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ABSTRACT

SLODAR (SLOpe Detection And Ranging) methods recover the atmospheric turbulence profile from cross-
correlations of wavefront sensor (WFS) measurements, based on known turbulence models. Our work grows
out of several experiments showing that turbulence statistics can deviate significantly from the classical Kol-
mogorov/von Kármán models, especially close to the ground. We present a novel SLODAR-type method which
simultaneously recovers both the turbulence profile in the atmosphere and the turbulence statistics at the ground
layer – namely the slope of the spatial frequency power law. We consider its application to outer scale (L0)-
reconstruction and investigate the limits of the joint estimation of such parameters.
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1. INTRODUCTION

Astronomical Adaptive Optics (AO) systems refer to technology deployed on ground-based optical telescopes,
improving imaging quality by providing real-time compensation of disruptive optical aberrations caused by atmo-
spheric turbulence.1 They are poised to become mainstream in the next generation instruments and telescopes.

After the successful application on single-conjugated AO systems, current and soon-to-be desings attempt to
provide correction over larger fields of fiew, typically on the order of tens of arcseconds to a few arcminutes.2

The latter rely on the tomographic estimation (and subsequent correction) of the turbulence above the telescope,
which is an ill-posed problem.2,3 To this aim, several measurements along different lines-of-sight are used before
optimizing the optical correction by driving deformable mirrors with optimal opposite shapes.4 On account of
the small angles (around 1–7 arcmin) and limited computational resources, any successful solution strategy in
atmospheric tomography is based on reliable statistical modeling of the turbulence and effective discretization
of the atmosphere, i.e. prior knowledge of the turbulence profile and the spatial statistics of turbulence.

The goal of this paper is to investigate means to refine the tomographic reconstruction step by providing
improved prior information extracted directly from AO telemetry (i.e. actual measurements of the turbulent
wavefronts).5 Here we focus only on methods similar to SLODAR (SLOpe Detection And Ranging6), which
utilize spatial correlations in the observations of incoming light (wavefront sensor measurements) to recover the
turbulence profile. There are two common approaches to this: some authors deduce the profile from wavefront
cross-correlations by deconvolution with the autocorrelation of the data,6,7 while others5,8–12 formulate a linear
dependency between the spatial cross-correlations and the vertical turbulence profile by assuming that the
turbulence statistics at any altitude is accurately described by the Kolmogorov or von Kármán model.13–15

However, deviations from these classical models have been well-documented close to the ground16–18 and in the
upper troposhere and stratosphere.19–21 Moreover, the turbulence taking place in the telescope dome (so-called
dome seeing) is well-known to have a spectrum that deviates strongly from the Kolmogorov power law.10 In
consequence, there is a clear need to further develop the current profiling methods to take into account the
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Figure 1. Illustration of the SLODAR measurement setup, showing a row of WFS subapertures measuring wavefronts
from two LGSs. The correlation of these measurements is a sum of the wavefront slope correlations between two square-
shaped areas in each layer of turbulence. In particular, these areas coincide in the layer at altitude hj , which depends on
subaperture separation dj , LGS altitude H and LGS separation θ = ψ − ψ′.

uncertainty of the underlying turbulence statistics. A first step towards this can be found in Ref. 22, where the
spatial power spectrum at the ground is discretized and estimated along with the turbulence profile.

In this paper we investigate the capability to jointly estimate both the vertical turbulence profile above the
ground, and the turbulence spectrum power law and outer scale (L0) at the ground. These last two parameters
can be highly correlated since L0 creates a knee at low spatial-frequencies which can be interpreted as a change
of the overall power law during the minimization fitting procedure. This feature makes an accurate estimation
more challenging.

For completeness, we assume that the turbulence is a statistically isotropic and homogeneous random field,
which in practice may not be the case for dome seeing. The physics and statistical law of turbulence in the
telescope dome is still a matter of research.23

We begin by introducing the SLODAR method in Section 2, and modifying it to solve for the ground layer
power spectral density (PSD) in Section 3. Sections 4 and 5 describe our numerical simulations of the AO
system, including the simulation of boiling phase screens. In Section 6 we motivate solving for the ground layer
PSD by showing that it can also significantly improve the turbulence profile itself when the ground layer is
non-Kolmogorov. In Section 7 we apply uncertainty quantification methods to explore the limits of outer scale
profiling by showing how the stability of SLODAR-based L0-profiling deteriorates for outer scales larger than
the telescope diameter. Finally, the results and future prospects are discussed in Section 8.

