detect damages are different, depending on the scale and required level of detail 
(Vastaranta et al. 2012; Wulder et al. 2006). The intensity of forest management also varies between 
countries, and thus so too do the objectives of mapping forest damages. In countries where extensive 
forest management is applied, thousands of hectares of forest may be damaged and the only 
operational method of mapping is the use of remote sensing. Satellite-based (e.g. MODIS, Landsat) 
remote-sensing methods are widely used in these countries (Coops et al. 2006; Coops et al. 2009a; 
Coops et al. 2009b; Eklundh et al. 2009; Luther et al. 1997; Radeloff et al. 1999; Townsend et al. 
2012; White et al. 2005; Wulder et al. 2008), although the output accuracy may only be suitable for 
large-scale mapping. In Finland and other countries where intensive forest management is practiced, 
detailed mapping of the damages is required. For example, even a small group of damaged trees has to 
be removed from the forest by the forest owner due to legislation and forest owners can receive 
compensation from insurance companies if the amount of damaged wood is over 10 m3/ha. 
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For a detailed mapping of defoliation (i.e., tree or sample plots), possibilities involving both active and 
passive airborne sensors have been investigated. Airborne scanning light detection and ranging 
(LiDAR)–based methods can capture vegetation heights and thus may have some potential because 
LiDAR pulses seem to penetrate defoliated canopies more than they do healthy canopies (Kantola et 
al. 2013; Kantola et al. 2010; Solberg et al. 2006; Vastaranta et al. 2013a). However, these methods 
have many uncertainties, since the canopy density is also affected by factors other than defoliation. 
Lausch et al. (2013) studied hyperspectral remote-sensing techniques to predict the potential for bark 
beetle outbreaks based on the mapped spruce forest’s vitality at different scales. The hyperspectral 
remote-sensing data used had 4-m and 7-m ground resolutions. Based on the study, they were able to 
recognize three different vitality classes of spruce forest from the hyperspectral data, indicating the 
different stages of Ips typographus attack. However, the accuracy of the predicted observed effects 
was 69%, which can be considered insufficient for many forestry practices. Fassnacht et al. (2014) 
were able to develop a method using hyperspectral imagery with 5-m and 7-m ground resolutions for 
mapping bark beetle-induced tree mortality. The mapping of dead trees was possible with notably 
higher overall accuracies (84%–96%). The detection of dead and defoliated spruces was studied using 
aerial photography at the single-tree level (Haara & Nevalainen 2002). When using a three-class 
classification scheme for the defoliation, 89.5% of the plots were classified correctly. Kantola et al. 
(2010) investigated the combination of airborne scanning LiDAR and aerial photography in 
classifying the defoliation of pines at the single tree-level. They showed that the inclusion of aerial 
photography improved the accuracy of defoliation classification. 

As far as we know, the effect of forest structure on airborne thermal imagery has not been studied 
intensively. Sader (1986) studied the effective radiant temperatures in a mountainous Pacific 
Northwest forest at stand-level using thermal infrared multispectral scanner (TIMS) data at 10 m 
resolution. He found that old growth forest stands (undisturbed forest) with greater amounts of 
biomass and closed canopies had temperatures that were 2.5°C and 8–9°C lower than younger, less 
dense stands aged 25–33 and 0–12 years, respectively. Sader (1986) also found that the aspect and 
slope gradient had greater effects on thermal emission in younger reforested clearcuts than in older 
stands, where the effects were minor. Peterson et al. (1986) analysed forest structures at plot-level (0.1 
ha) using the Daedalus Airborne Thematic Mapper (ATM) data at 23-m resolution and found long-
wave thermal radiation to be negatively correlated with basal area and canopy closure. Scherrer et al. 
(2011) studied the drought-sensitivity of several deciduous tree species based on high-resolution (20 
cm resolution) thermal imagery. They found that canopy architecture had an influence on canopy 
temperature, dense canopies being warmer than open canopies in the warm summer climate in 
Switzerland. 

