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Magnetic monopoles may be produced by the Schwinger effect in the strong magnetic fields of
peripheral heavy-ion collisions. We review the form of the electromagnetic fields in such collisions and
calculate from first principles the cross section for monopole pair production. Using the worldline instanton
method, we work to all orders in the magnetic charge, and hence are not hampered by the breakdown of
perturbation theory. Our result depends on the spacetime inhomogeneity through a single dimensionless
parameter, the Keldysh parameter, which is independent of collision energy for a given monopole mass. For
realistic heavy-ion collisions, the computational cost of the calculation becomes prohibitive and the finite
size of the monopoles needs to be taken into account, and therefore our current results are not applicable to
them—we indicate methods of overcoming these limitations, to be addressed in further work. Nonetheless,
our results show that the spacetime dependence enhances the production cross section and would therefore
lead to stronger monopole mass bounds than in the constant-field case.
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I. INTRODUCTION

Magnetic monopoles, hypothetical particles with a single
magnetic pole, are present in generic classes of theories
beyond the Standard Model, and their existence would
explain the quantization of electric charge [1–3]. Roughly
speaking, there are two different types of magnetic monop-
oles: solitonic and elementary. Solitonic monopoles, such
as ’t Hooft-Polyakov monopoles [4,5], which exist in all
grand unified theories (GUTs), are smooth semiclassical
solutions of the field equations with a nonzero physical
size. Their mass is determined by the parameters of the
theory, and in typical GUTs, it is very high, above
1016 GeV. There have been attempts to construct theories
with lower mass solitonic monopoles [6–12], which would
bring them within the reach of particle experiments. In
contrast, elementary Dirac monopoles [13–16] appear as
fields in the Lagrangian, in the same way as any Standard
Model particle, and therefore the bare particles are point-
like. Their mass is a free parameter, only constrained by
experiments.

At large distances the properties of magnetic monopoles
depend only on their mass,m, and two discrete parameters,
determining their spin, s, and magnetic charge, g. In
principle they may also have an electric charge [17–19].
In contrast, the short-distance details of magnetic monop-
oles vary depending on the theory, in particular depending
on whether the monopoles are elementary particles or
semiclassical solitons.
The possibility of producing magnetic monopoles in

particle colliders has been considered extensively [20,21]
and is currently the focus of a dedicated experiment at the
Large Hadron Collider (LHC), MoEDAL [22]. In the
absence of a positive discovery, these experiments place
upper bounds on the monopole production cross section. To
turn these into constraints on the theory, one would need a
reliable theoretical description of the monopole production
process. It is conventional for experiments to report mass
bounds based on the tree-level Drell-Yan cross section

σDY ¼ q2qg2

12πE2
; ð1Þ

where qq is the quark electric charge andE is center-of-mass
energy, even though it is known to be inapplicable. The
difficulty is that magnetic monopoles are necessarily
strongly coupled due to the Dirac quantization condition
[1], which inversely relates magnetic and electric charges,
g and e, by

eg ¼ 2πn; n ∈ Z: ð2Þ
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Thus the magnetic fine structure constant is g2=4π ¼
π=e2 ≈ 34 ≫ 1, implying that perturbation theory breaks
down.
It is believed [23,24] that in proton-proton collisions,

the production of solitonic monopoles, such as GUT
monopoles and other ’t Hooft-Polyakov monopoles, is
suppressed by

σpp→MM̄ ∝ e−4=α ∼ 10−236; ð3Þ

independently of collision energy. This overwhelming
factor would rule out the production of solitonic magnetic
monopoles in proton-proton collisions, even for very high
collision energies and luminosities. The suppression can be
understood as arising from the large number of degrees of
freedom (d.o.f.) in the final state compared to the initial
few-particle state, or from the exponentially small overlap
between the hard initial state and the spatially extended
final state. Although Eq. (3) is somewhat conjectural for
magnetic monopoles, it has been explicitly demonstrated
for the analogous processes of scalar vacuum decay [25],
semiclassical (B − L) violating processes [26–28] (though
there has been some dispute in this case [29,30]) and scalar
soliton production [31–34].
For elementary Dirac monopoles these arguments do not

apply. However, once dressed, elementary monopoles are
far from pointlike. It has been argued that photon-magnetic
monopole interactions are effectively delocalized on the
scale of the classical radius, or Thompson scattering length,
of the monopole, rcl ¼ g2=ð4πmÞ ≫ 1=m [35–37]. The
original argument of Ref. [35], in an S-matrix language,
relies on the Thompson formula [38,39], the Kramers-
Kronig dispersion relations [40] and the optical theorem, all
of which are valid beyond the weak coupling expansion.
Note that for weakly coupled particles, such as electrons,
the classical radius is smaller than the Compton wavelength
and hence is dynamically irrelevant. Thus it is the strong
coupling of magnetic monopoles which leads to their large
effective size.
Such a dressed elementary monopole state will have an

exponentially small overlap with any hard state with energy
E ∼m. As a consequence, one would expect the cross
section for elementary monopole production from a hard
initial state also to be exponentially suppressed,

σpp→MM̄ ∝ jhMM̄jÔjEij2;

∼
����
Z

dxψMM̄ðxÞOe−iEx
����2;

≲ e−2Ercl ≤ e−4=α; ð4Þ

where Ô is some operator characterizing the interaction.
As long as O is not exponentially large, the exponential
suppression should not depend on it. This argument follows
that of Landau [41–44] (see also Sec. 7 of Ref. [45] for a

recent discussion). In going from the second to the third
line we have assumed the monopole-antimonopole state,
ψMM̄, to be a smooth function, varying on the scale rcl and
have used the Riemann-Lebesgue lemma (see also [32]).
On the third line we have used that E ≥ 2m for monopole
production to be kinematically possible. Of course this is
not a complete argument, but it means that mass bounds
obtained by assuming the tree-level Drell-Yan cross sec-
tion (1) may be off by many orders of magnitude.
In heavy-ion collisions, none of these arguments for

exponential suppression apply. This is because the funda-
mental process of magnetic monopole pair production does
not proceed from a hard initial state with a small number of
d.o.f. Instead, pair production proceeds by the quantum-
mechanical decay of a classically occupied electromagnetic
field, the Schwinger mechanism [46–50]. This nonpertur-
bative process cannot be reduced to a sum over processes
involving small, finite numbers of photons.
The magnetic fields present in heavy-ion collisions are

the strongest in the known universe [51]. Stronger fields
give a greater probability of pair production, so heavy-ion
collisions provide the most promising terrestrial possibility
of producing magnetic monopoles. A reliable computation
of the production cross section for magnetic monopoles in
these collisions is thus of high experimental and theoretical
interest. If this can be achieved, then, at particle colliders
such as the LHC, it will be possible to confirm or rule out
the existence of magnetic monopoles with masses in a
certain, computable range.
A comprehensive review of the electromagnetic fields