2. BACKGROUND TO SLODAR-BASED METHODS

Our work is based on a SLODAR-type method which recovers the vertical turbulence profile by establishing
a linear dependence between the profile and correlations of wavefront sensor (WFS) measurements.5 In this
section, we will briefly outline this ”standard” SLODAR method, which we then modify in Section 3 to solve for
the ground layer power spectral density (PSD). For a more detailed description, we refer the interested readers
to Ref. 22.



We consider a pair of laser guide stars∗ (LGS) at H = 90 km with angular coordinates (ψ, 0) and (ψ′, 0), as
shown in Fig. 1. Following the work of Gilles and Ellerbroek,5 we deal with the tip/tilt and focus insensitivity
of LGS WFSs by instead considering the local curvature:

mα(xp) = sα(xp −Deα)− 2sα(xp) + sα(xp +Deα), (1)

where α = x or α = y, sα(xp) is the wavefront slope in direction α for a subaperture located at xp, eα = (1, 0)
when α = x and eα = (0, 1) when α = y, and D is the subaperture size.

We assume for simplicity that the guide stars are aligned with subaperture rows of the wavefront sensor. The
correlation of measurements mα from two subapertures separated by a distance dj = (dj , 0) can then be related
to the turbulence strength ρl at altitudes hl through

Corα(dj) =

L∑
l=0

1

D4

(∫
R2

e−2πiξ·(ηldj−hlθ)Ψ0(ξ)|gαl (ξ)|2dξ
)
ρl, (2)

where ξ is the spatial frequency vector, θ = (ψ − ψ′, 0) is the LGS separation, ηl = 1 − hl/H is the LGS cone
compression factor, and gαl (ξ) = 8πiηlξαD

2 sin2(πηlDξα) sinc(ηlDξx) sinc(ηlDξy) is a weighting function derived
in Ref. 22. The correlations Corα(dj) are thus weighted Fourier transforms of the PSD Ψ0(ξ), which is given by
the von Kármán model as

Ψ0(ξ) = 0.0229
(
|ξ|2 + L−20

)−11/6
. (3)

Above, L0 is the so-called outer scale of turbulence, which creates a cut-off at low spatial frequencies to give the
spectrum finite variance. The exponent −11/6 will be referred to as the Kolmogorov or von Kármán exponent,
to distinguish it from the more general power laws we will consider in later sections.

On the other hand, the correlations can be empirically estimated from the measurements mα through

Corα(dj) ≈
1

Nα
j

Nαj∑
i=1

〈mα(xi)m
′
α(xi + dj)〉, (4)

where mα and m′α are measurements from the two WFSs according to (1), 〈·〉 denotes a time series average,
and the sum is taken over all valid subaperture pairs†, with Nα

j denoting the number of such pairs for a given
separation dj . Collecting the integrals in (2) into matrices Ax and Ay, we obtain the matrix equation

Aρ =

(
Ax

Ay

)
ρ =

(
bx

by

)
= b, (5)

where ρ is the vertical turbulence profile, and bαj = Corα(dj) as given by (4). The turbulence profile ρ can then
be found as the solution to the least-squares problem

min
ρ≥0
‖Aρ− b‖2Σ , (6)

where ‖x‖2Σ = xTΣ−1x, and Σ is the covariance matrix for the noise in measurement vector b; this can for
example be a diagonal matrix where the diagonal entries are inversely proportional to the number of valid
subaperture pairs for each element of b. It is important to note that the primary source of noise in b is not WFS
measurement noise, but rather the fact that the measurements in (4) are estimated as an average of a finite time
series of WFS data from a randomly fluctuating atmosphere.

∗The method is of course applicable also to natural guide stars, with minor modifications: the cone compression factor
is neglected, and WFS measurements are used directly, as the local curvature trick in (1) is only necessary for LGSs.
†The subaperture pair is called valid if both xi and xi+dj correspond to illuminated WFS subapertures. For LGSs, a

further requirement is that the neighboring subapertures are illuminated, so that mα can be computed according to (1).



