
Undefinability in inquisitive logic with tensor

Ivano Ciardelli1[0000−0001−6152−3401] and Fausto Barbero2[0000−0002−0959−6977]

1 Munich Center for Mathematical Philosophy, LMU Munich, Germany
ivano.ciardelli@lrz.uni-muenchen.de

2 Department of Philosophy, University of Helsinki, Finland
fausto.barbero@helsinki.fi

Abstract. Logics based on team semantics, such as inquisitive logic and
dependence logic, are not closed under uniform substitution. This leads
to an interesting separation between expressive power and definability:
it may be that an operator O can be added to a language without a
gain in expressive power, yet O is not definable in that language. For
instance, even though propositional inquisitive logic and propositional
dependence logic have the same expressive power, inquisitive disjunction
and implication are not definable in propositional dependence logic. A
question that has been open for some time in this area is whether the
tensor disjunction used in propositional dependence logic is definable
in inquisitive logic. We settle this question in the negative. In fact, we
show that extending the logical repertoire of inquisitive logic by means
of tensor disjunction leads to an independent set of connectives; that is,
no connective in the resulting logic is definable in terms of the others.

Keywords: definability · inquisitive logic · tensor disjunction · depen-
dence logic · team semantics · conjunction

1 Introduction

The notion of definability of a connective in terms of a set of other connec-
tives is one of the basic notions of propositional logic. In classical logic ev-
ery truth-functional connective is definable from, say, the set {¬,∧}; for in-
stance, disjunction can be defined as ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ) and implication as
ϕ → ψ := ¬(ϕ ∧ ¬ψ). By contrast, it was shown by McKinsey [18] that in in-
tuitionistic logic none of the primitive connectives ¬,∧,→,∨ whose semantics
is characterized by the BHK interpretation is definable in terms of the other.
In the setting of classical and intuitionistic logic, questions of definability are
tighly connected to questions about the expressive power of a certain repertoire
of connectives. If a connective ◦ is definable from other connectives, then each
occurrence of this connective can be paraphrased away according to its defini-
tion; therefore, the connective can be omitted from the language without loss of
expressive power. Conversely, if ◦ can be eliminated from the language without
loss of expressive power, then ◦ can also be defined. To see why, suppose for
concreteness that ◦ is binary. If ◦ can be omitted from the language, then in
particular the formula p ◦ q, where p and q are atomic formulas, is equivalent to
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some formula ϕ(p, q) which does not contain ◦. In both classical and intuition-
istic logic, logical equivalences remain valid when we replace atoms by arbitrary
formulas. Therefore, we also have that for all ψ and χ, ψ ◦ χ is equivalent to
ϕ(ψ, χ). This means that the formula ϕ(p, q), when viewed as a scheme where
p and q are placeholders for the two arguments, provides a definition of the
connective ◦.

This connection between definability and expressive power holds because
of an important property of classical and intuitionistic logic, namely, closure
under uniform substitution: logical equivalences remain valid when we replace
atomic formulas by arbitrary formulas. In the recent literature, a number of log-
ics have been studied which lack this property: in these logics, atomic formulas
are not viewed as placeholders for arbitrary sentences, but rather as placehold-
ers for sentences of a particular kind, which may have special logical properties.
Two families of non substitution-closed logics which have been investigated thor-
oughly in the last few years are inquisitive logic (see, e.g., [8, 21, 20, 6, 14, 7]) and
dependence logic (see, e.g., [22, 1, 17, 11, 12, 26, 28]).3 These approaches arose in-
dependently, and from different enterprises: inquisitive logic is concerned with
extending the scope of logic to questions, while dependence logic is concerned
with enriching classical logic with formulas that talk about dependencies and
independencies between variables. However, these two approaches turned out to
be tightly connected from a mathematical perspective [26, 5, 28]; and the con-
vergence is not accidental: as discussed in [5, 7] the relation of dependency can
be seen as a special case of the relation of entailment, once the latter is gen-
eralized to questions. In the propositional setting, the standard incarnation of
these two approaches is given by the systems of propositional inquisitive logic,
InqB [8], and propositional dependence logic, PD [28]. These systems are inter-
preted in the same semantic setting, namely, in terms of a relation |= which
is assessed relative to sets of propositional valuations. However, these systems
differ in their repertoire of logical operation. The set of primitives in InqB com-
prises the constant ⊥ and the binary connectives ∧ (conjunction),→ (inquisitive
implication) and

>

(inquisitive disjunction); from these operators negation is
defined as ¬ϕ := ϕ→ ⊥. The logical repertoire of PD comprises the connectives
∧ (conjunction, the same operator as in InqB) and ⊗ (tensor disjunction) as well
as two operators that can be applied only to atomic formulas: negation ¬, and
the dependence atom = ( ; ) which is an operator of variable arity, taking an
arbitrary sequence of atoms in the first coordinate and an atom in the second.