in heavy-ion collisions can be found in Ref. [51]. Two
electron-stripped ions (commonly lead, gold or uranium)
travel towards each other at highly relativistic speeds,
generating strong electromagnetic fields. After the colli-
sion, a quark-gluon plasma (QGP) is believed to form
within a time τ0 ∼ 0.2–0.6 fm=c [52] (at LHC energies).
However, for ultrarelativistic collision energies the mag-
netic field is expected to decrease in strength significantly
from its peak magnitude before QGP formation: for TeV
collisions at LHC the decay timescale for the magnetic field
is Oð10−3 fm=cÞ. As a consequence, we do not expect the
QGP to have a significant effect during the time which
monopoles are most likely to be produced, so we do not
include this in our analysis. Furthermore as the timescales
we consider occur well before thermalization (which is
necessarily after the time of QGP formation), we do not
include finite-temperature effects.
Bounds on monopole masses that do not rely on

perturbative techniques are currently scarce and lenient.
The earliest reliable bounds arise from the expectation that
sufficiently light monopoles would be produced thermally
during reheating [53–55]. Using experimental bounds on
monopole flux [56–58] and noting that the universe during
reheating must have been hotter than during big bang
nucleosynthesis, the mass bound m≳ 0.45 GeV can be
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obtained. In Ref. [59] somewhat stronger bounds were
obtained by considering Schwinger production, giving a
lower bound of Oð1 GeVÞ dependent on the monopole
charge.
The most stringent mass bounds have been obtained by

considering Schwinger production in relatively low-energy
(
ffiffiffiffiffiffiffiffi
sNN

p ≈ 17 GeV) heavy-ion collisions at the Super Proton
Synchrotron (SPS) [59,60]. A magnetic field constant in
both space and time was assumed, in addition to a finite
temperature. In such collisions QGP formation occurs over
a timescale comparable to the decay time of the fields, so it
was argued there that thermal affects should be taken into
account. For LHC collisions, however, these assumptions
are not expected to be valid.
In this paper we relax the constant-field assumption and

consider monopole production in the inhomogeneous
electromagnetic fields in ultrarelativistic heavy-ion colli-
sions. We present approximate analytical expressions for
the fields that fit well to direct numerical integrations for
ultrarelativistic collisions. For reasons outlined above, we
neglect thermal effects.
Schwinger production in inhomogeneous fields at weak

coupling has been subject to previous study [61–68]—
results indicate that spatial inhomogeneity tends to sup-
press production whilst time dependence enhances it. We
argue that due to the form of the magnetic fields in heavy-
ion collisions, when considering monopole production, the
effects of time dependence dominate over those of the
spatial dependence, leading to strongly enhanced produc-
tion over the constant field case. Furthermore, our results
suggest that the effect of the time dependence on the
functional form of the production probability is indepen-
dent of collision energy for a given monopole mass.
A careful consideration of the validity of our approx-

imations shows that the parameter regions in which our
results are valid are unfortunately unobtainable in real
heavy-ion collisions. This is due, in part, to the particular
values of charges and radii of stable nuclei that happen to
exist in nature. In an alternative universe where signifi-
cantly higher nuclear charges are possible, our approx-
imations are sound and predict rather large production cross
sections for magnetic monopoles. If we naively extrapolate
our results beyond their region of applicability, to leading
order in an expansion in monopole self-interactions they
suggest that one could produce monopoles in the hundreds
of GeV mass range at the LHC (see Fig. 9). Further, higher-
order corrections only seem to enhance the cross section.
Despite the breakdown of our approximations, we provide
answers to important questions regarding the effect of field
inhomogeneity on monopole production, and reveal the
next steps required to obtain reliable mass bounds in the
LHC era.
The paper is organized as follows. In Sec. II we outline

our general approach to the computation of the monopole
production cross section, briefly reviewing the worldline

instanton formalism as applied to magnetic monopoles. In
Sec. III we calculate the electromagnetic fields in ultra-
relativistic heavy ion-collisions and find a simple fit to their
functional form. Armed with this, we compute the world-
line instanton in Sec. IV, analytically and numerically in
certain regions of parameter space. Appendix A gives
details of our numerical discretization. In Sec. V we discuss
the consequences of our results for magnetic monopole
searches and in Sec. VI we conclude.
Throughout we use units such that c ¼ ℏ ¼ ϵ0 ¼

kB ¼ 1.

II. GENERAL APPROACH

If magnetic monopoles exist, then magnetic fields can
decay into magnetic monopole pairs [49]. This is the
electromagnetic dual of Sauter-Schwinger pair production
[46–48].
Schwinger pair production can be formulated as a

vacuum decay process. In this case the so-called false
vacuum, jΩi, is the vacuum state in the absence of the
external field. It contains no charged particles. The prob-
ability of the decay of this state is given by

P ¼ 1 − jhΩjŜjΩij2 ¼ 1 − e2ImðiWÞ; ð5Þ

where Ŝ is the S-matrix including the external field and W
is defined by eiW ≔ hΩjŜjΩi. For slow vacuum decays,
when the decay rate is much slower than other relevant
timescales, the calculation of P can be formulated in
Euclidean time [69–72]. In this case

P ≈ 2ImðWEÞ; ð6Þ

where WE is defined by e−WE ≔ hΩjŜEjΩi and ŜE is the
Wick rotated “S-matrix,” again including the external field.
In the following we consider Schwinger pair production

to be the only mechanism of pair production. Thus our
results provide a lower bound on the true cross section of
pair production. The problem then factorizes into (i) the
calculation of the electromagnetic field as a function of
the collision parameters and (ii) the calculation of the
probability to produce magnetic monopoles from a given
electromagnetic field.
We will treat the electromagnetic field of the ions as a

classical background or external field. We include the effect
of quantum photon fluctuations to the pair production
process itself, though we do not include contributions from
fluctuations inherent to the ions. With this assumption, the
cross section for magnetic monopole pair production takes
the form,

dσMM̄

db
¼ 2πbPðFext

μν ð
ffiffiffi
s

p
; bÞÞ; ð7Þ

where the factor of 2πb is simply the geometric differen-
tial cross section, and Fext

μν ð
ffiffiffi
s

p
; bÞ is the classical
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electromagnetic field. Note that it does not matter whether
or not the ions actually collide, as strong electromagnetic
fields are also produced by near-misses. We leave deter-
mining Fext