3. MODIFIED SLODAR-METHOD

We now modify the standard SLODAR matrix equation (5) by treating the ground layer PSD as an unknown.
This is accomplished by discretizing the PSD and the turbulence strength at the ground through

ρ0Ψ(ξ) =

K∑
k=0

ψkfk(|ξ|), (7)

where ψk are non-negative coefficients and fk(ξ) are non-negative basis functions satisfying fk(ξk) = 1 for given

discretization points 0 = ξ0 < ξ1 < · · · < ξK and
∑K
k=0 fk(ξ) = 1 for all 0 ≤ ξ ≤ ξK . Substituting (7) into (2)

yields

Corα(dj) =

K∑
k=0

1

D4

(∫
R2

e−2πiξ·(η0dj−h0θ)fk(|ξ|)|gα0 (ξ)|2dξ
)
ψk +

L∑
l=1

Aαjlρl, (8)

where Aαjl are elements of Aα. Collecting the integrals above into new matrices Bx and By and combining them
into a single matrix B as we did before, we finally obtain

Aρ+Bψ = b, (9)

where ψ contains the coefficients ψk from (7). Note carefully that the first element of ρ and the first column of
A have been removed, as the ground layer is now expressed by the term Bψ.

In Ref. 22, we present several methods for solving (9), but in this work we focus on the simplest approach by
assuming that the unknown PSD is a power law. Thus, we define the coefficients ψk in (7) as

ψk(c, γ, L0) = c(ξ2k + L−20 )−γ , (10)

where ξk is the discretization point corresponding to the coefficient ψk. This reduces the number of unknowns in
the PSD to only three: the coefficient c, exponent γ and outer scale L0. However, the discretization still serves
an important purpose by significantly reducing the computational cost, as we can use the matrix equation in (9)
instead of having to evaluate the expensive integrals in (8).

Using the form given in (10) for ψ, we can then solve the nonlinear least-squares problem

min
ρ,c,γ,L0≥0

‖Aρ+Bψ(c, γ, L0)− b‖2Σ , (11)

where ‖x‖2Σ and Σ are defined as in (6). From a Bayesian point-of-view, if we impose a uniform prior with
a non-negativity constraint, then (11) is equivalent to maximizing the posterior probability distribution of the
unknown parameters conditioned on the measurement b:

p(ρ, c, γ, L0|b) ∼ exp
(
− 1

2 ‖Aρ+Bψ(c, γ, L0)− b‖2Σ
)
, ρ, c, γ, L0 ≥ 0. (12)

In addition to this, we will assume that L0 is at most 200 m, as this is well beyond what can be sensed with a
40 m-class telescope.

We solve the minimization problem in (11) with fmincon, the Matlab function for constrained nonlinear
multivariate minimization, using the ’sqp’-algorithm with default options except for an optimality tolerance of
10−10 and a limit of 30000 iterations. The measurement vector b was normalized to avoid numerical problems.
Solving (11) in this way takes only a few seconds on a laptop; typically the time-consuming part of SLODAR is
computing the correlations from (4), but even this can be done in real time.



4. SIMULATION DETAILS

The simulations were done using MOST, a MATLAB tool for simulating adaptive optics systems, developed by
the AAO team at JKU Linz in Austria. We simulated an AO system with the following properties:

• 37 m telescope with two WFSs, each having 74 × 74 subapertures (D = 0.5 m); the corresponding LGSs
were at an altitude of H = 90 km, separated by θ = (7.5′, 0′)

• the WFS photon noise level corresponded to a flux of 50 photons per subaperture per frame‡

• 61-layer atmosphere simulated as discrete layers of von Kármán turbulence, with r0 = 20 cm and L0 = 25 m

• layer altitudes were the same as used by SLODAR, corresponding to subaperture pairs with separation
dj = jD, where j ranges from 0 to 60; as shown in Fig. 1, these altitudes are hj =

dj
dj/H+θ , giving a

maximum altitude of 12 km with an average resolution of 200 m

• 52 % of the turbulence strength was located at the ground layer, which was modelled as von Kármán-like
turbulence with both the outer scale and exponent as free parameters:

Ψground = 0.0229(|ξ|2 + L−20 )−γ (13)

Measurements were taken from 1800 independent realizations of this atmosphere, which was found to cor-
respond to five minutes of data from phase screens with simulated boiling. Section 5 below gives a detailed
explanation of how this was determined.