Thermal imagery measures thermal emissions from surfaces and could be a useful method for forest 
health and defoliation mapping. As a tree loses its needles, its evaporative surface area decreases and 
canopy and leaf architecture changes causing microclimatic conditions to transform as air space 
increases inside the tree crown. This causes changes in the temperature of the tree canopy, which can 
be detected through thermal imaging (Dennison et al. 2009; Scherrer et al. 2011). Higher canopy 
temperatures were found in pine trees under moisture stress and bark beetle attack than in healthy trees 
in the same area (Olson 1972; Weber 1971). Stressed trees were as much as 6 °C warmer than the 
control trees but the average temperature differences between the stressed and the healthy control trees 
were minor—only 1 °C; they were also unable to determine if the differences were due to 
physiological stress or variation in the microclimate (Olson 1972; Weber 1971). 

More recent studies investigating the use of thermal imagery in plant health monitoring suggests the 
potential of thermal imaging in operational plant management (Bulanon et al. 2008; Grant et al. 2006; 
Grant et al. 2007; Zarco-Tejada et al. 2012). A rise in the surface temperature of defoliated tree crowns 
can be visible due to the reduction of leaf stomatal conductance or defoliation (Calderón et al. 2013; 
Clark et al. 2012; Dennison et al. 2009; Hernández-Clemente et al. 2011). Canopy structure also 
affects surface temperature acquired with thermal infrared imaging (Scherrer et al. 2011); thus, there 
may be a possibility of mapping defoliation on a thermal basis in boreal spruce forests. 
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Here, the effect of forest structure and health status of a Norway spruce (Picea abies L.) forest on 
high-resolution (1 m x 1 m) thermal imagery was studied using 9-m radius field plots in southern 
Finland. The forest health status in the study area varied due to a bark beetle (Ips typographus L.) 
infestation, causing defoliation of the trees. The hypothesis was that defoliated stands could be 
distinguished as warmer plots than healthy plots using airborne thermal imagery. Although defoliated 
trees and canopies could be detected as warmer, presumably many uncertainties also exist due to the 
possible effect of the forest structure on the recorded temperatures. Thus, we also aimed to investigate 
the effect of forest structure on the detected temperature. 

Material and methods 

Study area 

The study site is located in the Askola municipality in Southern Finland (60°31′59″ N, 25°36′00″ E, 
Figure 1). The location was selected, with assistance from the Finnish Forest Center, due to existing 
defoliation damages caused by I. typographus during the last several years. The area of the study site 
is 3,450 hectares in total, comprising 2,340 hectares of forest and 1,110 hectares of agricultural and 
built land. Norway spruce (Picea abies, L.) mainly dominates forests in this area, with mixtures of 
silver birch (Betula pendula, Roth), downy birch (Betula pubescens, Ehrh.), Scots pine (Pinus 
sylvestris, L.) and, to a lesser degree, rowan (Sorbus aucuparia, L.), aspen (Populus tremula, L.) and 
common juniper (Juniperus communis, L.). Scots pine-dominated forests are less common in the study 
area. The forest types represented here mainly range from heath with rich grass-herb vegetation to 
heath with blueberry-dominated vegetation. These types are from OMT to MT on Cajander’s 
classification, and are quite eutrophic to Finnish forests (Cajander 1926). 

An additional 39 plots were obtained from the Finnish Forest Center (FFC) and were added to the 
analyses, in order to obtain more information from healthy forests. These plots were measured in 2011 
in a similar manner and included respective forest inventory attributes, but without information on the 
forest health. 

Aerial imagery provided by the National Land Survey (NLS) from 2013 was used to visually evaluate 
if the FFC plots were healthy and did not have defoliated trees. Eye calibration was done with the 
defoliation data measured in the fall of 2013, enabling a coarse visual classification of damages or no 
damages. Three plots were visually classified as damaged and were not included (n = 3) in the data 
analysis due to missing data on the amount of defoliated stem volume, as the healthy plots were used 
in the forest structure analysis. 

It should be noted that there was a two-year gap between the two ground plot datasets; the effect of the 
gap was therefore examined by re-measuring 11 plots that were measured in 2011. The average 
growth after two years was 0.5 cm in Dg and 0.2 m in Hg at plot-level. Thus, the effect of growth was 
considered to be marginal in our analyses, and the plots from 2011 and 2013 were merged. 

