
On the Web Platform Cornucopia

Tommi Mikkonen1, Cesare Pautasso2, Kari Systä3 and Antero Taivalsaari4

1University of Helsinki, Helsinki, Finland
2USI, Lugano, Swizerland

3Tampere University, Tampere, Finland
4Nokia Bell Labs, Tampere, Finland

tommi.mikkonen@helsinki.fi, cesare.pautasso@usi.ch,

kari.systa@tuni.fi, antero.taivalsaari@nokia-bell-labs.com

Abstract. The evolution of the Web browser has been organic, with
new features introduced on a pragmatic basis rather than following a
clear rational design. This evolution has resulted in a cornucopia of over-
lapping features and redundant choices for developing Web applications.
These choices include multiple architecture and rendering models, dif-
ferent communication primitives and protocols, and a variety of local
storage mechanisms. In this position paper we examine the underlying
reasons for this historic evolution. We argue that without a sound engi-
neering approach and some fundamental rethinking there will be a grow-
ing risk that the Web may no longer be a viable, open software platform
in the long run.

Keywords: Web Platform, Technology Design Space, Software En-
gineering Principles, Web Engineering, Progressive Web Applications,
HTML5

1 Introduction

The Web was originally designed for global document publishing. The scripting
capabilities that were added later evolved into a myriad of overlapping program-
ming capabilities. Today, after more than two decades of organic evolution, there
are (too) many ways to build software for the Web platform, with developers
continuously chasing after the latest and greatest frameworks and development
paradigms1. This evolution has been driven by competition against other plat-
forms (e.g., native mobile applications or traditional desktop applications) and
by competition within the Web platform (i.e., among Web browser vendors and
framework developers). The result is a cornucopia of choices providing a rich,
complex and ever-growing set of features that need to be mastered by developers
and maintained by browser vendors.

In this position paper we look at the design of the Web platform from a Web
Engineering standpoint to present a deeper understanding of the driving forces
behind its growth and evolution; such continuous organic evolution has made us

1 https://stateofjs.com/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/286390249?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


concerned of the long term sustainability of the Web as a software platform. In
addition, we compare the Web to more traditional software platforms, especially
in light of how they fulfill MacLennan’s classic software engineering principles
[1]. We focus on two key principles, simplicity and consistency : there should
be a minimum number of non-overlapping concepts with simple rules for their
combination; things that are similar should also look similar and different things
should look different. Using the words of Brooks: ”It is better to have a system
reflect one set of design ideas than to have one that contains many good but
independent and uncoordinated ideas” [2].

In continuation to our previous papers (e.g., [3,4,5]), we claim that the evo-
lution of the Web browser has been driven by new features introduced on a
pragmatic basis (often purely for commercial needs) instead of being based on
a justified long-term design rationale2. This has resulted in redundant features,
including multiple architecture and rendering models, communication primitives
and protocols, local storage mechanisms and programming language constructs.
In this paper, we study this cornucopia of overlapping features inside the browser,
their origins, relations, and intended use cases. Sharing the concerns of many3,
we argue that without a sound engineering approach and fundamental rethink-
ing there will be a growing risk that the Web may no longer be seen as the open,
universal, stable and viable software platform it has attempted to become in the
past decades [7].

2 Evolution of the Web as a Software Platform

In the early life of the Web, Web pages were truly pages, i.e., semi-structured
textual documents that contained some primitive forms of multimedia content
(e.g., images) without animation support (except for the controversial blinking
tag that was eliminated later) or any interactivity beyond the basic ability to
navigate back and forth between pages. Navigation was based on simple hyper-
links, and a new Web page was loaded from the Web server each time the user
followed a link. For reading user input some pages were presented as forms with
simple text fields, buttons and selection widgets.

The Web became increasingly interactive when Web pages started containing
animated graphics and audio tracks, some of which were rendered by browser
plug-in components (such as Java Applets, Flash, RealPlayer, Quicktime and
Shockwave), while others were scripted using the JavaScript language [8], in-
troduced in Netscape Navigator version 2.0B almost as an afterthought in De-
cember 1995. From technological standpoint, this phase was driven by efforts
and investment into various competing browser plugins, which would provide a
proprietary browser-independent layer and a common runtime environment for
applications that could deliver an interactive user experience beyond the limits
of the underlying Web browser.