5. BOILING PHASE SCREENS

Our goal was to simulate data that realistically corresponds to a measurement time of five minutes. However, AO
systems are typically simulated according to Taylor’s frozen flow hypothesis,24 which is not valid over such large
timespans; indeed, it may only be valid on time scales of a few hundred milliseconds.10,25 This is particularly
a problem because it can take several seconds for wind to carry the phase screen over a 37 m telescope, which
means that the phase screens decorrelate too slowly. A more suitable model including turbulence dynamics such
as boiling is therefore required to ensure realistic noise levels in the SLODAR data.

Motivated by the above, we simulated boiling phase screens using an auto-regressive method.26 This is done
by replacing a given percentage of each phase screen with a new realization having the same power spectral
density, which causes the phase screens to change slowly while keeping the same statistics. In Ref. 26, the
authors estimated boiling rates using on-sky data from the Gemini Planet Imager, and found boiling coefficients
of 0.991 to 0.996 for a 1000 Hz system; this number indicates how much of the original phase screen is carried
forward by frozen flow, with the rest being replaced by a new phase screen due to boiling. As consecutive time
steps are very strongly correlated, the computational load can be reduced by settling for a 100 Hz system, for
which the equivalent boiling coefficients are 0.99110 ≈ 0.914 and 0.99610 ≈ 0.961. In the end we chose the value
0.95, which means that 5 % of the phase screen changes with each 10 ms time step.

However, the computational cost of simulating even a 100 Hz system for five minutes with boiling is significant,
as it corresponds to generating 30000 atmospheres with 61 layers each. Consecutive timesteps are still strongly
correlated, but increasing the time step duration further would degrade the measurements, since using every WFS
measurement gives more information about the turbulence than using for example every tenth measurement.
In an effort to further reduce the computational load, we used statistical analysis to find the number of fully
uncorrelated samples of the atmosphere that corresponds to five minutes of boiling data. To this end, we
simulated a single layer of turbulence at the ground for one minute with a boiling coefficient of 0.95 at 100 Hz,
with a wind speed of 10 m s−1. As SLODAR data is an average of a correlated time series, we used a method
described in Ref. 27 to estimate its variance, i.e. the noise level of the SLODAR data. Given this information,
it is easy to find how many independent realizations of the atmosphere give the same variance.

‡The photon flux may seem weak for an LGS, but we have found that the noise from this actually has little impact
on our results since the noise in the SLODAR data still comes primarily from random fluctuations of the atmosphere.
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Figure 2. Autocorrelation sequences of one minute of boiling data for subaperture pairs separated by j subapertures, with
j = 0, 20, 40, 60. Results for x- and y-slopes are shown on the left and right, respectively, and the correlation lengths are
indicated by dashed vertical lines. The oscillation in the left image is due to wind being along the x-axis; the peaks occur
every 50 ms, since the wind speed is 10 m s−1 and the subaperture size is 0.5 m.

Following the method in Ref. 27, we used autocorrelation sequences of time series from boiling data to
find its correlation length, which is the amount of data that corresponds to a single uncorrelated realization
of the atmosphere. In Fig. 2, we have plotted the autocorrelation sequences for a minute of boiling data for
subaperture pairs separated by 0, 20, 40 and 60 subapertures. The images show results for x- and y-directional
slope measurements, respectively. The oscillations in the image on the left are due to the wind speed being
along the x-axis. Correlation lengths were estimated separately for each element of the measurement vector b,
i.e. for subaperture separations jD where j ranges from 0 to 60. The mean correlation lengths for x- and y-slopes
were 133 ms and 194 ms, respectively. Their average is 164 ms, which gives us approximately 1800 uncorrelated
atmosphere realizations in five minutes, as mentioned in Section 4.