InqB, PD, and their extensions are not closed under uniform substitution. As
a consequence, in these logics expressive power and definability come apart. It is
quite possible that a connective ◦ can be dropped from the language without loss
of expressive power, yet this connective is not definable from the remaining con-
nectives. This happens when each particular occurrence of ◦ can be paraphrased
away, but the required paraphrase depends on the specific arguments to which ◦

3 Other examples of non-substitution closed logics are data logic [23], several dynamic
epistemic logics [19, 2, 10], as well as logics arising from dynamic semantics [9, 24, 15]
and from expressivist approaches to modals and conditionals [25, 16, 3].
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applies. For instance, it was shown in [4] that every formula of InqB is equivalent
to one in the language {¬, > }, and also to one in the language {⊥,→, > }; yet,
implication is not definable in terms of {¬, > }, and conjunction is not definable
in terms of either {¬, > } or {⊥,→,∧}.

More recently, [28] showed that PD has the same expressive power as InqB.
Adding the inquisitive connectives

>

and → to the logical repertoire of PD
would not increase the expressive power of the language. However, one may still
ask whether these operators are definable in PD. As shown in [27], the answer
is negative: both → and

>

are not definable in PD.4 Similarly, adding the
dependence logic operators =( ; ) and ⊗ to the inquisitive repertoire does not
increase the expressive power of InqB. But are these operators definable in InqB?
For the dependence atom, the answer is easy: it is definable in InqB by means of
the inquisitive connectives by the following scheme:

=(p1, . . . , pn; q) := ?p1 ∧ · · · ∧ ?pn → ?q

where ?ϕ is used as an abbreviation for ϕ

> ¬ϕ. For tensor disjunction, how-
ever, the question has so far remained open. It was conjectured in [27] and [6]
that ⊗ is not definable from the inquisitive connectives, but a proof has so far
been missing. Our main aim in this paper is to prove this conjecture. In fact,
we will take this opportunity to investigate more thoroughly matters of expres-
sive power and definability in the context of inquisitive logic extended with the
tensor disjunction connective. We will show that adding ⊗ to InqB leads to an
independent set of primitives: that is, not only is ⊗ not definable from the in-
quisitive connectives, but none of the inquisitive connectives becomes definable
from the other inquisitive connectives in the presence of tensor disjunction.

The paper is structured as follows. In Section 2 we specify the notions of
definability and eliminability of a connective and discuss the relations between
the two. In Section 3 we define InqB⊗, inquisitive logic with tensor, and mention
some key properties of this logic. In Section 4 we look into expressive com-
pleteness: we show that, starting from the repertoire {⊥,∧,→, > ,⊗}, there is
a unique minimal set of connectives which is expressively complete, namely,
{⊥,→, > }; thus, ∧ and ⊗ can be removed from the language without loss of
expressive power. In Section 5 we look into definability, showing that no con-
nective in {⊥,∧,→, > ,⊗} is definable from the others; the novel results are
the undefinability of tensor disjunction from the inquisitive connectives, and the
undefinability of conjunction from {⊥,→, > ,⊗}. Section 6 concludes.

4 For other undefinability results in the setting of dependence logic, see also [12, 13].
It is worth noting that, in the dependence logic literature, the standard notion of
definability is called uniform definability ; since there seems to be no special reason
to add the qualification uniform (the notion of definability is intrinsically “uniform”
in the relevant sense) we prefer to stick with the standard terminology.
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2 Definability and eliminability

Throughout this section, let L be an arbitrary propositional logic with language
L = L[C] generated by a set C of connectives, giving rise to a relation of logical
equivalence ≡L ⊆ L × L. We assume ≡L to be an equivalence relation and a
congruence with respect to the connectives: that is, we suppose that for every
n-ary connective ◦, if ϕi ≡L ψi for i ≤ n then ◦(ϕ1, . . . , ϕn) ≡L ◦(ψ1, . . . , ψn).