μν ð
ffiffiffi
s

p
; bÞ to Sec. III. For the rest of this section,

we will outline the calculation of the probability of pair
production for a given electromagnetic field.
Magnetic monopoles couple to the gauge field which

generates the electromagnetic dual field, F̃μν ≔ 1
2
ϵμνρσFρσ,

where ϵμνρσ is the Levi-Civita symbol, ϵ0123 ¼ 1,

F̃μν ¼

0
BBB@

0 B1 B2 B3

−B1 0 E3 −E2

−B2 −E3 0 E1

−B3 E2 −E1 0

1
CCCA:

The dual gauge field, Ãν, satisfies F̃μν ¼ ∂μÃν − ∂νÃμ, and
is simply a rearrangement of the usual two d.o.f. of the
photon field—it contains no extra d.o.f.
We first consider elementary, scalar magnetic monop-

oles, ϕ, with charge g and mass m. The introduction of the
external field, Aext

μ , is achieved by shifting the gauge field in
the covariant derivative of ϕ. The Euclidean Lagrangian for
the photon field, Aμ, coupled to spin 0 monopoles is then

Ls¼0 ≔
1

4
FμνFμν þ D̃μϕðD̃μϕÞ�

þm2ϕϕ� þ λ

4
ðϕϕ�Þ2; ð8Þ

where Fμν ¼ ∂μAν − ∂νAμ is the field strength and D̃μ ¼
∂μ þ igÃext

μ þ igÃμ is the dual covariant derivative. The
indices μ and ν run over 1,2,3,4 and we keep all indices
down for tensors in Euclidean signature.
Using the electromagnetic duality symmetry in the form

FμνFμν ¼ F̃μνF̃μν, we may dualize the photon kinetic term,

writing the whole Lagrangian in terms of Ãμ. At this point,
given the gauge field is integrated over, the tilde is merely
notational and one may drop it entirely, resulting in the
Lagrangian for scalar quantum electrodynamics (SQED) at
strong coupling, except with external field Ãext

μ rather than
Aext
μ . The result is that we calculate the Schwinger pair

production of (strongly coupled) electrically charged par-
ticles from a time-dependent external electric field, but we
refer to their charge as the magnetic charge g and to the
external field as the magnetic field B. The duality trans-
formation in this case is simple because we do not treat
the electrically charged particles of the heavy ions as
dynamical—their interactions with the magnetic monop-
oles are assumed to be entirely through Ãext

μ .
We will assume in the following that the scalar self-

coupling, λ, is sufficiently small that we may ignore it, at
least in the range of energies considered. Of course photon
loops will generate this term. However, the term is a
pointlike interaction between scalar loops (given no exter-
nal legs) and, in the dilute instanton approximation that we
will make, such loops are subdominant and are neglected.
Note that for spin 1=2 elementary monopoles no such term
would arise, the Euclidean Lagrangian being,

Ls¼1=2 ≔
1

4
FμνFμν þ ψ̄ð=̃DþmÞψ ; ð9Þ

where the Feynman slash here denotes contraction with
the 4D Euclidean gamma matrices (see Ref. [73] for a
definition). The dualization of this Lagrangian is exactly as
for the spin 0 case, resulting in quantum electrodynamics
(QED) at strong coupling and with external field Ãext

μ .
By purely formal manipulations, the partition functions

for QED and SQED can be reexpressed exactly as path
integrals over interacting worldlines [50,74]. This repre-
sentation is valid to all orders in g. For SQED it reads

WE ¼ − log

�
1þ

X∞
n¼1

1

n!

Yn
a¼1

�Z
∞

0

dsa
sa

Z
Dxaμe−S½x

a;sa;Ã
ext
μ �eg

2
P

b<a

H H
dxaμdxbνGμνðxa;xbÞ

��
: ð10Þ

The functional integrals over the xaμ ≔ xaμðτÞ are over
closed worldlines in 4D Euclidean space. The sj are often
referred to asSchwinger parameters andGμν is the free photon
propagator. The Euclidean worldline action is given by,

S½x; s; Ãext
μ � ¼ m2s

2
þ 1

2s

Z
1

0

dτ _xμ _xμ − ig
Z

1

0

Ãext
μ _xμdu

þ g2

8π2

Z
1

0

dτ
Z

1

0

dτ0
_xμðτÞ_xμðτ0Þ

jxðτÞ − xðτ0Þj2 ; ð11Þ

where in the last term we have inserted an explicit expression
for Gμν in a generic Rξ gauge and noted that the gauge
dependent terms vanish for closed worldlines.
The last term in Eq. (11) is a double integral over the

worldline, weighted with the photon propagator. It accounts
for the interactions between different points on the world-
line. For coincident points there is a UV divergence
[75–78], proportional to the length of the worldline and
hence a power-like divergence. It can be identified with
the usual UV-divergent contribution to the charged
particle self-energy, which is removed by adding a mass
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counterterm. For worldlines without self-intersections or
kinks, this is the only divergence of this term. Various
regularization schemes exist, and, just as in the field
representation, the powerlike divergence is absent in
dimensionless regularization schemes.
For spin 1=2monopoles, Eqs. (10) and (11) are modified

by the addition of spin-dependent terms in the action
[74,78,79]. However, in the presence of weak external
fields these terms are subdominant in powers of the weak
field relative to the spin 0 part. For weak, constant, external
fields, they contribute to the semiclassical prefactor, simply
resulting in an overall factor of the number of d.o.f. of the
final state [50,80]. For spacetime-dependent fields, the
spin-dependent corrections could be more complicated than
this and are worth understanding, but they are nevertheless
subdominant so we do not treat them further here.
For sufficiently weak external fields, the probability of

pair production is exponentially small. In this case, one
finds that the pair production is well described by the
leading nonzero term in a virial (or cluster) expansion of
Eq. (10). Higher order terms are exponentially suppressed
relative to this leading term. In the leading term, the
imaginary part of the integral is dominated by a saddlepoint
of the action, a worldline instanton xinstμ . The action

Sinst ¼ S½xinstμ ; sinst; Ãext
μ � ð12Þ

of this worldline instanton gives the exponential suppres-
sion of the probability,

ImWE ∼ e−Sinst : ð13Þ

Integrating over quadratic fluctuations about the instanton
gives the prefactor of the exponent, to leading order.
The combination of the semiclassical approximation and

the virial expansion are together referred to as the dilute
instanton approximation, which we will make in what
follows. The validity of this approximation relies on the
dominance of a single worldline instanton in the integral
over all worldlines. Thus we require the usual condition for
semiclassicality,

S½xinstμ ; sinst; Ãext
μ � ≫ 1 ð14Þ

where xinstμ and sinst are the saddlepoint values, i.e., the
worldline instanton. Further, we require that all scales of
the worldline instanton are large compared with the scale
on which small, virtual monopole-antimonopole pairs
become important,

Min½RCðxinstμ ðτÞÞ� ≫ rcl
2
; ð15Þ

where RCðxinstμ ðτÞÞ is the radius of curvature (the inverse of
the Gaussian curvature) of the worldline instanton at a point
τ. The size of virtual monopole-antimonopole pairs, r, is

estimated by equating the rest mass of a monopole-
antimonopole pair, 2m, to their Coulomb attraction,
g2=ð4πrÞ, resulting in r ¼ rcl=2. Equation (15) is important
to ensure that the effects of virtual monopole-antimonopole
pairs can be factored out of the instanton calculation,
affecting only the running of couplings [80]. Note that
when this condition is satisfied, the scales of the worldline
instanton are also much larger than the size of a dressed
elementary monopole. We make no approximations with
regard to the coupling, g.
So far in this section we have only discussed elementary

monopoles. Solitonic monopoles are bound states of
elementary fields and do not have their own local field
operator appearing in the Lagrangian. Their size is generi-
cally of the same order as the classical monopole radius
[37]. Hence, when Eq. (15) is met, solitonic monopoles are
much smaller than the minimum radius of curvature of the
worldline instanton. In this case solitonic monopoles can be
described by an effective field theory identical to that of
elementary monopoles [49,81–83], meaning that our cal-
culations are also applicable to them. This is because only
the photon and graviton are massless and hence at long
distances all monopoles with the same mass, spin and
charge look the same.