2 See for example the controversial decisions to provide standard support for Digital
Rights Management in clear conflict with the Open Web Principle [6].

3 https://extensiblewebmanifesto.org/



The introduction of dynamic DHTML, Cascading Style Sheets (CSS), and the
JavaScript language, with programmatic access to the Document Object Model
(DOM) and the underlying HTTP client (with the XMLHttpRequest object),
enabled highly interactive Web pages with built-in support for modifying the
content of Web pages without reloading them. This effectively decoupled the
page navigation lifecycle from the communication exchanged with the server,
while still using the original HTTP protocol. This technology mix became known
as Ajax (Asynchronous JavaScript and XML) [9]. In this phase, the Web started
moving in directions that were unforeseen by its original designer, with Web
sites behaving more like multimedia presentations and traditional low-latency
rich client applications rather than simple static pages.

In the early 2000s, the concept of Software as a Service (SaaS) emerged.
At that point, people realized that the ability to offer software applications
seamlessly over the Web and then perform instant worldwide updates would
require a truly universal runtime execution environment, which become familiar
under the HTML5 brand [10]. Observing the benefits of this model, developers
started to build Web sites that behave much like desktop applications [11], for
example, by allowing Web pages to be updated partially, rather than requiring
the entire page to be refreshed. This also increased the demand for a full-fledged
programming language that could be used directly from inside the Web browser
instead of relying on external plug-in components. Since JavaScript was readily
available inside every browser [12], it became a target of significant investment,
especially to improve its performance [13] and add language features to make
the language more amenable to developers.

This brings us to the current Web platform, featuring a continuously evolv-
ing, evergreen Web browser, with support – at the time of writing – for two
hundred and one HTML5-related specifications published by the W3C and the
Web Hypertext Application Technology Working Group (WHATWG). Out of
these 59 have been abandoned or are already superseded4. These specifications
define a myriad of APIs, formats and browser features for building progressive
Web applications [14] that can run in a standards-compatible Web browser.

3 Redundancy Within Web Platform APIs

The evolution of the Web differs from the evolution of many other software
platforms. While many popular open source platforms have grown under the
leadership of a benevolent dictator, the governance of the Web has shifted from a
design-by-committee approach to multiple committees with many players pulling
the evolution in different directions.

Just like classic native software platforms, the modern Web browser offers
a number of APIs that provide abstractions to applications. However, taking
graphics rendering as the first example, the browser includes multiple alter-
natives – DOM/DHTML, 2D Canvas, SVG, and 3D WebGL – each of which

4 http://html5-overview.net/



introduces a very different development paradigm, e.g., regarding whether ren-
dering is performed declaratively or programmatically, or whether the graphics
is expected to be managed by the browser or explicitly by the developers them-
selves [3]. In contrast, many graphical user interface toolkits used in traditional
software platforms contain several layers of rendering capabilities for developing
graphical user interfaces, with carefully designed abstractions and implemen-
tation layers. In such designs, one can identify distinct layers that implement
intermediate abstractions, which at some point in history were intended for the
programmers, but which over time were complemented with simpler and more
powerful higher-level interfaces. Unlike in the Web browser, these lower-level
APIs form a layered architecture wherein each layer offers a coherent set of ab-
stractions that are open for 3rd party developers, and not only to the internal
implementation of the framework itself.

Such layered designs are common in software platforms. For instance, layer-
ing is used in the Unix/Linux file system abstractions, providing uniform access
to several types of storage and communication devices. Instead, Web applica-
tion developers need to choose between overlapping APIs for storing data inside
the browser, such as Cookies, Local/Session Storage, or IndexedDB (without
counting the now deprecated WebSQL). Another example is the area of commu-
nication mechanisms. On many traditional software platforms, there is a stack
of protocols, such as the TCP/IP stack, wherein each layer provides an abstrac-
tion of a particular type of service. In the browser there are different protocols
(HTTP version 1, 1.1, 2.0, 3.0, WebSockets, WebRTC) exposed through several
APIs and programming techniques, such as Programmatic HTTP (originally
known as XMLHttpRequest; now being replaced by Fetch), Server-Sent Events,
or Service Workers – again partially redundant and at the API level mostly
unrelated to each other.