Definition 1 (Context). A propositional context ϕ(p1, . . . , pn) consists of a
formula ϕ ∈ L together with a sequence of designated atomic formulas p1, . . . , pn.
Note that ϕ(p1, . . . , pn) is allowed to contain other atoms besides p1, . . . , pn. If
ϕ(p1, . . . , pn) is a context and χ1, . . . , χn ∈ L, we write ϕ(χ1, . . . , χn) for the
result of replacing p1, . . . , pn by χ1, . . . , χn throughout ϕ.

Definition 2 (Definability). We say that an n-ary connective ◦ ∈ C is defined
by a context ξ(p1, . . . , pn) in case for all χ1, . . . , χn ∈ L[C]:

◦(χ1, . . . , χn) ≡L ξ(χ1, . . . , χn)

We say that ◦ is definable from a set C ′ ⊆ C of connectives in case there is a
context ξ(p1, . . . , pn), with ξ ∈ L[C ′] which defines ◦. If we just say that ◦ is
definable then we mean that it is definable from C − {◦}.

In terms of definability we define the notion of an independent set of connectives.

Definition 3 (Independence). We say that a set C ′ of connectives is inde-
pendent if no connective ◦ ∈ C ′ is definable from C ′ − {◦}.

In addition to the notion of definability, we also introduce a notion of eliminabil-
ity of a connective, which means that the connective can be omitted from the
language without a loss in expressive power.

Definition 4 (Eliminability). Let C ′ ⊆ C be a set of connectives. We say
that the set of connectives C ′ is eliminable if for each formula ϕ ∈ L[C] there
is a formula ϕ∗ ∈ L[C − C ′] such that ϕ ≡L ϕ∗. We say that a connective ◦ is
eliminable if {◦} is eliminable.

Notice that definability implies eliminability.

Proposition 1. If a connective ◦ is definable, then it is eliminable.

Proof. Suppose ◦ is defined by ξ(p1, . . . , pn) ∈ L[C−{◦}]. We show by induction
that every ϕ ∈ L[C] is equivalent to some ϕ∗ ∈ L[C − {◦}]. The only non-
trivial case is the one for ϕ = ◦(ψ1, . . . , ψn). By induction hypothesis there are
ψ∗1 , . . . , ψ

∗
n ∈ L[C−{◦}] s.t. ψi ≡L ψ

∗
i for i ≤ n. Then ϕ ≡L ◦(ψ∗1 , . . . , ψ∗n). Since

◦ is defined by ξ we have ◦(ψ∗1 , . . . , ψ∗n) ≡L ξ(ψ
∗
1 , . . . , ψ

∗
n). Since ξ, ψ∗1 , . . . , ψ

∗
n ∈

L[C − {◦}], we have that ξ(ψ∗1 , . . . , ψ
∗
n) ∈ L[C − {◦}]. So ϕ is L-equivalent to

some formula in L[C − {◦}], which completes the inductive step. �
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Another important notion in this area is the notion of completeness of a set C ′

of connectives, which holds when every formula in the language is L-equivalent
to one built up using only connectives from C ′.

Definition 5 (Completeness). We say that a set of connectives C ′ ⊆ C is
complete for L if for all ϕ ∈ L[C] there exists some ϕ∗ ∈ L[C ′] s.t. ϕ ≡L ϕ∗.
We say that a set C ′ is a minimal complete set of connectives for L if C ′ is
complete for L, and no proper subset C ′′ ⊂ C ′ is complete for L.

The notions of definability and eliminability often go hand in hand. This is be-
cause the logics L one typically considers are closed under uniform substitution.
Closure under uniform substitution is usually formulated in terms of preserva-
tion of validity under substitutions. For our purposes, a characterization in terms
of preservation of equivalence is more suitable. The two coincide if L validates
a deduction theorem, and more generally if ϕ ≡L ψ amounts to the validity of a
formula χ(ϕ,ψ) in L (if the deduction theorem holds, χ(ϕ,ψ) will be ϕ↔ ψ).

Definition 6 (Closure under uniform substitution). L is closed under
uniform substitution if for any two contexts ϕ(p1, . . . , pn) and ψ(p1, . . . , pn), if
ϕ ≡L ψ then for all χ1, . . . , χn ∈ L we have ϕ(χ1, . . . , χn) ≡L ψ(χ1, . . . , χn).

In a logic which is closed under uniform substitution, the notions of definability
and eliminability for a connective coincide.