Thermal data 

The thermal imaging data were acquired from an airplane on 25th of September in 2013 between 16:40 
and 18:15 local time (GMT+2). The thermal survey camera used was an Optech CM-LW640 (Optech 
International Inc., Kiln, Mississippi, USA), with a 35 mm lens delivering images at 1-meter spatial 
resolution from 2,000 meters above ground. It is based on an uncooled microbolometer sensor with a 
resolution of 640 x 480 pixels. The camera is designed to perceive thermal emissions at the longer 
thermal infrared wavelength area of 8–14 μm and is geometrically calibrated. Temperature 
stabilization is ensured with integrated parameterized nonuniformity corrections (NUC) and an 
athermal lens design. The flying altitude was 2,000 meters above sea level. The sensor did not have a 
self-calibration procedure. Weather conditions affect surface temperature; therefore, weather data were 
collected from a road weather station operated by the Finnish Meteorological Institute (FMI), ~10 km 
from the research area. The average temperature at the time of the thermal data acquisition was 2.5 C°, 
with a relative humidity of 89%. Some drizzle occurred before the data collection and the wind speed 
was around 2–3 meters/second. Transpiration rate at this temperature and humidity is near to zero. 
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The thermal survey camera only recorded relative temperatures on one 8-bit channel, with values 
ranging from 0 to 255. In-situ temperature measurements were not performed; thus, the relative values 
cannot be transformed into absolute temperature values. The individual images were normalized by 
the data provider (Fugro Survey Ltd.) using an in-house calibration method based on image overlap to 
create a thermal image mosaic for the whole study area at 1-m resolution. Geolocation accuracy of the 
thermal imagery was 1-meter (1 pixel). 

LiDAR data 

The LiDAR data were collected at the same time as the thermal data. The system was set to record 
multiple echoes. The LiDAR returns included the coordinates (x, y), height values (z), intensity values 
(from 1 to 180), flight line numbers and echo types. The echoes were classified into four classes: 1 = 
only echo, 2 = first echo, 3 = intermediate echo and 4 = last echo. The scanner used was an Optech 
LW640. The field of view was 13 degrees, the pulse rate was 50 kHz, the scanning frequency was 42 
Hz and the beam divergence was 0.25 mrad. The average pulse density of the resulting data was 1.8 
pulses / m². 

The LiDAR data were classified into ground and non-ground points using the standard TerraScan 
approach, where a filtering algorithm based on triangular irregular networks (TIN) is applied 
(Axelsson 2000). A digital elevation model (DEM) was created using classified ground points for the 
study area. A canopy height model (CHM) was created using the highest laser points for the whole 
study area at a 1-m resolution. 

Field measurements 

The field measurements were carried out during October and November in 2013. A total of 53 plots 
(Table 1) with 9-m radius (~254 m2) were established in Norway spruce-dominated forest stands. The 
sampling of the plots was based on following steps: 

(1) The forest attribute maps provided by the Finnish National Forest Inventory were used to 
locate Norway spruce-dominated stands (Korhonen et al. 2013). The structural criteria for plot 
selection were spruce dominance (over 70% of total volume) and age (over 30 years old). 

(2) Prior to going to the field, the plots were positioned approximately, according to the thermal 
imagery, to maximize the variability of the thermal image data.  

(3) Clusters of three plots were formed so that local variability of the thermal imagery would be 
maximized; local maximum, minimum and mean temperature values were represented. 

 Then, the plots were positioned with a Trimble Pro XH (Trimble Navigation Ltd., Sunnyvale, 
California, USA), which can reach an accuracy of 30 cm. Differential correction of the plot centers 
was applied with the GPS Pathfinder Office software (Trimble Navigation Ltd., Sunnyvale, California, 
USA). 

The forest inventory attributes were measured from the sample plots. The basal-area (G) and basal-
area weighted mean diameter (Dg) was calculated from the diameter at breast height (dbh) 
measurements of all trees with dbh > 5 cm. Calipers were used to measure dbh. The heights of the 
species-specific basal-area median trees were measured using a Vertex tree height–measuring device. 
Then, the heights of all trees were calculated using Veltheim’s height models (Veltheim 1987). The 
mean heights (Hg) of the trees within the sample plots were calculated as the basal area–weighted 
mean height, or the so-called Lorey’s height. The stem volume (Vol) was calculated as the sum of the 
tree-wise stem volumes, computed with allometric stem volume functions (Laasasenaho 1982). The 
stand age was computed using functions based on site index from Vähäsaari (1988). 