In the area of programming languages, JavaScript is the lingua franca of
the Web. After making the jump to also server side with Node.js, JavaScript
has become one of the most widely used programming languages in the world.
This popularity has put a lot of pressure on JavaScript language evolution,
e.g., to improve its performance, clean up some of its original idiosyncrasies,
and generally make the language more approachable to developers familiar with
other languages (such as Java). Out of many possible examples, we mention (1)
variable declaration constructs (the attempt to replace the original var with
function scoping with let and const with block scoping), and (2) three con-
trasting approaches to inheritance: prototypical, parasitic (or closure-based),
and the recently added class-based (with mixins). (3) For asynchronous event-
based programming, developers can choose from callbacks, futures/promises and
the recently added async/await constructs. Each addition is intended to be an
improvement over the previous one(s), but the language keeps growing after
improvement added on top of previously added constructs.

Things mentioned above are just few examples of the ongoing emergence
of redundant options available to Web developers within what we call the Web



Platform Cornucopia. Next, we place the focus on the sources of this cornucopia,
and study some of the patterns in browser API formation.

4 Patterns for Browser API Formation: A Technical View

Vendor-specific browser APIs and features. Looking back to the history of
browser evolution, almost all the facilities we take for granted were once specific
to one browser vendor. Today’s core features, such as JavaScript, Cascading Style
Sheets (CSS) and various HTML tags – apart from a small core of HTML1 tags
originating from Tim Berners-Lee – were vendor-specific at some point during
the so-called browser wars5. While conventions such as prefixing features with
vendor-specific names helps ensure that developers are more aware of vendor-
specific extensions (with the expectation that they eventually become part of
standards), in some cases vendor-specific extensions spread into other browsers
even before they are standardized. For instance, some -webkit prefixed features
are supported by non-WebKit browsers. In the light of recent developments, the
era of browser-specific features may not be over yet, since each browser vendor
follows a different roadmap in embracing and implementing new standards.

Plugin components. Historically, Web browser plugin components played
an important role in the development of browser features. Probably the best
example are video codecs inside the browser. For a long time, the Flash player6

was the dominant technology in that role, whereas now almost all browsers
include HTML5 video support, and the role of Flash is diminishing rapidly.

Versioned recommendations versus living standards. Today, there
are two sets of guidelines that the browser vendors should follow. W3C7 aims
at providing versioned recommendations, whereas the WHATWG8 community
introduces living, continuously evolving standards. Both forums advance at a
different pace, and their operations are uncoordinated9. While at present the
differences are small, we expect that more and more diverging features will be
proposed in the long run.

New hardware. The introduction of new hardware capabilities can spark
the need for new software platform APIs. Examples pertaining to the Web plat-
form include the Geolocation API and the WebGL API10, which is almost iden-
tical to OpenGL11. The total the number of direct-access low-level APIs in the
context of the Web browser is still low. Key reasons for this are the concerns
regarding the security of the Web browser sandbox, and privacy concerns due to
increased user fingerprinting exposure.

5 Wikipedia https://en.wikipedia.org/wiki/Browser_wars in fact lists three sepa-
rate browser wars (1995-2001, 2004-2018, 2018-present).

6 https://www.adobe.com/fi/products/flashplayer.html
7 https://www.w3.org/
8 https://whatwg.org/
9 https://dzone.com/articles/w3c-vs-whatwg-html5-specs

10 http://www.khronos.org/webgl/
11 https://www.opengl.org/



Web frameworks. Yet another source of new browser features is the evo-
lution of Web frameworks – especially those frameworks that reach dominant
status. Dominant frameworks are used so extensively in application development
that their abstractions start gradually ”leaking into” standards as well. There
are many examples, e.g., in the area of model-view-controller programming pat-
terns, data binding, and reactive programming. A very concrete example are
the jQuery12 library’s $ selectors, which became part of the standard DOM as
document.querySelector.