III. ELECTROMAGNETIC FIELDS

With current and future magnetic monopole searches in
mind, we will consider electromagnetic fields in heavy-ion
collisions at ultrarelativistic energies. ALICE, ATLAS,
CMS, LHCb, and MoEDAL may all be able to detect
magnetic monopoles produced in heavy-ion collisions at
the LHC, as their experimental signatures are extremely
distinctive: they are highly ionizing and follow parabolic
tracks in uniform magnetic fields. In particular, the trapping
detectors of MoEDAL are ideally suited for monopole
detection because they have no background noise [22]. For
the most recent (2018) lead-ion collisions at the LHC, the
center of mass energy per nucleon,

ffiffiffiffiffiffiffiffi
sNN

p
, was equal to

5.02 TeV, amounting to a very large Lorentz factor,

γLHC ≈
ffiffiffiffiffiffiffiffi
sNN

p
2mp

≈ 2675: ð16Þ

In the following, we will therefore assume that γ ≫ 1.
The electromagnetic fields in ultrarelativistic heavy-ion

collisions have been studied by many authors and are
reviewed in Ref. [51]. The electric fields of the ions are
length contracted, being localized into an angular region of
size Oð1=γÞ about the perpendicular to the direction of
motion [84]. A magnetic field is induced perpendicular to
both the electric field and the direction of motion. In the
ultrarelativistic limit, the magnetic field is of the same
magnitude as the electric field. The strength of the
electromagnetic fields are enhanced by the use of ions
with large atomic numbers, Z ≫ 1.
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To describe the collision, we use lab coordinates with
spacetime origin at the point of closest approach of the two
ions. The beam axis points along the x3 direction and the
impact parameter points along the x1 axis. Peripheral
collisions (or even near-misses) lead to the largest magnetic
fields. In this case there are only Oð1Þ participant nucleons
in the collision and the spectator nucleons dominate the
field up to OðZ−1Þ corrections, which we drop [85]. We do
not include the conductivity of the ions as this does not
significantly affect the fields at very early times when the
magnetic field is greatest [86]. We also neglect quantum
corrections to the heavy-ion generated fields, as these are
expected to be small [87].
In the calculation of the electromagnetic field due to the

ions, we adopt a mean-field approximation, treating the
nuclei as a classical Woods-Saxon charge distribution,

ρWSðr; R; aÞ ¼
A

1þ eðr−RÞ=a
; ð17Þ

where r is the position from the center of the nucleus, the
parameters R and a are taken from experiment and A is
merely a normalization. For numerical evaluations, we
adopt the values R ¼ 6.62� 0.06 fm and a ¼ 0.546�
0.010 fm for lead-ions, based on data from low-energy
electron-nucleus scattering experiments [88,89].
The spectator nuclei move on inertial trajectories and

hence, to calculate their electromagnetic fields, one need
only boost the Coulomb field (or use the Liénard-Wiechert
potentials) and integrate over Eq. (17). At the spacetime
origin of the coordinate system the electric field cancels,
by symmetry, while the magnetic fields of the two nuclei
double up. At this point the magnetic field points in the x2

direction. Its magnitude here is the global maximum of all
of the components of the electromagnetic field and is
proportional to γ. It is the field in the neighborhood of this
point that is most likely to produce magnetic monopoles, if
such particles exist. As such, it is important to know how
the magnetic field dies off away from this point, and how
the other components of the electromagnetic field increase.
By scaling the integrals determining the electromagnetic

field, one can show the following parametric relations

∂Fμν

∂x1 ∼
∂Fμν

∂x2 ∼
Fμν

R
;

∂Fμν

∂x3 ∼
∂Fμν

∂x0 ∼
Fμν

R=γ
; ð18Þ

where Fμν is any component of the electromagnetic field
and we have taken R ∼ b ∼ a, in that all are proportional to
zero powers of γ. Thus for very large γ the electromagnetic
fields are localized to a region of size OðR=γÞ in the x3 and
x0 directions and of size OðRÞ in the x1 and x2 directions.
As we will see, the pair production process is localized
to within a region of size OðR=γÞ, hence we can drop
dependence on the x1 and x2 directions and focus on the
x3 and x0 dependence.
In this case only two components of the electromagnetic

field are nonzero, B2 and E1. The electromagnetic dual of
this field configuration is given by Ẽ2 ¼ B2 and B̃1 ¼ −E1.
The results of performing the integrals of the Liénard-
Wiechert potentials over the Woods-Saxon distributions are
shown in Fig. 1. The corresponding scalar invariants are
given in Fig. 2. Inspired by the field configurations for
pointlike charges, we find that the results can be well
approximated by

FIG. 1. Magnetic field component, B2 and electric field component, E1, near origin of coordinate system for a collision of two lead
ions with center of mass energy per nucleon equal to 5.02 TeV and impact parameter 2R. Note that x1 ¼ x2 ¼ 0 here.
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B2 ¼
B
2

 
1

ð1þ ω2ðx0 − x3=vÞ2Þ3=2 þ
1

ð1þ ω2ðx0 þ x3=vÞ2Þ3=2
!
;

E1 ¼
B
2

 
1

ð1þ ω2ðx0 − x3=vÞ2Þ3=2 −
1

ð1þ ω2ðx0 þ x3=vÞ2Þ3=2
!
; ð19Þ

where B is the value of the magnetic field at the spacetime
origin, v ≈ 1 is the ion speed and ω is a fit parameter. Both
depend on the particular heavy-ion collision considered
through b and γ (or

ffiffiffi
s

p
). In Fig. 3 we show the magnetic

field along with our fit at x3 ¼ 0. Relative deviations from
our fit are only a few percent, so we do not complicate our
fit function to account for them.
The largest cross section for pair production will occur

for the largest values of the magnetic field. For b≲ 2R, B
increases linearly with b, reaching a maximum at bmax ≈
1.94R before decreasing again. The value of bmax can
be shown to be independent of γ. About this maximum,
we find

Bðb; γÞ ¼ Bðbmax; γÞ

×

�
1 −

1

2

cB2
R2

ðb − bmaxÞ2 þOðb − bmaxÞ3
�
;

ð20Þ

where the numerical coefficient cB2 ≈ 1.37 is found by a
quadratic fit to the numerical data and, like bmax, is
independent of γ.