The health status of each tree was visually assessed. Three classes were used: defoliation, 
discoloration and the presence of bark beetles, in addition to classifying the trees as dead or alive. 
Each of these had two classes: present or not present. Defoliation and discoloration were marked as 
present when they were noticeable to the naked eye. The threshold level of defoliation was 20% 
(compared to a healthy tree within the same site type), which is considered to be visually noticeable 
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(Eichhorn et al. 2004). 

The percentage of stem volume of defoliated trees (Defol_V) in a sample plot was computed by 
summing the stem volumes of the damaged trees and dividing it by sample plot’s total stem volume. 
The percentage of stem volume of dead trees (Dead_V) was computed respectively. 

An additional 39 plots were obtained from the Finnish Forest Center (FFC) and were added to the 
analyses, in order to obtain more information from healthy forests. These plots were measured in 2011 
in a similar manner and included respective forest inventory attributes, but without the information on 
forest health. 

Aerial imagery provided by the National Land Survey (NLS) from 2013 was used to visually evaluate 
if the FFC plots were healthy and did not have defoliated trees. Calibration of visual interpretation was 
done with the defoliation data measured in the fall of 2013, enabling a coarse visual classification of 
damaged and undamaged sample plots. Three plots were visually classified as damaged and were not 
included (n = 3) in the data analysis due to missing data on the amount of defoliated stem volume, as 
the healthy plots were used in the forest structure analysis. 

It should be noted that there was a two-year gap between the two ground plot datasets; the effect of the 
gap was therefore examined by re-measuring 11 plots that were measured in 2011. The average 
growth after two years was 0.5 cm in Dg and 0.2 m in Hg at plot-level. Thus, the effect of growth was 
considered to be marginal in our analyses, and the plots from 2011 and 2013 were merged. 

Data processing 

Thermal data 

Statistical features from the thermal data were calculated for the plots (Table 2). Two different 
approaches were applied: 1) First, mean temperatures and their standard deviations were calculated at 
256-m2 resolution; 2) second, a forest mask was created from the CHM, and thermal metrics were 
calculated for responses above 3 m without the ground or the understory vegetation. By using this 
approach, it was possible to estimate the relative surface temperature of the tree crowns for the plots. 
The ground surface temperature was estimated using the same method, but only responses below three 
meters were included. 

The plotmean, canopy-onlymean and ground-onlymean values represent the arithmetic mean of the relative 
surface temperature values calculated for the entire plot, the segmented canopy and the ground, 
respectively. The min values represent the minimum temperature value measured from the plot or the 
canopy. The max values represent the maximum temperature value measured from the plot or the 
canopy. 

LiDAR 

A suite of 30 LiDAR features (Table 3) describing canopy height and density was extracted using the 
ArboLiDAR software package (Arbonaut Oy, Joensuu, Finland) according to Junttila et al. (2010). 
The LiDAR metrics were designed to predict forest stand characteristics, such as mean height, stem 
number and stem volume (Junttila et al. 2010; Naesset 1997; Næsset & Bjerknes 2001). The most 
suitable LiDAR features were selected from the suite according to preliminary analysis. In addition, 
slope, aspect and forest canopy cover percentage were calculated from the LiDAR data. 

Statistical analyses 

Effect of forest structure on relative surface temperature 

The effect of forest structure on relative surface temperature was studied using only the healthy plots 
(n = 43) that had less than 3% of Defol_V and less than 6% of Dead_V . Linear regression analyses 
were used to explore the empirical relationships between the thermal features as our response, along 
with forest structural variables (Vol, Age, Hg, Dg, G and stem number) as the predictors. The analyses 
were performed for both in-situ measured forest structural variables and the LiDAR variables (i.e., 
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CHM, H90 and CHM_std). 

Effect of forest structure and health on relative surface temperature 

The sample plots measured in fall 2013 with information on defoliation were used to analyse 
dependencies between surface temperature, forest structure and forest health. The plot data was 
supplemented with 10 randomly selected healthy plots from the FFC data to obtain an even 
distribution of the defoliated and healthy plots. The total number of plots in these analyses was 63. 

Then, healthy and defoliated plots were compared in four groups by stem volume (Table 4). A plot 
was counted as “healthy” if it had less than 3% of Defol_V and as “defoliated” if it had over 10% of 
Defol_V. The relative mean surface temperatures of the plots within groups were then compared with 
t-tests. The differences between the thermal responses from the canopy and the ground were also 
examined. 