Language pre-compilers. JavaScript has effectively taken the role of the
”assembly language of the Web” – literally in the case of the WebAssembly
subset [15]). There are a growing number of languages such as CoffeeScript,
TypeScript, Elm, Emscripten, RubyJS, Pyjamas, Processing.js, Scala.js, Clo-
jureScript and PharoJS that can be compiled or translated into JavaScript.
These languages take advantage of the JavaScript engine in the Web browser
or in the cloud backend (Node.js) as a universal execution target platform.

A similar pattern can be observed with CSS – the declarative language for
styling Web content. Preprocessors such as Less, Sass, or SCSS offer additional
stylesheet features (e.g., variables, macros, mixins, nesting of selectors within
formatting rules, and the parent selector) that can be compiled into plain CSS.
Features of these higher-level languages have also started trickling down into the
core platform. Good examples are, e.g., CSS variables and computed expressions,
and JavaScript arrow functions.

5 Web Frameworks to the Rescue?

Ideally, in a software development environment there should be only one, clearly
the best and most obvious way to accomplish each task. However, in Web devel-
opment – even in a generic Web browser without add-on components or libraries
– there are several overlapping ways to accomplish even the most basic tasks. A
popular approach to bring back simplicity and consistency into the development
process is to leverage Web frameworks. Applications built on top of higher-level
frameworks typically use the lower-level browser APIs only indirectly, through
the frameworks. For instance, the XMLHttpRequest API mentioned earlier was
available in many browsers well before it became a key building block for Single-
Page Web Applications and AJAX [9]. Similarly, one can view Mercure13 as
a variation of the well-established Server-Sent Events (SSE) technology, aug-
mented with additional library support. Likewise, the controversial CSSinJS
proposal14 (using the JavaScript syntax to encode CSS rules) would remove
the need to use one of the three core languages of the Web platform (HTML,
CSS and JavaScript).

This role is where Web frameworks excel. They offer a more coordinated and
coherent set of development facilities, development patterns and experiences,

12 https://jquery.com/
13 https://github.com/dunglas/mercure
14 https://cssinjs.org/



but in the end rely on standard browser APIs. Frameworks can be designed to
follow established software engineering principles, bypassing the incoherent and
rather organically evolved features underneath. Furthermore, it is possible to
take specifics of the application genre and habits of the developer community
into account. Furthermore, the frameworks can propose higher-level APIs that
hide the diversity of the underlying APIs. Movements such as Progressive Web
Apps set their goals even further by considering mobile devices, too. New ren-
dering and visualization techniques such as WebVR15 and WebXR Device API16

take the Web towards virtual and augmented reality rendering with new APIs,
building upon the well-established WebGL API discussed above. Obviously, fa-
cilities provided by the most successful libraries and frameworks can eventually
gravitate down to be adopted as standard browser features, following the pattern
presented above.

Unfortunately, instead of forming a set of compatible components that build
upon each others’ strengths, many of the most commonly used frameworks partly
overlap, thus extending the Web cornucopia to the framework area, making it
difficult for developers to pick the right one. Furthermore, probably even more
so than with the core browser, the decision regarding which framework to use
reflects the current trends and fashion instead of careful consideration of appli-
cation needs. The oversupply of Web frameworks, as well as the risk of them
being abandoned as they get replaced by yet another frameworks, unfortunately
diminishes their role as drivers for Web browser API evolution.