6. IMPACT OF PSD ON PROFILING ACCURACY

One of the main motivations for our method is to provide better prior information about turbulence at the
ground. Moreover, in this section we demonstrate that solving the ground layer PSD can also significantly
improve overall profiling accuracy. To this end, we have simulated the setup described in Section 4 for five
different PSD exponents at the ground: −1.55, −1.65, −1.75, −1.95, and the usual −11/6 ≈ −1.833. All of these
ground layer PSDs were simulated for a wide range of outer scale values. In order to reduce the computational
load and the fluctuation between different data sets, we used the same 60-layer atmosphere realizations for
turbulence above the ground, only changing the simulated ground layer phase screen for each data set.

We compare different turbulence profiles by defining a relative C2
n-profile error on all layers except the ground§,

given by

EC2
n
(ρ) =

∑L
l=1 |ρl − ρtruel |∑L

l=1 ρ
true
l

, (14)

where ρtruel is the simulated turbulence strength on the lth layer. Of course, there is no direct connection between
this error metric and e.g. tomographic error. The goal is not to predict how the error in the profile will affect

§The ground layer is excluded as comparing values of C2
n for PSDs with different exponents is quite non-trivial.
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Figure 3. These plots show the relative C2
n-profile error caused by assuming the wrong exponent for the ground layer PSD.

On the left, our method and standard SLODAR have been applied to data sets with exponents of −1.55, −1.65, −1.75,
−11/6 and −1.95, with outer scales of 20 m and 40 m. On the right, a single data set with L0 = 20 m and an exponent
of −1.65 is used. The blue and red curve indicate the profile errors given by fixing the exponent to the value indicated
on the horizontal axis, and either fixing L0 = 20 m (blue) or solving for L0 as well (red). The dotted red line indicates
the error level obtained by solving for both L0 and the exponent. In both figures, the dashed red line is the Kolmogorov
exponent.

performance in systems using that profile, but rather to highlight that assuming the wrong turbulence statistics
for the ground layer may cause systematic errors in the profile reconstruction.

Fig. 3 shows the error EC2
n

in two different cases. On the left, both standard SLODAR and our variation
of it have been applied to data sets with each of the five PSD exponents listed above, for outer scales of 20 m
and 40 m; for standard SLODAR, the true outer scales for all 61 layers were used, to ensure that any bias is
strictly due to the PSD exponent. As can be seen, the profile error for our method is almost independent of the
PSD exponent, while standard SLODAR yields increasingly worse results as the exponent deviates more from
the assumed Kolmogorov exponent of −11/6.

The plot on the right in Fig. 3 shows results for a single data set with L0 = 20 m and an exponent of −1.65,
where our method was applied with various parameters fixed. The blue curve corresponds to fixing L0 = 20 m;
for the red curve, this was treated as an unknown. In both cases, the PSD exponent was fixed to the value
indicated on the horizontal axis. Thus, the relative error for standard SLODAR can be found at the intersection
of the blue curve and the dashed line indicating the Kolmogorov exponent. The error level obtained when both
L0 and the exponent are solved from the SLODAR data is indicated by the dotted line; this error comes from
the noisy reconstructions at higher altitudes, which is primarily due to the limited measurement time and the
low number of subaperture pairs available for large separations.

An important point related to the second image in Fig. 3 is that while solving L0 does reduce the relative
C2
n-profile error, this comes at the cost of reconstructing a non-physical value for L0 at the ground. For example,

using the Kolmogorov exponent of −11/6 gives an outer scale of 5.37 m for the ground, and even being off by
0.05 gives 12.0 m and 56.9 m for the exponents −1.7 and −1.6, respectively. This highlights the need for joint
estimation of the exponent and L0, and also explains why the error is reduced very little for exponents larger
than −1.65: with a larger exponent the method tries to compensate by using a larger value of L0, but this has
very little impact on the turbulence profile since SLODAR data is quite insensitive to large outer scales.