Groups with different amounts of Defol_V were formed, using only plots with over 100 m3/ha of stem 
volume to partially hinder the effect of forest structure . Healthy plots (n = 11) were determined using 
the same limit of Defol_V as before (3%). The “Defoliated 10%” group (n = 12) had 10–20% of 
Defol_V, while the “Defoliated 20%” group (n = 11) had over 20% of Defol_V. 

Finally, multiple regression analysis was used to examine the dependencies between surface 
temperature, forest structure and forest health. Forest structural variables including airborne scanning 
LiDAR features were entered into the multiple regression analysis with Defol_V one at a time as 
explanatory variables, in addition to surface temperature as a dependent variable.  

Results 

The effect of forest structure on relative surface temperature  

A negative linear relationship was found between canopy height and relative surface temperature (r = 
–0.72) (Figure 2), i.e., mature trees are colder than young, short ones. The Hg had a respective linear 
relationship, with a correlation of –0.67. The logarithmic transformation of number of stems were also 
correlated with the temperature (r = 0.49). The logarithmic transformations of basal area and stem 
volume were correlated with surface temperature, with correlations of –0.75 and –0.78, respectively. 
Tree age was correlated with the surface temperature with a correlation of –0.58. 

In addition to the field-measured forest structural variables, LiDAR-derived metrics describing canopy 
characteristics were used in the investigations (Figure 3). Height features such as CHM_mean, 
CHM_max and H90 were negatively correlated with the relative mean temperature, with correlations 
of –0.71, –0.73 and –0.73, respectively. This is consistent with the mean height measured in-situ. The 
standard deviation of CHM explained the variation in the relative mean temperature, with a correlation 
of –0.77. CHM_std was highly correlated with the CHM_max feature (r = 0.91); however, the 
standard deviation takes gaps in the canopy into account, which could explain the better correlation. 
Forest canopy cover percentage (FCC), as calculated from CHM, was nearly equal in explaining the 
variation in the relative mean temperature (r = –0.72). As forest cover percentage increased, the 
relative surface temperature decreased. CV, calculated as CHM_mean divided by CHM_std, was also 
correlated with the relative surface temperature (r = 0.65). CV decreased as height increased, and 
temperature increased as CV increased. 

The effect of defoliation on relative surface temperature 

The defoliated plots showed higher surface temperatures in all volume classes (Figure 4a). The 
defoliation damage was more severe in larger stem volume classes; the surface temperature differences 
between healthy and defoliated plots were also greater in these classes. However, the surface 
temperature varied inside the classes, especially in the volume classes with over 320 m3/ha, which 
could partially hide the effect of defoliation on relative temperature. 

The relative mean surface temperature was higher in the defoliated plots (Figure 4b). The plots with 
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over 20% of Defol_V (Defoliated 20%) had significantly (p = 0.04) higher surface temperatures than 
the healthy plots. The surface temperatures of the less defoliated plots (Defoliated 10%) had a larger 
interquartile range compared to the healthy and severely defoliated plots. Thus, although the mean 
surface value was higher than in the healthy plots, the difference was not statistically significant using 
Student’s t-test (p = 0.05). 

The temperature differences between the segmented canopy and the entire plot were greater by one 
relative temperature unit on average in the defoliated plots than in the healthy plots; however, the 
differences between the groups were not statistically significant (p = 0.07) (Figure 5a). The canopy 
seemed to be warmer where defoliation occurred, but deviation in surface temperature inside the 
groups diminished the differences, which could be caused by differences in the structure of the forest. 

The surface temperature seemed to vary more in the defoliated plots than in the healthy plots. The 
standard deviations calculated for the entire plots seemed to increase in plots with over 10% defoliated 
tree volume (Figure 5b). However, no significant differences were found between the groups (p = 
0.16). 

Dependencies between surface temperature, forest structure and forest health In the data, logarithmic 
transformation of stem volume had the strongest correlation with the surface temperature (r = –0.78) 
and was further used as a variable in the multiple regression analysis, together with Defol_V to 
investigate dependencies between surface temperature, forest structure and amount of defoliation. The 
results showed that the amount of Defol_V had a statistically significant effect on the surface 
temperature (Table 5). As the Defol_V increased, the relative surface temperature increased as well, 
according to the regression analysis (Table 6). Increase in stem volume resulted in a decrease in the 
relative surface temperature. According to the analysis, the structural effect on relative surface 
temperature dominated over the effect of defoliation, as the p-value was lower for the logarithmic 
transformation of stem volume (p < 0.001). 