Proposition 2. If L is closed under uniform substitution and ◦ is eliminable,
then ◦ is definable.

Proof. Let p1, . . . , pn be n distinct atomic formulas. Suppose L is closed under
uniform substitution and ◦ is eliminable. Then the formula ◦(p1, . . . , pn) is L-
equivalent to some ξ ∈ L[C−{◦}]. Consider the context ξ(p1, . . . , pn): by closure
under uniform substitution, for all χ1, . . . , χn ∈ L we have ◦(χ1, . . . , χn) ≡L

ξ(χ1, . . . , χn). Thus, ◦ is defined by ξ(p1, . . . , pn). �

As we discussed in the introduction, systems of inquisitive and dependence logic
are typically not closed under uniform substitution. As a consequence, in these
logics we find an interesting gap between the eliminability of a connective and
its definability. We will examine this gap carefully for one particular logic, the
system InqB⊗ introduced in the next section.

3 Inquisitive logic with tensor disjunction

In this section we introduce the system InqB⊗ that we will be concerned with.
This system extends the standard system of propositional inquisitive logic, InqB
[4, 8, 6] with the tensor disjunction used in dependence logic [26, 28]. We will
present this logic from a purely mathematical point of view. For an introduction
to the motivations of inquisitive logic and to the conceptual interpretation of
formulas in this system, see [6, 7].
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Formally, the language L of InqB⊗ is generated by the set of connectives
{⊥,∧, > ,→,⊗}, where all connectives are binary except for⊥, which has arity 0:

ϕ ::= p | ⊥ | ϕ ∧ ϕ | ϕ > ϕ | ϕ→ ϕ | ϕ⊗ ϕ

In addition to the primitive connectives, some defined connectives are used:

¬ϕ := ϕ→ ⊥ ?ϕ := ϕ

> ¬ϕ > := ¬⊥

In classical propositional logic, the semantics of a formula is given in terms of
truth-conditions relative to a valuation function w : P → {0, 1}, which repre-
sents a complete state of affairs. By contrast, in inquisitive logic, formulas are
interpreted relative to a set of such valuation functions. Informally, such a set s
is taken to represent an information state, where the idea is that s embodies the
information that the actual state of affairs corresponds to one of the valuations
w ∈ s; thus, the smaller the set s, the stronger the information it encodes.

Definition 7 (Information states).
An information state is a set s of valuations for P, i.e., a subset s ⊆ {0, 1}P .

The semantics is given in terms of a relation of support relative to information
states, which is defined inductively as follows.

Definition 8 (Support).

– s |= p ⇐⇒ w(p) = 1 for all w ∈ s
– s |= ⊥ ⇐⇒ s = ∅
– s |= ψ ∧ χ ⇐⇒ s |= ψ and s |= χ
– s |= ψ

>
χ ⇐⇒ s |= ψ or s |= χ

– s |= ψ → χ ⇐⇒ ∀t ⊆ s : t |= ψ implies t |= χ
– s |= ψ ⊗ χ ⇐⇒ ∃t1, t2 s.t. t1 |= ψ, t2 |= χ and s = t1 ∪ t2.

It is immediate to see that the defined operators have the following semantics:

– s |= ¬ψ ⇐⇒ ∀t ⊆ s : t |= ψ implies t = ∅
– s |= ?ψ ⇐⇒ s |= ψ or s |= ¬ψ
– s |= > for all information states s.

The support relation has the following properties.

– Persistency: if s |= ϕ and t ⊆ s, then t |= ϕ
– Empty state property: ∅ |= ϕ for all ϕ.

From the notion of support at a state, a notion of truth relative to a valuation
w is recovered by defining truth at w as support with respect to {w}.

Definition 9 (Truth). We say that ϕ is true at w, notation w |= ϕ, if and
only if {w} |= ϕ.
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It is easy to see that the truth-conditions that this delivers are simply the ones
familiar from classical propositional logic, when both

>

and ⊗ are identified
with classical disjunction ∨. Notice that, due to persistency, if a formula ϕ is
supported at s, then it is true at all valuations w ∈ s. The converse is not true
in general, but it may hold for particular formulas. The formulas for which this
is the case are called truth-conditional, since the semantics of these formulas is
completely determined at the level of truth-conditions.5

Definition 10 (Truth-conditionality). We say that ϕ ∈ L is truth-conditional
if for all information states s we have: s |= ϕ ⇐⇒ ∀w ∈ s : w |= ϕ

There is an important fragment of our language which consists entirely of truth-
conditional formulas. We refer to the formulas in this fragment as declaratives.