For fixed b, the magnetic field is a linearly increasing
function of γ. For b ¼ bmax, we find

Bðbmax; γÞ ≈ cB
Zevγ
2πR2

; ð21Þ

where we have written the result in terms of that for
pointlike ions, and the numerical coefficient cB ≈ 0.78 is
independent of γ. This expression, evaluated at SPS and
LHC energies agrees well with the results shown in Fig. 2
of Ref. [87].
The second parameter of the fit, ω, is of order γ=R, as is

clear from Eqs. (18). We find

ωðbmax; γÞ ≈ cω
vγ
R
; ð22Þ

where the numerical coefficient cω ≈ 0.92 is independent
of γ. For b ≲ bmax we find that ω is approximately
independent of b, whereas for b≳ bmax it decreases
approximately linearly,

ωðb;γÞ≈ωðbmax;γÞ
�
1−

cω1
R

θðb−bmaxÞðb−bmaxÞ
�
; ð23Þ

where cω1 ≈ 0.25 and is independent of γ for γ ≳ 5. Of
course the transition is not as sharp as the step function
suggests, but is smoothed over a region of size a [see
Eq. (17)]. That ω is smaller for b≳ bmax than for b ≲ bmax

FIG. 2. Plot of the nonzero scalar invariant of the electromag-
netic field, 1

2
FμνFμν ¼ B2 − E2. In this plane, the other scalar

invariant, 1
4
FμνF̃μν ¼ E ·B, is zero and away from this plane it is

suppressed relative to 1
2
FμνFμν by γ.

FIG. 3. Plot of the magnetic field, B2, at the spatial origin of the
coordinates for a collision of two lead ions with center of mass
energy per nucleon equal to 5.02 TeV and impact parameter 2R.
Note that x1 ¼ x2 ¼ x3 ¼ 0 here. Our fit, Eq. (19), is shown as a
continuous red line alongside the results of performing the
numerical integrals, as black crosses.
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will lead to a reduction of the production cross section for
near misses with respect to peripheral collisions.
In our calculations of the fields, we have not included

event-by-event fluctuations in nucleon positions, which
cause deviations from our mean-field results [87]. How-
ever, inclusion of these effects does not change the scaling
relations outlined above: the field variation in the transverse
direction varies over a larger distance (by a factor of ∼γ)
than the longitudinal fluctuations, and the approximate
analytic expression for the time dependence still holds.
Furthermore, at the spacetime origin, the longitudinal
component of the magnetic field, and the components of
the electric field, remain at least an of magnitude smaller
than the transverse magnetic field.

IV. THE WORLDLINE INSTANTON

In this section we determine the worldline instanton for
the field in a high-energy heavy-ion collision, and calculate
the corresponding exponential dependence of the pair
production probability. This is given by

P ≈De−S; ð24Þ
where S is the classical action (11) evaluated at its
saddlepoint, and D is the semiclassical prefactor, given
by a functional determinant.
The fields of interest are those given in (19). To find

instantons we perform a Wick rotation x0 → ix4, yielding
the Euclidean fields

BE
2 ¼ −

iB
2

 
1

ð1þ ω2ðix4 − x3=vÞ2Þ3=2
þ 1

ð1þ ω2ðix4 þ x3=vÞ2Þ3=2
!
;

EE
1 ¼ B

2

 
1

ð1þ ω2ðix4 − x3=vÞ2Þ3=2
−

1

ð1þ ω2ðix4 þ x3=vÞ2Þ3=2
!
: ð25Þ

The extra factor of −i in the magnetic field is a
conventional choice accounting for the derivative with
respect to imaginary time in the definition of the (dual)
field tensor [50]. For these specific fields, it makes both EE

and BE purely imaginary. Therefore the Euclidean world-
line instanton equations are purely real,

ẍμ ¼ −igsF̃E
μν _xν; ð26Þ

where

F̃E
μν ¼

0
BBB@

0 0 0 0

0 0 −EE
1 BE

2

0 EE
1 0 0

0 −BE
2 0 0

1
CCCA ð27Þ

and the indices μ and ν run over 1,2,3,4, with the 4
component last.
Instanton solutions take the form of closed solutions to

the Euclidean equations of motion. From the symmetry of
the field it is clear that such a solution exists in the plane
x1 ¼ x3 ¼ 0, where the fields reduce to

BE
2 ðx1;3 ¼ 0Þ ¼ −iB

ð1 − ðωx4Þ2Þ3=2
;

EE
1 ðx1;3 ¼ 0Þ ¼ 0: ð28Þ

The instanton equations then reduce to those in a purely
time-dependent magnetic field. This feature of instantons in
fields where the spatial variation is perpendicular to the

direction of the field has been noted previously in Ref. [90].
As the exponential dependence of the pair production
probability is determined completely by the action of the
worldline instanton, the effects of the inhomogeneity in
the transverse spatial directions will only contribute to the
production probability at the level of the prefactor. This
considerably simplifies the problem of computing the pair
production probability: Schwinger production in fields that
vary along a single spacetime dimension have been widely
studied [61–68].
Henceforth for notational convenience all fields will be

implicitly Euclidean unless otherwise indicated.
Following Ref. [50] we treat the worldline self-

interaction term separately, writing the action (11) as

S½xμ; s� ¼ S0½xμ; s� þ ΔS½xμ� ð29Þ

where

S0½xμ; s� ≔
m2s
2

þ 1

2s

Z
1

0

dτ _xμ _xμ

− ig
Z

1

0

dτÃext
μ _xμ; ð30Þ

ΔS½xμ� ≔
g2

8π2

Z
1

0

dτ
Z

1

0

dτ0
_xμðτÞ_xμðτ0Þ

jxðτÞ − xðτ0Þj2 : ð31Þ

In Secs. IVA and IV B we assume that jΔSj ≪ jS0j when
evaluated at the saddle point. Note that this is not a
perturbative expansion in g; the precise conditions for this
relation to hold will be examined at the end of Sec. IV B.
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In Sec. IV C we perform a full calculation treating ΔS to all
orders, numerically.