Among the LiDAR features, the standard deviation in CHM had the strongest correlation with the 
mean relative temperature. Thus, it was also tested in the multiple regression analysis, together with 
the defoliated stem volume, to investigate their effects on the measured surface temperature. The 
estimates of Defol_V coefficients were similar between the analyses. It seemed that the relative mean 
temperature increased as the ratio of defoliated volume increased (Table 7). The structural effect on 
the relative surface temperature seemed to dominate over the effect of defoliation. 

Discussion 

In this study, the applicability of thermal imagery in mapping and monitoring forest structure and 
health status was investigated. Based on the analyses, it seems that the relative surface temperature 
decreases as the forest matures, i.e., stem volume, height, age, canopy closure and basal area increase. 
This is also supported by Peterson et al. (1986) and Sader (1986). Peterson et al. (1986) studied the 
effect of forest structure on thermal data from the Thematic Mapper Simulator (TMS) in the Sierra 
Nevadas, where canopy closure was negatively correlated with the thermal data (r = –0.65) and basal 
area (r = –0.31). Sader (1986) showed that younger age classes were contributing most of the 
variability in surface temperature related to terrain and that older stands had lower surface 
temperatures. This is consistent with our study, as the change in temperature was highest in young 
stands with low volume and decreased with age. 

The sample plot data mainly included spruce-dominated forest, with some mixture of pine and birch. 
There was not enough data to analyse the effect of tree species on the surface temperature, which has 
been studied with broad-leaved trees by Scherrer et al. (2011). The canopy structure varies between 
the main tree species in Finland. Spruce canopies are denser than those of other species, which could 
affect the surface temperatures of tree canopies. Thus, more research is needed on the effect of tree 
species on thermal imagery in boreal forests. 

Regarding the health status, our main finding was that the effects of forest structure on the surface 
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temperature hinder the mapping of defoliation; however, severely defoliated plots may be possible to 
map using thermal imagery. When the main aim is to map defoliation, the effect of the forest structure 
has to be taken into account. In this study, forest structural variables were measured in the field. In an 
operational application, detailed plot data are not usually available. However, many forest structural 
variables are highly correlated with LiDAR data (Vastaranta et al. 2013b) and can be used to 
normalize the effect of the forest structure. In our study, similar correlation coefficients were detected 
between the LiDAR features and surface temperature as with the forest structural variables. The 
strongest negative correlation was found between the standard deviations of CHM within the sample 
plots and mean surface temperatures. Height features, such as H90, CHM_max and CHM_mean, were 
also strongly correlated with surface temperature. Forest structural variables and LiDAR features were 
equal in explaining the surface temperature. 

Higher surface temperatures were detected in the defoliated plots than the healthy plots in the thermal 
data. The mean surface temperatures were examined in four volume classes (to roughly normalize the 
effect of the forest structure), and the general trend was that the defoliated plots had a greater mean 
surface temperature than the healthy plots. The mean surface temperature was also examined in groups 
by defoliated stem volume. Severely defoliated plots showed significantly higher surface temperatures 
than the healthy plots (p = 0.04), although the mean temperature of the healthy and defoliated groups 
overlapped. The mean surface temperatures of the moderately defoliated plots were more dispersed, 
indicating that moderately defoliated plots may be difficult to distinguish from healthy plots with 
thermal imagery alone. The difference between the canopy mean and the entire plot mean surface 
temperature was greater in the defoliated than the healthy plots, but not statistically significant (p = 
0.15). The difference increased as defoliation increased. 

Boreal forest landscapes in Finland are heterogeneous in structure, and many factors affect the thermal 
radiation measured by thermal infrared cameras and scanners. Boreal forests are moist, and many peat 
lands have been drained for forest management, in order to improve forest growth. Wetness and 
moisture in forest canopies and soil affect the surface temperature and upcoming thermal radiation, as 
ditches could be distinguished from the thermal imagery as cold spots. Mira et al. (2009) found that 
the thermal emissivity of soil is strongly correlated with the soil moisture content, thus affecting the 
recorded surface temperature. Surface temperature has also been used in studies of soil moisture and 
water stress among plants (Alchanatis et al. 2010; Soliman et al. 2013). 