Fig. 4 shows an example of the turbulence profiles corresponding to the second image in Fig. 3. The profiles
have been split into two images, with the first three layers above the ground layer in the first plot and the



Figure 4. An example of two turbulence profile reconstructions corresponding to the errors shown in the second image of
Fig. 3, where the true exponent is −1.65 and L0 = 20 m. The simulated profile is shown in red, the reconstruction using
our method in blue, and the one from standard SLODAR (using the true L0) in orange; the values given by our method
were −1.6531 for the exponent and 19.9285 for L0. The ground layer is omitted as the profiles use different PSDs for it,
which means there is no clear way to compare the profiles at the ground layer. The next three layers above the ground
layer are shown separately since their magnitude is much bigger than that of the other layers; this is indicated by the
dashed purple line which shows where the value 10−15 lies in both plots. As can be seen, using the Kolmogorov exponent
led to significant errors in the first layer and the layers between 1 km and 3 km.

remaining layers in the second, since the first three have significantly higher magnitude than the rest; this is
also indicated by the dashed purple line, which is at the same turbulence strength of 10−15 in both images. As
these profiles correspond to Fig. 3, the true exponent for the ground layer was −1.65 and the outer scale was
20 m. The true profile is shown in red, the reconstruction with our method in blue, and the one using standard
SLODAR in orange; note that for SLODAR, the true outer scale of 20 m was used at the ground, rather than
assuming an outer scale of 25 m for the whole atmosphere.

It is clear from Fig. 4 that a majority of the error seen in Fig. 3 comes from misestimating the second layer,
although the reconstruction with standard SLODAR also underestimates the turbulence between 1 km and 3 km.
The benefit from estimating the ground layer PSD is clear, as the reconstruction is almost perfect up to roughly
5 km in altitude. After that the noise in the measurements begins to dominate, as there are fewer subaperture
pairs available with separations long enough to properly measure turbulence at the higher altitudes. Beyond
3 km there is no significant difference in reconstruction quality between the two profiles, as misestimating the
ground layer appears to primarily impact the reconstruction quality of layers close to it.

7. QUANTIFYING L0-UNCERTAINTY

How reliably can we expect to recover L0 from SLODAR data? This is an important question for outer scale
profiling. Our goal is to provide an upper limit on the level of accuracy that can be expected, as simulations are
in many ways an idealization of the real world. We investigate this by using an adaptive Markov chain Monte
Carlo (MCMC) method28 to sample the posterior probability distribution of the unknown parameters ρ, c, γ
and L0. This distribution is given by (12), with some additional constraints on the parameters as described in
Section 3. This distribution essentially gives the probability that a given set of parameter values produced the
measurement vector b, which means we can use it for uncertainty quantification to find e.g. the variance and
marginal distribution of each parameter.

We consider data sets with standard von Kármán turbulence for all layers; only the outer scale value for
the ground is varied. Using the Delayed Rejection Adaptive Metropolis -method (DRAM) described in Ref. 28,
we generated chains of 3500000 samples to accurately probe the posterior probability distribution given by



Figure 5. Marginal distribution of L0 and the PSD exponent; the simulated values of L0 are 20 m, 40 m, 60 m and 80 m,
from left to right. The y-axis scale is the same in each image. The black dot is the true value for L0 and the exponent,
and the red dot is the mean of the probability distribution, also known as the conditional mean (CM) estimate. The
dashed lines represent 95 % credible intervals around the CM estimate, i.e. 95 % of the distribution lies between the two
parallel lines. Note that the horizontal axis is scaled very differently in the first image.

0 2 5 10
10

0

10
1

10
2

0 2 5 10

0

0.03

0.06

Figure 6. The width of the 95 % credibility intervals for the posterior distributions as a function of measurement time,
with L0 shown on the left and the exponent on the right. These credibility intervals were obtained from data sets with
von Kármán turbulence at the ground, for four different values of L0. Several data sets with a varying number of samples
were used; the time shown on the horizontal axis is based on the baseline of 1800 independent atmosphere realizations
per five minutes.

(12). Fig. 5 shows the marginal distribution of L0 and the PSD exponent as two-dimensional histograms of the
MCMC chains, for L0 = 20 m, 40 m, 60 m and 80 m. Note carefully that the horizontal axis is scaled differently
for L0 = 20 m, as there is far less uncertainty about the value of L0 in this case.