A. Worldline instanton without self-interactions

It is convenient to choose a gauge such that the dual
electromagnetic potential is

Ãext
μ ¼ iBx4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ðωx4Þ2
p δμ2: ð32Þ

Note that Eq. (31) is gauge invariant, due to the worldline
being closed, so we are free to choose a gauge. Ignoring the
self-interaction term the worldline instanton stationarizes

S0½xμ; s� ¼
m2s
2

þ 1

2s

Z
1

0

dτ _xμ _xμ

þ gB
Z

1

0

dτ
_x2x4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ðωx4Þ2
p : ð33Þ

Worldline actions of this form have been extensively studied
by Dunne et al. [66,67]. In order to follow the general
prescription outlined in Ref. [67] (motivated by the work
of Keldysh on ionization in inhomogeneous fields [91]) we
define the dimensionless Keldysh parameter

ξ ≔
mω

gB
: ð34Þ

We choose to use ξ instead of the more conventional γ in
order to avoid confusion with the Lorentz factor. The
physical interpretation of ξ when considering monopole
production in heavy-ion collisions is discussed in Sec. V.
It was shown in Refs. [66,67] (in the context of electron-

positron pair production) that, at the saddle point, the non-
self-interacting action (33) evaluates to

S0½xð0Þμ � ¼ 2m2

gB

Z
1

−1
dy

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2

p
ð1þ ξ2y2Þ32

¼ 4m2

gBξ2
½Eð−ξ2Þ −Kð−ξ2Þ�; ð35Þ

where E and K are elliptic integrals, and xð0Þμ denotes
the worldline instanton for the nonself-interacting action
(detailed below). This result is shown as the red curve
in Fig. 4.
As ξ → 0,

S0½xð0Þμ � → πm2

gB
; ð36Þ

the constant-field result is obtained. For a rapidly varying
field (ξ ≫ 1),

S0½xð0Þμ � → 4m2

gBξ
¼ 4m

ω
: ð37Þ

The functional form of the pair production probability—
notably the mass dependence—changes in the limit of
strongly time-dependent fields. This has important impli-
cations for the production of high-mass monopoles in
heavy-ion collisions, discussed in Sec. V.
In Refs. [66,67] the fluctuation prefactorD [see Eq. (24)]

for fields of the form (28) is also calculated, and is given
approximately by

D≈ ð2sþ1ÞV3

ffiffiffiffiffiffi
2π

p ðgBÞ3=2
32π2

×
ð1þξ2Þ3=4

Eð−ξ2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ ξ2ÞKð−ξ2Þ− ð1−ξ2ÞEð−ξ2Þ

p ; ð38Þ

where s is the monopole spin and V3 is the spatial volume
factor. However, for our case the x3 dependence of the field
will modify the prefactor to leading order in γ. This is
because the prefactor involves the determinant of fluctua-
tions about the instanton, and fluctuations in the x3
direction will feel this dependence. A full calculation of
the prefactor for our fields should be possible and is
planned for further work.
However, for the purpose of obtaining order-of-

magnitude estimates, we note that the ξ-dependent part
of the prefactor is equal to 1=ξ to within an Oð1Þ factor
for all ξ: the prefactor is of the same order as that in the
locally constant field approximation (LCFA) regardless of
the magnitude of the Keldysh parameter. Noting this, we

FIG. 4. Plot of the worldline instanton action as a function of
the Keldysh parameter in various levels of approximation. The
red line is the result without self-interactions, Eq. (35), the green
line includes the leading correction from self-interactions,
Eq. (54), and the blue line gives the numerical, all-orders results
of Sec. IV C, for g3B=m2 ¼ 1. The all-orders result (blue) lies
almost exactly on top of the next-to-leading approximation
(green), dipping slightly lower for larger ξ. Unfortunately we
were unable to push the numerical calculation to larger ξ (see
Sec. IV C).
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propose using the LCFA to approximate the prefactor also
in the spatial directions (see Appendix B for details). In this
approximation the curvature of the field at its maximum
determines the prefactor. Denoting the much slower decay
rate of the field in the x1 and x2 directions as Ω ≪ ω, we
therefore expect

D ∼
ð2sþ 1ÞðgBÞ4
18π3m4ω2Ω2

; ð39Þ

to provide a reasonable estimate of the prefactor, up to an
Oð1Þ multiplicative factor.
The shape of the worldline can be determined using a

method closely related to that used in Ref. [66]. Contracting
the Euclidean equations of motion (26) with _xμ shows
that _xμ _xμ is a constant of motion, and varying the action
with respect to the Schwinger parameter s shows that its
saddlepoint value satisfies

s2 ¼ _xμ _xμ: ð40Þ

Using the symmetry properties of the field, Eq. (26)
simplifies significantly; the nontrivial relations remaining
are

ẍ2 ¼
gB
m

s_x4
½1 − ðξx4Þ2�3=2

; ð41Þ

ẍ4 ¼ −
gB
m

s_x2
½1 − ðξx4Þ2�3=2

; ð42Þ

s2 ¼ ð_x2Þ2 þ ð_x4Þ2: ð43Þ

Integrating Eq. (41) gives

_x2 ¼
gB
m

sx4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðωx4Þ2

p ; ð44Þ

and combining this with Eq. (43) gives

ð_x4Þ2 ¼ s2
 
1 −

x4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðωx4Þ2

p
!
: ð45Þ

This can be integrated directly to give an explicit proper-
time parametrization of x4ðτÞ and x2ðτÞ in terms of Jacobi
elliptic functions. However, the shape of the worldline in
the x2-x4 plane can be seen more clearly from the implicit
expression

�
dx4
dx2

�
2

¼ s2 − ð_x2Þ2
ð_x2Þ2

¼ s2

ð_x2Þ2
− 1: ð46Þ

Substituting Eq. (44) gives

�
dx4
dx2

�
2

¼
�
m
gB

�
2 1

ðx4Þ2
− ðξ2 þ 1Þ: ð47Þ

This can be readily checked to describe an ellipse:
comparison with standard expressions gives the semimajor
axis aligned along x4:

a4 ¼
m
gB

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ2

p ; ð48Þ

and the semi-minor axis aligned along x2:

a2 ¼
m
gB

1

1þ ξ2
: ð49Þ

In corroboration with results from previous analyses
[66,67], the time dependence of the magnetic field con-
tracts the worldline instanton and increases its departure
from the circular constant-field result. The time dependence
of the field can be parametrized by the Keldysh parameter
ξ, and the constant-field result is obtained smoothly in the
limit ξ → 0. Plots of the non-self-interacting worldline
instanton for different values of the Keldysh parameter are
shown in Fig. 5.

B. Self-interactions to leading order

Section IVAwas largely a reproduction of known results
for Schwinger production in time-dependent fields. In this
and the following section we extend the calculation to
account for worldline self-interactions. In this section we
start by considering just the leading order corrections from
worldline self-interactions, which give a contribution to
the action

FIG. 5. Ellipticalworldlines stationarizing the nonself-interacting
action (33) for different values of the Keldysh parameter, ξ.
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ΔS½xμ� ¼
g2

8π2

Z
1

0

dτ
Z

1

0

dτ0
_xμðτÞ_xμðτ0Þ

jxðτÞ − xðτ0Þj2 : ð50Þ

This self-interaction term was originally studied in a similar
context in Ref. [50], where they considered a constant
external field. As the nonself-interacting worldline instan-
ton (47) stationarizes Eq. (33), the leading order correction
can be computed by evaluating ΔS over the elliptical
worldline described by Eq. (47).