Factors causing the differences in the surface temperature could derive from the weather condition 
which was cold and humid (relative humidity ~ 80–90%). Air temperature during the thermal imagery 
acquisition was low (~ 3 °C) , hence stomata is nearly closed and transpiration rate close to zero 
(Hällgren et al. 1982; Schwarz et al. 1997). Thus; it can be assumed that the differences in the surface 
temperature are not caused by changes in the transpiration rate. Surface water was seen as cold spots 
on the thermal imagery so it can be assumed that moisture on needles decreased their surface 
temperature. Defoliated canopies have less foliage and thus less leaf surface area for moisture to 
adhere. This could result in defoliated canopies having a higher surface temperature than healthy 
canopies. No in-situ moisture measurements were conducted; therefore we cannot validate this theory. 

Initially the thermal imagery data acquisition was intended to take place in warmer weather conditions 
(13-20 °C), but practical issues with the data provider and unusually cold weather lead to delays 
resulting in the discussed weather conditions on the data acquisition date. However, the results of this 
study are promising considering future investigations in warmer temperatures as changes were 
detectable despite the cold weather during the data acquisition. The optimal timing for thermal 
imagery acquisition has not been studied in boreal forests and climate. More research is needed on the 
effect of the timing of thermal imagery acquisition and the effect of soil moisture on thermal imagery 
in boreal forests for optimal usage of the data. 

A two-class classification scheme was used for defoliation in the ground plot measurements 
(defoliated or not), in which totally defoliated trees (~80–90% needle-loss) and slightly defoliated 
trees (~10–20% needle-loss) could both be assigned to the same class. This could have affected the 
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results, as it is not possible to separate the plots that have suffered more severe needle loss from the 
only slightly defoliated plots. Classification of healthy and defoliated forest stands cannot be done 
based solely on thermal imagery, as the surface temperature values of the healthy and the defoliated 
plots overlapped; however, monitoring of surface temperatures could possibly assist in locating 
stressed or defoliated areas. 

In conclusion it was found that forest structure affects the relative surface temperature in addition to 
defoliation. In our study, the detected surface temperatures were partly overlapping between healthy 
and defoliated plots in moist and below 5 °C weather conditions, which hindered the detection of 
defoliation. More research is needed on the effect of weather conditions on thermal imagery for further 
analyses on the applicability of the studied methods for detecting defoliated forest areas. Forest canopy 
structure, as measured by scanning LiDAR, can be used to normalize structural effects, since the 
LiDAR features showed similar correlation with surface temperature as the field measured forest 
structural attributes. 
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Table 1. The plot-wise (n = 53) averages and the variation of basal-area weighted mean diameter (Dg), 

Lorey’s height (Hg), basal area (G), stem volume (Vol), age, percentage of defoliated stem volume 

(Defol_V) and percentage of dead stem volume (Dead_V) of the field data acquired in the fall of 2013. 

Variable Min Max Mean StDev 

Dg (cm) 12.6 40.3 24.3 6.4 

Hg (m) 11.5 30.7 20.6 4.3 

G (m2/ha) 12.2 62.4 31.7 11.5 

Vol (m3/ha) 115.2 697.2 318.2 156.5 

Age (years) 28.7 76.5 49.5 11.1 

N (stems/ha) 275 3615 1175 710 

Defol_V (%) 0 72.7 11.2 14.1 

Dead_V (%) 0 94.0 12.9 19.4 
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Table 2. Statistics of the extracted thermal features for all plots.  

Variable Min Max Mean StDev 

Plotmean  42.2 224.1 139.7 37.0 

Canopy-onlymean  41.8 224.1 138.9 35.9 

Ground-onlymean 50.9 224.2 137.5 38.3 

Plotmin 0.0 196.0 98.9 40.4 

Canopy-onlymin 0.0 210.0 103.1 43.2 

Plotmax 78.0 254.0 174.9 37.0 

Canopy-onlymax 78.0 243.0 171.2 33.7 
 

  

D
ow

nl
oa

de
d 

by
 [

A
al

to
-y

lio
pi

st
on

 k
ir

ja
st

o]
 a

t 0
5:

00
 1

4 
Ju

ly
 2

01
6 



 16 
 

 

Table 3. Statistics of the extracted light detection and ranging (LiDAR) features for all plots.  
Feature Description Min Max Mean StDev 