Definition 11 (Declaratives). A formula ϕ ∈ L is a declarative if it is

>

-
free. In other words, the set of declaratives is the set L! := L[⊥,∧,→,⊗].

Proposition 3 (cf. [5], Prop. 3). Every α ∈ L! is truth-conditional.

Formulas containing

>

are not in general truth-conditional. For instance, con-
sider ?p (which abbreviates p

> ¬p). Since truth-conditions coincide with truth-
conditions in classical propositional logic, ?p will be true with respect to all
valuations w whatsoever. However, the support-conditions for this formula are:

s |= ?p ⇐⇒ s |= p or s |= ¬p ⇐⇒ (∀w ∈ s : w(p) = 1) or (∀w ∈ s : w(p) = 0)

where the last equivalence uses the fact that p and ¬p are declaratives, and thus
truth-conditional. Thus, ?p is supported at a state s only if all the valuations in s
agree about the truth-value of p. Thus, if s is a state containing some valuations
that make p true and some that make p false, then s 6|= ?p, even though ?p is
true at all w ∈ s. This shows that ?p is not truth-conditional.

Logical entailment and equivalence are defined naturally in terms of support.

Definition 12 (Logical entailment and equivalence). We say that:

– ϕ entails ψ, ϕ |= ψ, if for all states s: s |= ϕ implies s |= ψ;
– ϕ and ψ are equivalent, ϕ ≡ ψ, if for all states s: s |= ϕ iff s |= ψ.

In addition to these purely logical notions, it will also be useful to have notions
of entailment and equivalence relativized to an information state s. The idea is
that, when looking at entailment and equivalence relative to s, only valuations
in s are taken into account (for discussion of the significance of logical and
contextual entailment in inquisitive logic, see [6]§1 and [7]).

Definition 13 (Relativized entailment and equivalence). Let ϕ,ψ ∈ L
and let s be an information state. We say that:

– ϕ entails ψ in s, ϕ |=s ψ, if for all states t ⊆ s: t |= ϕ implies t |= ψ;

5 Truth-conditional formulas are called flat formulas in the dependence logic literature.
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– ϕ and ψ are equivalent in s, ϕ ≡s ψ, if for all states t ⊆ s: t |= ϕ iff t |= ψ.

Notice that logical entailment implies entailment relative to any information
state; similarly, logical equivalence implies equivalence relative to any state.

For formulas in the declarative fragment of the language, logical entailment
and equivalence coincide with entailment and equivalence in classical proposi-
tional logic, when the operator ⊗ is identified with classical disjunction. We state
the case of equivalence as a proposition, since we will make use of it below.

Proposition 4 (cf. [5], Prop. 6).
For all α, β ∈ L!: α ≡ β ⇐⇒ α and β are equivalent in classical propositional
logic, when ⊗ is replaced by the classical disjunction symbol ∨.

An important feature of propositional inquisitive logic, which extends to InqB⊗

[5], is that every formula is equivalent to an inquisitive disjunction of declaratives.

Theorem 1 (cf. [5], Prop. 11). For every ϕ ∈ L there are declarative formulas
α1, . . . , αn ∈ L!, called the resolutions of ϕ, such that ϕ ≡ α1

>

. . .

>

αn.

Having reviewed the main definitions and facts about InqB⊗, we can now delve
into the issue of eliminability and definability of connectives in this system.

4 Eliminability

In this section we discuss which connectives from our language L are eliminable,
and show that there is a unique minimal complete set of connectives for InqB⊗.
These results are straightforward adaptations to our language of results from [4],
although we will lay out the consequences of these results more systematically.
First, let us show that the connectives ⊥,

>

, and→ are not eliminable: omitting
any of these connectives from our language results in a loss of expressive power.

Proposition 5. ⊥ is not eliminable.

Proof. We have to show that no ⊥-free formula of L is equivalent to ⊥. Let wt

be the valuation function mapping all atomic formulas to 1. A straightforward
induction shows that every ⊥-free formula is supported at the state {wt}. Since
{wt} 6|= ⊥, it follows that no ⊥-free formula is equivalent to ⊥. �

Proposition 6.

>

is not eliminable.