6 Conclusion

To conclude, we are surprised how poorly the Web platform meets the consis-
tency and simplicity advocated by software engineering principles. Given the
current popularity of the Web browser as a software platform, we are even more
surprised how little discussion these issues have generated in the Software En-
gineering and Web Engineering communities. This discussion raises many ques-
tions: Is the Web Platform Cornucopia viable for the Web ecosystem? What is
the effort required to maintain a reasonably coherent Web platform in the long
term? Are Web developers becoming more or less productive over the years? Is
Web Engineering dominated by the frameworks or the browser features (or ven-
dors) underneath them? Will there be a coherent, long-lasting set of key frame-
works that are deliberately set to drive browser API evolution? How much time
and effort is spent by the developers in rewriting their code to follow the rapid
evolution of frameworks, or to port Web applications between frameworks? Will
browser vendors give up, leading to a ”monoculture” in which only one browser
engine remains? While such a monoculture would have a better chance to keep
the feature cornucopia under control, would it really be the desirable end state
for the long term sustainability of the Web? All these questions ultimately boil
down to where innovation is happening: within browsers, within frameworks, in

15 https://webvr.info/
16 https://immersive-web.github.io/webxr/



the applications above (further growing the stack), or outside or beside the Web
(making it irrelevant), e.g., in areas such as mobile or pervasive computing. In
the Web of Things area HTTP-like protocols have been adopted, but otherwise
the adoption of the Web as a platform for running embedded software is still
rare. Also, as the Web platform keeps changing, will the users be forced to up-
grade their hardware (upgrading browsers may require to upgrade the OS which
may make the hardware obsolete) just like it is effectively required in the mo-
bile apps area today)? Has the Web lost its way in the area of backwards and
forward compatibility? While the first Web site can still be opened in a browser
30 years later, what is the likelihood that today’s Web applications can still run
unmodified in future browsers in the late 2040s?

References

1. MacLennan, B.J.: Principles of Programming Languages Design, Evaluation, and
Implementation (3rd edition). Oxford University Press (1999)

2. Brooks Jr, F.P.: The Design of Design: Essays from a Computer Scientist. Pearson
Education (2010)

3. Taivalsaari, A., Mikkonen, T., Pautasso, C., Systa, K.: Comparing the Built-In
Application Architecture Models in the Web Browser. In: 2017 IEEE International
Conference on Software Architecture (ICSA), IEEE (2017) 51–54

4. Gallidabino, A., Pautasso, C.: Maturity Model for Liquid Web Architectures. In:
International Conference on Web Engineering, Springer (2017) 206–224

5. Taivalsaari, A., Mikkonen, T., Systä, K., Pautasso, C.: Web User Interface Imple-
mentation Technologies: An Underview. In: Proceedings of the 14th International
Conference on Web Information Systems and Technologies, WEBIST 2018, Seville,
Spain, September 18-20, 2018. (2018) 127–136

6. Daubs, M.S.: HTML5, Digital Rights Management (DRM), and the Rhetoric of
Openness. Journal of Media Critiques [JMC] 3(9) (2017)

7. Mikkonen, T., Taivalsaari, A.: Reports of the Web’s Death are Greatly Exagger-
ated. Computer 44(5) (2011) 30–36

8. Flanagan, D.: JavaScript: The Definitive Guide, 6th edition. O’Reilly Media (2011)
9. Paulson, L.D.: Building Rich Web Applications with Ajax. Computer 38(10)

(2005) 14–17
10. Anthes, G.: HTML5 Leads a Web Revolution. Communications of the ACM 55(7)

(2012) 16–17
11. Fraternali, P., Rossi, G., Sánchez-Figueroa, F.: Rich Internet Applications. IEEE

Internet Computing 14(3) (2010) 9–12
12. Severance, C.: JavaScript: Designing a Language in 10 Days. Computer 45(2)

(2012)
13. Richards, G., Gal, A., Eich, B., Vitek, J.: Automated Construction of JavaScript

Benchmarks. In: Proceedings of the 2011 ACM International Conference on Object
Oriented Programming Systems Languages and Applications. OOPSLA ’11, ACM
(2011) 677–694

14. Ater, T.: Building Progressive Web Apps: Bringing the Power of Native to the
Browser. O’Reilly (2017)

15. Haas, A., Rossberg, A., Schuff, D.L., Titzer, B.L., Holman, M., Gohman, D., Wag-
ner, L., Zakai, A., Bastien, J.: Bringing the Web up to Speed with WebAssembly.
In: ACM SIGPLAN Notices. Volume 52., ACM (2017) 185–200