CHM_mean (m) Mean height of all first-echo points 0.42 21.04 9.52 4.98 

CHM_max (m) Maximum height of the laser points 3.45 34.33 20.83 6.94 

CHM_std (m) Standard deviation of the heights 0.68 10.59 6.12 2.23 

CV CHM_std divided by CHM_mean 0.31 2.78 0.80 0.38 

ASL (m) Mean height of the ground points above sea level 45.15 81.90 64.11 8.10 

ASL_std (m) Standard deviation of the ground points 0.06 1.79 0.63 0.41 

Slope The average degree of slope, calculated from DEM 1.66 20.50 8.48 4.55 

Aspect The direction of the slope, calculated from DEM 48.5 309.2 179.4 69.5 

FCC (%) Forest canopy cover percentage (over 3 meters from CHM) 1.18 94.90 66.03 22.61 

H90 (m) Heights of first-echo points at 90th percentile 2.73 30.02 18.27 6.29 

H80 (m) Heights of first-echo points at 80th percentile 2.32 29.10 17.05 6.13 

H70 (m) Heights of first-echo points at 70th percentile 2.01 27.61 16.07 5.97 

H60 (m) Heights of first-echo points at 60th percentile 1.73 26.91 15.20 5.83 
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Table 4. Stem volume classes for comparison of defoliated and healthy plots. 

Name Stem volume (m3/ha) n 

Healthy 160 160–240 6 

Defoliated 160 160–240 6 

Healthy 240 240–320 4 

Defoliated 240 240–320 5 

Healthy 320 320–400 4 

Defoliated 320 320–400 5 

Healthy 400 > 400 4 

Defoliated 400 > 400 5 
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Table 5. The coefficients of determination (R2) and root-mean-squared-errors (RMSE) for the 

regression models with logarithmic transformation of stem volume (log(Vol)), defoliated stem volume 

(Defol_V) and standard deviation of canopy height model (CHM_std) as predictors, when mean 

surface temperature is predicted.  

Predictors R2 RMSE 
log(Vol) 0.16 33.62 
log(Vol) + Defol_V 0.25 31.60 
CHM_std 0.06 35.65 
CHM_std + Defol_V 0.12 34.14 
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Table 6. The parameter estimates for intercept, logarithmic transformation of stem volume (log(Vol)) 

and defoliated stem volume when mean temperature is predicted using multiple regression analysis. 

Predictor Estimate Std. error t value p value 
Intercept 152.749 8.69 17.574 < 0.0001 
log(Vol) –16.304 3.654 −4.463 3.63*10−5 
Defoliated volume (%) 0.8907 0.317 2.809 0.0067 
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Table 7. The parameter estimates for intercept, CHM_std and defoliated stem volume when mean 

temperature is predicted using multiple regression analysis.  

Predictor Estimate Std. error t value p value 
Intercept 178.767 16.80 10.641 < 0.0001 
CHM_std −7.233 2.486 −2.910 0.0051 
Defoliated volume (%) 0.8033 0.346 2.322 0.0236 
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Figure 1. a) Location of the study site. The background maps were provided by the National Land 

Survey of Finland. b) The thermal image mosaic with plot locations. 

Figure 2. Relative mean surface temperature (Plotmean) vs. forest structural variables in healthy plots (n 

= 43). 

Figure 3. Relative mean surface temperature (Plotmean) vs. LiDAR features in healthy plots (n = 43). 

Figure 4. a) Defoliated plots vs. healthy plots in four stem volume classes. b) Relative mean 

temperature (plotmean) in the healthy and the defoliated plots with 10–20% (Defoliated 10%) and over 

20% (Defoliated 20%) of defoliated stem volume. N.B. Only plots with stem volumes over 100 m3/ha 

were included. 

Figure 5. a) Relative temperature difference between the canopy and the entire plot, plot-wise 

(canopy-onlymean − plotmean), in the healthy and the defoliated plots with 10–20% (Defoliated 10%) and 

over 20% (Defoliated 20%) of defoliated stem volume. b) Standard deviation of the surface 

temperature recordings (plotmean) in the healthy and the defoliated plots with 10–20% (Defoliated 10%) 

and over 20% (Defoliated 20%) of defoliated stem volume. N.B. Only plots with stem volumes over 

100 m3/ha were included. 
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