Proof. We must show that some formula of L is not equivalent to any

>

-free
formula. Consider the formula ?p := p

> ¬p. Proposition 3 ensures that every

>

-free formula is truth-conditional. Since we saw above that ?p is not truth-
conditional, it follows that it is not equivalent to any

>

-free formula. �

Proposition 7. → is not eliminable.
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Proof. We show that > (defined as ¬⊥, i.e., ⊥ → ⊥) is not equivalent to any
→-free formula. Let wf be the valuation mapping all atomic formulas to 0. A
straightforward induction shows that no →-free formula is supported at {wf}.
Since > is supported at {wf}, no →-free formula is equivalent to >. �

This shows that, starting from the repertoire of connectives {⊥,∧, > ,→,⊗},
none of ⊥,

>

, and → can be dropped without a loss in expressive power. We
are now going to see that these three connectives together are sufficient to express
anything that is expressible in InqB⊗.

Proposition 8. {⊥,→, > } is a complete set of connectives for InqB⊗.

Proof. We need to show that for all ϕ ∈ L there is a ϕ∗ ∈ L[⊥,→, > ] such
that ϕ ≡ ϕ∗. First, it follows from Proposition 4 and the fact that {⊥,→}
is complete for classical propositional logic that any any declarative formula
α ∈ L[⊥,∧,→,⊗] is equivalent to a formula α∗ ∈ L[⊥,→].

Now take any ϕ ∈ L. By Theorem 1 we have ϕ ≡ α1

>

. . .

>

αn for some for-
mulas α1, . . . , αn ∈ L[⊥,∧,→,⊗]. Now let ϕ∗ := α∗1

>

. . .

>

α∗n, where α∗1, . . . , α
∗
n

are defined as above. Since αi ≡ α∗i for i ≤ n, we have ϕ ≡ ϕ∗. And since
α∗i ∈ L[⊥,→] for i ≤ n, we have ϕ∗ ∈ L[⊥,→, > ]. �

Corollary 1. The set of connectives {∧,⊗} is eliminable in InqB⊗. In particu-
lar, both ∧ and ⊗ are eliminable.

Proposition 8 together with the non-eliminability of ⊥, →, and

>

implies that
InqB⊗ admits only one minimal complete set of connectives, namely, {⊥,→, > }.

Theorem 2. {⊥,→, > } is the only minimal complete set for InqB⊗.

Proof. It follows from Propositions 5, 6, and 7 that any complete set of connec-
tives C for InqB⊗ must include {⊥,→, > }. Since {⊥,→, > } is itself a complete
set, it is the only minimal one. �

We have thus achieved a complete characterization of:

– which connectives are eliminable in InqB⊗ (∧ and ⊗, but not ⊥,→ and

>

);
– which sets of connectives are complete (those which include {⊥,→, > });
– which sets of connectives are minimal complete (only {⊥,→, > }).

5 Independence of the connectives

In this section, we turn to the issue of definability. The main contribution of
the paper is to answer the following question, which is open in the literature:
which connectives of InqB⊗ are definable in terms of the remaining connectives?
We will see that the answer is none: thus, although {⊥,∧, > ,→,⊗} is not a
minimal set of connectives for InqB⊗, it is an independent set of connectives.

For a start, notice that the question of definability only arises for ∧ and ⊗: as
we saw, the connectives ⊥,

>

, and → are not even eliminable in InqB⊗, which
a fortiori implies that they are not definable. We will examine first the case of
tensor disjunction, and then the case of conjunction.
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5.1 Undefinability of ⊗

Fix three propositional letters q1, q2, q3 and consider:

– ψ := q1

>

q2

>

q3
– s := {w1, w2, w3} where wi(qi) = 1 and wi(r) = 0 for all r 6= qi

Lemma 1. For any context ϕ(p), with ϕ ∈ L[⊥,∧,→, > ] not containing q1, q2, q3,
one of the following holds:

ϕ(ψ) ≡s > ϕ(ψ) ≡s ⊥ ϕ(ψ) ≡s ψ

Proof. We proceed by induction on ϕ. To ease notation, given a formula χ(p),
let us write χ? for χ(ψ).

– ϕ = p or ϕ = ⊥. Then ϕ? is either ψ or ⊥, and we are done.
– ϕ = r for an atomic formula r different from p, q1, q2, q3. Then ϕ? = r. Since
r is false at all worlds in s we have r ≡s ⊥.