The self-interaction term is independent of the choice
of worldline parametrization, so we may choose to para-

metrize the nonself-interacting worldline instanton xð0Þμ in
terms of the cylindrical polar angle θ ¼ tan−1ðx4=x2Þ:

xð0Þμ ðθÞ ¼ m
gBð1þ ξ2Þ ð0; cos θ; 0;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ2

p
sin θÞ: ð51Þ

With this parametrization the leading order correction
may be expressed by

ΔS½xð0Þμ � ¼ g2

8π2

Z
2π

0

dθ
Z

2π

0

dθ0
cos θ cos θ0 þ ð1þ ξ2Þ sin θ sin θ0

ð1þ ξ2Þ½cos θ − cos θ0�2 þ ½sin θ − sin θ0�2 : ð52Þ

This integral may be expressed as a double contour integral in the complex plane by performing the substitutions z ¼ eiθ,
z0 ¼ eiθ

0
:

ΔS½xð0Þμ � ¼ g2

8π2

I
jzj¼1

dz
I
jz0j¼1

dz0
ðz2 þ 1Þðz02 þ 1Þ − ð1þ ξ2Þðz2 − 1Þðz02 − 1Þ

ðz − z0Þ2½1 − zz0 þ ð1þ ξ2Þð1þ zz0Þ�½1þ zz0 − ð1þ ξ2Þð1 − zz0Þ� : ð53Þ

The integral can now be performed using the residue
theorem. As the integrand is explicitly symmetric under
z ↔ z0 the order of integration is unimportant. The pole at
z ¼ z0 corresponds to the expected divergence from coinci-
dent points [75–77], which may be removed by adding a
mass counterterm as previously discussed in Sec. II. After
subtracting this divergence, and noting that ξ > 0 for all
physical cases, we find

ΔS½xð0Þμ � ¼ −
g2

8

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ2

p
þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ξ2
p �

: ð54Þ

This tends to the known result for the circular worldline
[50], in the constant-field limit ξ → 0,

lim
ξ→0

ΔS½xð0Þμ � ¼ −
g2

4
: ð55Þ

We have also verified its agreement with a numerical
evaluation of the integral with an explicit short-distance
regularization and counterterm following Ref. [76]. It
qualitatively matches a numerical evaluation of the correc-
tion for fields with a similar time dependence presented in
[92], universally enhancing production probability, with a
stationary point at ξ ¼ 0 and linear ξ dependence in the
large-ξ limit. As in the constant-field case, the leading order
self-interaction term is scale-invariant; it is only a function
of worldline shape.
The exponential dependence of the monopole pair

production probability in a high-energy heavy-ion collision
is thus, to first order in the worldline self-interaction,

lnP ∼ −
πm2

gB
4½Eð−ξ2Þ −Kð−ξ2Þ�

πξ2

þ g2

8

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ2

p
þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ξ2
p �

: ð56Þ

This is shown as the green curve in Fig. 4.
Examining the limits of this expression highlights the

conditions under which the assumption jΔSj ≪ jS0j is
valid: as ξ → 0 we retain the constant-field case, where
the condition is

g3B
4πm2

≪ 1: ð57Þ

However, for strictly constant fields, all higher order
corrections vanish due to symmetry [50], and hence this
condition is in fact not necessary. For ξ ≫ 1, the condition
becomes

g3Bξ2

32m2
¼ gω2

32B
≪ 1: ð58Þ

Note that both of these conditions may be achieved for
any value of the monopole charge, g; the application of
perturbation theory in the self-interactions does not require
weak coupling. On the other hand, condition (58) always
fails at high enough ξ, indicating that the leading-order self-
interaction correction is then no longer sufficient.
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C. Self-interactions to all orders

Going beyond treating the self-interactions perturba-
tively, in this section we present our calculation of the
worldline instantons taking self-interactions into account
to all orders. In this case the equations of motion are
integro-differential, due to the nonlocal nature of the self-
interactions. Due to the lack of symmetries, these equations
are rather hard to solve and hence we resort to a numerical
approach, following Ref. [83] (see also Ref. [93]). We
discretize the worldline, approximating it by a finite but
large number of points, N ≫ 1. The equations of motion
are then simply N nonlinear algebraic equations which we
solve iteratively, using the Newton-Raphson method.
The self-interaction is singular at short distances, and

hence needs regularization. We follow the approach of
Ref. [76] and introduce an explicit cutoff scale, a. However,
for numerical stability we modify the counterterm follow-
ing Ref. [83] (see Appendix A for details). By solving the
equations of motion for a range of cutoff scales, we can
then extrapolate to the a → 0 limit, which we do following
Ref. [83]. The explicit discretization of the action that we
use is given in Appendix A.
The number N must be chosen such that the distance

between neighboring points, jdxij ≔ jxiþ1 − xij, is much
smaller than the smallest scale in the problem, the cutoff, a.
Note that for a continuous worldline, the global reparamet-
rization symmetry τ → τ þ c means that _xμ _xμ is constant.
Thus, to leading order in 1=N, jdxij is independent of i and
hence equal to L½x�=N, where L½x� is the length of the loop.
Further, the cutoff a must be chosen to be much smaller
than any other scale in the problem. In summary we require

L½x�
N

≪ a ≪ Min½κ; RCðx; iÞ�; ð59Þ

where RCðx; iÞ is the radius of curvature of the worldline at
the point i. We mostly used N ¼ 212 points to describe the
worldlines, though we also compared this to other values of
N in checking the N → ∞ behavior.
The blue curve in Fig. 4 shows the resulting instanton

action for g3B=m2 ¼ 1. One can see that the agreement
with the leading-order corrected result (56) is good, and the
full action appears to be slightly lower. We were not able
to reach higher ξ, where the higher-order corrections are
expected to become more important, as for large ξ the
worldlines become highly curved and it was not possible to
maintain the necessary hierarchy of scales, Eq. (59).
Figure 6 shows the full action in the parameter region

ðg3B=m2; ξÞ ∈ ð½0; 1�; ½0; 2.5�Þ. For the reasons discussed
above, we were not able to obtain results for the top right
corner of the plot. We leave the numerical investigation of
larger g3B=m2 and ξ for future work.
Our numerical results show remarkably good agree-

ment with Eq. (56). Thus, at least in the regime we
have considered, higher order terms in g3B=m2 are small.