Fig. 5 shows that the uncertainty in reconstructing L0 grows rapidly as the true value of L0 increases, which
is also shown by the CM estimate being so far from the true values in all but the first image; this is due to a
significant part of the probability distribution being located at higher values of L0. However, the maximum of the
posterior distribution is actually quite close to the true values when L0 = 40 m, and this is also the solution that
we use, as described at the end of Section 3. Unfortunately, even the maximum is quite far off when L0 = 60 m,
and in the case of L0 = 80 m there does not even appear to be a unique maximum.

An important thing to keep in mind is that the uncertainty in the parameters depends on the amount of
measurements we have; the results shown in this section and Section 6 are for five minutes of data. However,
Fig. 6 shows how this uncertainty depends on measurement time, with up to ten minutes of data for L0 ranging



from 10 m to 40 m; the plots show the credibility interval for L0 and the exponent, respectively. As we would
expect, the credibility interval becomes smaller as we have more data; in fact, both the L0 and exponent credibility
interval widths seem to exhibit an asymptotic t−1/2-decay, which is precisely the decay for the standard deviation
of noise in SLODAR data. In principle resolving larger values of L0 is then only a matter of having enough
data, although this may require very long measurement times. In practice, however, the atmospheric parameters
evolve in time, which limits how much data we can actually use.

An interesting point in Fig. 6 is that there is actually more uncertainty about the exponent when L0 = 10 m.
This may seem counter-intuitive, but there is a good reason for this: as L0 gets smaller, the exponent becomes
more sensitive to small changes in L0, and so uncertainty in L0 translates to uncertainty in the exponent. This
can also be seen in Fig. 5 as a downward trend in the distributions. When L0 is 80 m, its value makes almost
no difference for the exponent, but a clear correlation is visible in the case where L0 is 20 m. In a way, the
non-linearity of solving L0 and the exponent becomes worse as L0 becomes smaller; in the worst case, when L0

is much smaller than a single subaperture, it becomes impossible to distinguish between the outer scale and the
exponent, as the PSD is almost flat in the spatial frequency range which is visible to SLODAR.

8. DISCUSSION

We have presented a SLODAR-type method for simultaneously solving both the turbulence profile and the
ground layer PSD, and applied it to simulated data from 1800 independent realizations of the atmosphere, which
we have found corresponds to five minutes of data with simulated boiling phase screens. Using this data, we
have demonstrated the benefits of solving the ground layer PSD by using a relative C2

n-profile error as a metric,
and further we have applied uncertainty quantification techniques to determine the feasibility of reconstructing
L0 with SLODAR-based methods.

We have found that allowing a more general model for the ground layer PSD in the presence of non-
Kolmogorov turbulence can provide significantly more accurate profiling than assuming von Kármán turbulence,
while maintaining the same level of accuracy in cases where the turbulence is von Kármán. We also found that
L0-profiling can in some cases mitigate the model errors to a limited extent, but this comes at the cost of strong
biases in the recovered values of L0, exemplified by the fact that changing the PSD exponent by only 0.05 in
either direction gave values of 12 m and 57 m for L0 when the true value was 20 m. This seems to indicate
that modeling non-Kolmogorov turbulence is necessary to recover accurate L0-profiles, as the outer scale is very
sensitive to even small changes in the PSD exponent.

We have also found that the uncertainty in outer scale profiling grows quite rapidly as a function of L0, to the
point where recovering outer scales just 50 % larger than the telescope diameter can already be very unstable.
Moreover, the sensitivity to the PSD exponent becomes stronger as the value of L0 increases. However, it should
be mentioned that these results were obtained by simulating LGSs; in principle, natural guide stars would give
slightly better results for L0-profiling, as the removal of tip/tilt and focus from the data due to LGSs reduces
the sensitivity to L0.

An important thing to note is that we used a flat prior for L0, meaning that all values between 0 m and
200 m were considered equally likely prior to the measurements. Good prior information from a reliable source
could help improve the L0-reconstruction by imposing a more informative prior distribution on L0. This could
for example help eliminate the heavy tails in the posterior distributions shown in Fig. 5. We have also found
that accurate modeling of the system can be extremely vital for something as unstable as outer scale profiling,
since even slight modeling errors can cause significant errors in L0.
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