– ϕ = η ∧ θ. Then ϕ? = η? ∧ θ?. By induction hypothesis, each of η? and θ?

is equivalent modulo s to either one of >,⊥, ψ. Since the conjunction of any
two formulas from {>,⊥, ψ} is logically equivalent to a formula from this
set, we can conclude that ϕ? is equivalent modulo s either to >,⊥ or ψ.

– ϕ = η

>

θ. Then ϕ? = η?
>

θ?. This case is similar to the previous one, since
the inquisitive disjunction of any two formulas from {>,⊥, ψ} is logically
equivalent to a formula from this set.

– ϕ = η → θ. Then ϕ? = η? → θ?. We consider three cases:
• η? ≡s >. In this case, by persistency we have ϕ? ≡s > → θ? ≡ θ?. By

induction hypothesis, θ? is equivalent in s to >, ⊥, or ψ, so we are done.
• η? ≡s ⊥. In this case, by the empty state property ϕ? ≡s ⊥ → θ? ≡ >.
• η? ≡s ψ. In this case, we need to distinguish three sub-cases:
∗ θ? ≡s >. In this case, ϕ? ≡s ψ → > ≡ >.
∗ θ? ≡s ψ. In this case, ϕ? ≡s ψ → ψ ≡ >.
∗ θ? ≡s ⊥. In this case ϕ? ≡s ψ → ⊥. We claim that ψ → ⊥ ≡s ⊥. We

need to show that the only t ⊆ s that supports ψ → ⊥ is ∅. Notice
that, by the definitions of ψ and negation, ψ → ⊥ = ¬(q1

>

q2

>

q3).
Suppose for a contradiction that ∅ 6= t ⊆ s and t |= ¬(q1

>

q2

>

q3).
Take a valuation wi ∈ t. By persistency, {wi} |= ¬(q1

>

q2

>

q3). But
this is impossible, since by construction {wi} |= qi. �

Now just observe the support conditions for the formulas ψ and ψ⊗ψ relativized
to the given state s. Letting #t be the cardinality of t, for all t ⊆ s we have:

– t |= ψ ⇐⇒ #t ≤ 1
– t |= ψ ⊗ ψ ⇐⇒ #t ≤ 2

This means that we have:

ψ ⊗ ψ 6≡s > ψ ⊗ ψ 6≡s ⊥ ψ ⊗ ψ 6≡s ψ

From this observation and Lemma 1, we get the following proposition.
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Proposition 9. For all ϕ(p) ∈ L[⊥,∧,→, > ] which do not contain q1, q2, q3:

(q1

>

q2

>

q3)⊗ (q1

>

q2

>

q3) 6≡ ϕ(q1

>

q2

>

q3)

It is now easy to get the desired undefinability result.

Theorem 3. ⊗ is not definable from {⊥,∧,→, > }.

Proof. Consider a context ϕ(p1, p2) with ϕ ∈ L[⊥,∧,→, > ] (possibly containing
other atoms besides p1, p2). Let q1, q2, q3 be three atoms which do not occur in
ϕ and let ψ = q1

>

q2

>

q3. By Proposition 9 we have:

ψ ⊗ ψ 6≡ ϕ(ψ,ψ)

which implies that ϕ(p1, p2) does not define ⊗. �

5.2 Undefinability of ∧

We will follow a strategy similar to that we used for ⊗. Fix two atomic formulas
q1, q2, and let s = {w12, w1, w2} where w12 makes both q1 and q2 true, w1 makes
only q1 true, and w2 makes only q2 true. Moreover, suppose that all atoms
different from q1, q2 are false at all three worlds. We will show the following.

Lemma 2. Take a context ϕ(p1, p2), with ϕ ∈ L[⊥,→, > ,⊗] not containing
q1, q2. Then one of the following claims holds:

1. ϕ(?q1, ?q2) ≡s ⊥
2. ϕ(?q1, ?q2) is supported by all subsets of s of cardinality 1, and by at least

one subset of s of cardinality 2.

Proof. We proceed by induction on ϕ. To ease notation, given a context χ(p1, p2),
let us write χ? for χ(?q1, ?q2).

– ϕ = p1. Then ϕ? = ?q1 is supported by all singleton states, and also by the
state {w12, w1} ⊆ s, which has cardinality 2. So claim 2 holds.

– ϕ = p2. Analogous.
– ϕ = ⊥. Then ϕ? = ⊥, so claim 1 holds.
– ϕ = r for r 6= p1, p2, q1, q2. Then ϕ? = r. Since r is false in all worlds in s we

have r ≡s ⊥, so claim 1 holds.
– ϕ = η → θ. We distinguish three cases:
• η? ≡s ⊥ ≡s θ

?. Then ϕ? ≡s ⊥ → ⊥ = >, therefore claim 2 holds.
• η? 6≡s ⊥ ≡s θ

?. Then ϕ? ≡s η
? → ⊥. We will show that ϕ? ≡s ⊥. Take

any non-empty t ⊆ s, and let {w} ⊆ t. By the induction hypothesis on
η we have {w} |= η?, but {w} 6|= ⊥. Therefore, t 6|= η? → ⊥. Thus, ϕ? is
not supported at any non-empty subset of s, which means that ϕ? ≡s ⊥.

• θ? 6≡s ⊥. Then by induction hypothesis θ? is supported by all singleton
substates of s, and also by a substate of s of cardinality 2. Since any
state that supports θ? also supports ϕ? = η? → θ?, by persistency, claim
2 holds for ϕ?.
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– ϕ = η

>

θ or ϕ = η ⊗ θ. If η? ≡s θ
? ≡s ⊥ then ϕ? ≡s ⊥ and case 1 applies.

Otherwise, at least one of η? and θ? is not s-equivalent to ⊥. Suppose it is
η?. Then by induction hypothesis η? is supported by all singleton substates
of s, and by a substate of s of cardinality 2. Since any state that supports
η? also supports η?

>

θ? as well as η? ⊗ θ?, claim 2 applies to ϕ?. �

Now consider the formula ?q1 ∧ ?q2. For all t ⊆ s we have:

– t |= ?q1 ∧ ?q2 ⇐⇒ #t ≤ 1

Thus, ?q1∧?q2 6≡s ⊥, and moreover ?q1∧?q2 is not supported by any substate of
s of cardinality 2. It follows from Lemma 2 that ?q1 ∧ ?q2 6≡s ϕ(?q1, ?q2) for any
context ϕ(p1, p2) which does not contain the atoms q1, q2. Since logical equiva-
lence implies equivalence in every state, we obtain the following proposition.

Proposition 10. For all ϕ(p1, p2) ∈ L[⊥,→, > ,⊗] which do not contain q1, q2:

?q1 ∧ ?q2 6≡ ϕ(?q1, ?q2)

This yields as a corollary the undefinability of ∧.

Theorem 4. ∧ is not definable from {⊥,→, > ,⊗}.

Proof. Take a context ϕ(p1, p2), where ϕ ∈ L[⊥,→, > ,⊗] (possibly containing
other atoms besides p1, p2). Let q1, q2 be two atoms that do not occur in ϕ. By
Proposition 10 we have ?q1∧?q2 6≡ ϕ(?q1, ?q2), which implies that ϕ(p1, p2) does
not define ∧. �

This completes our study of definability in InqB⊗: no connective in InqB⊗ is
definable in terms of the others; although the set of connectives {⊥,∧, > ,→,⊗}
is not a minimal complete set for InqB⊗, it is an independent set.

6 Conclusion

We have studied connectives in inquisitive logic enriched with tensor disjunction.
We have shown that, starting from the set of primitives {⊥,∧,→, > ,⊗}, the
only minimal complete subset is {⊥,→,∨}. Thus, ∧ and ⊗ do not add to the ex-
pressive power of the language. However, the set {⊥,∧,→, > ,⊗} is independent,
i.e., no connective is definable in terms of the others. The undefinability results
for ∧ and ⊗ use nontrivial combinatorial arguments. The result for ⊗ answers a
question raised in [6] and [27]. It is worth pointing out that our proof establishes
something slightly stronger than undefinability. Undefinability amounts to:

For every putative definition ϕ(p, q) of connective ◦, there are formulas
ψϕ, χϕ such that ϕ(ψϕ, χϕ) 6≡ ψϕ ◦ χϕ.

However, our proofs for ⊗ and ∧ establish results of the following form:

There are ψ, χ such that, for every putative definition ϕ(p, q) of ◦,
ϕ(ψ′, χ′) 6≡ ψ′ ◦χ′, where ψ′, χ′ differ from ψ, χ by a renaming of atoms.

In future work, it would be interesting to extend our study of expressiveness and
definability to a setting where the operators ¬ and ? are taken as primitives.
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