This might have been expected, given that all higher order
terms in g3B=m2 vanish at ξ ¼ 0 [50]. However, extrapo-
lating the Oðg3B=m2Þ corrections to large ξ, one sees that
they eventually dominate over the leading order term,
making the action negative. Thus it is clear that higher
order corrections must become important for large ξ.
In Fig. 7 we also show the effect of interactions on the

shape of the worldline instanton. In the region of parameter
space we have been able to explore numerically, inter-
actions lead to a modest increase in the curvature of the
worldline instanton. As we will discuss in Sec. V B 2, this
suggests that self-interactions do not prevent the break-
down of the small monopole approximation at large ξ.
In this work we have used only a modest amount of

computer resources, around 10 000 CPU hours. In order to
extend our numerical results to larger values of ξ and
g3B=m2, more computational resources are needed to
resolve the higher curvatures of the worldlines. For the
algorithm that we have adopted, the computational resour-
ces scale with the number of points as N2. To maintain a
given precision with evenly distributed points, the number
of points should scale inversely with the shortest length
scale, or linearly with the maximum curvature of the

FIG. 6. The worldline instanton action, S, scaled by gB=m2.
The contour plot shows the action is largest at the origin, for
constant, weak fields, and decreases away from that, faster in the
direction of ξ than g3B=m2. Here the numerical, all-order results
are shown in blue alongside, in dashed red, the analytic
approximation containing only the leading-order correction
due to self-interactions, Eq. (56). Their close agreements shows
that higher order corrections are small in this region of parameter
space. In the top right, where the numerical results are absent, we
were unable to obtain numerical solutions to the instanton
equations due to the breakdown of Eq. (59).
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worldline. For κ ¼ 0 and large ξ the maximum curvature of
the worldline scales as ξ3 [see Eqs. (48) and (49)], and for
nonzero κ our numerical results suggest the scaling is even
stronger (see Fig. 7). Assuming the best case scenario, that
the curvature scales as ξ3, the computational resources
required therefore scale as ξ6, which makes going to larger
ξ very expensive. Given also the nonlocal nature of the
equations, the problem does not lend itself well to paral-
lelization, hence we leave the numerical investigation of
larger ξ for future work.

V. CONSEQUENCES FORMONOPOLE SEARCHES

A. Temporal “inhomogeneity” as a property
of the monopole

The key result from Sec. IV is Eq. (56), the exponential
dependence of the monopole pair production probability.
The time dependence of the field of the heavy-ion collision
enters the rate, and the corresponding worldline instanton,
through a single dimensionless parameter ξ, defined in
Eq. (34) in terms of the peak value B of the magnetic field
and the decay constant ω of the field’s time dependence. As
discussed in Sec. III, for peripheral collisions (the type most
likely to produce monopoles), Eqs. (21) and (22) give

B ≈ cB
Zevγ
2πR2

; ð60Þ

ω ≈ cω
vγ
R
; ð61Þ

where Ze is the heavy-ion charge, R is the heavy-ion radius
(in its rest frame), v is the ion speed, γ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
is the

Lorentz factor of the collision, and cB and cω are Oð1Þ
dimensionless constants. It follows then that the temporal
“inhomogeneity” of the magnetic field in a peripheral
heavy-ion collision is given by

ξ ≈
cω
cB

2πmR
Zeg

: ð62Þ

The most striking consequence of this observation is that
the temporal inhomogeneity of the field is independent
of the energy of the collision. This may be understood by
considering that, while the temporal extent of the field
decreases proportionally to γ, the increase in peak field
strength causes a contraction of the worldline instanton
that precisely cancels this effect. If the field “looks
constant”—i.e., does not vary significantly over the world-
line instanton—at any given relativistic energy, this holds
for all relativistic energies.
The Keldysh parameter (62) for heavy-ion collisions can

be expressed in an alternate form by utilizing the Dirac
quantization condition (2). This gives

ξ ≈
cω
cB

mR
Zn

; ð63Þ

where n is the Dirac charge of the monopole. The values
of R and Z are specific to the colliding species, so for a
given heavy-ion collision, ξ is proportional to the ratio
of the monopole mass to the Dirac charge. Using the
commonly accepted values for lead-lead collisions at the
LHC of R ¼ 6.62 fm, Z ¼ 82 [89], and the numerical fits
cω ¼ 0.92 and cB ¼ 0.78 obtained in Sec. III,

ξ ∼
m

2.4n GeV
: ð64Þ

This suggests that, when considering production of monop-
oles with mass greater than ∼2.4n GeV, the time depend-
ence of the magnetic field cannot be neglected at any
relativistic energy. The current best theoretical mass bounds
[59] are close to this scale, and many theoretical monopoles
(e.g., [4,5]) predict masses far greater. As a result, we
conclude that the effects of time dependence are crucial to
our understanding of potential magnetic monopole pro-
duction in heavy-ion collisions.
For heavy monopoles (such that ξ ≫ 1), the pair pro-

duction probability has exponential dependence (to leading
order in ðmRÞ−1)

lnP ∼ −
4mR
vγ

þ π2nmR
2Ze2

; ð65Þ

FIG. 7. The worldline instanton to all orders in the self-
interactions at ðg3B=m2; ξÞ ¼ ð1; 1Þ, shown in blue. This is
compared to the analytic result without self-interactions, i.e.,
at ðg3B=m2; ξÞ ¼ ð0; 1Þ, in dashed red. Self-interactions give a
modest increase to the maximum curvature of the worldline
instanton.
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where we have dropped the dependence on the Oð1Þ
constants, cB and cω, for simplicity. Combining this with
Eq. (39) for an approximation to the prefactor gives, for
production of high-mass monopoles in peripheral heavy-
ion collisions,

dσ
db

����
2R

∼
2ð2sþ 1Þv3γ2n4Z4

9π2m4R3
e−

4mR
vγ þπ2nmR

2Ze2 ð66Þ

up to an Oð1Þ multiplicative factor. The total cross section
can be obtained by including the impact parameter depend-
ence of the fields (see Sec. III) and then integrating over all
values of the impact parameter.

B. Limitations of current approximations

The properties of heavy ions and the form of the
magnetic fields in peripheral collisions are fixed, and,
along with the Dirac quantization condition, strongly
constrain the parameter space in which our results could
be applied. The only free parameters are the monopole
mass, m, its Dirac charge n, and the collision Lorentz
factor γ, which for the LHC heavy ions is given in Eq. (16).
In this section we examine the assumptions made in Sec. IV
and show that there is unfortunately no region in this
parameter space where all our approximations are valid.

1. The semiclassical approximation

The results of Sec. IV are valid providing that the
conditions in Eqs. (14) and (15) are met. The first of these
is the semiclassical approximation, requiring the stationary
value of the action to be large.
For high-mass monopoles, m ≫ 2.4n GeV, the next-to-

leading order action (65) is proportional to mR ≫ 1, so the
semiclassical approximation is satisfied as long as the
action is positive (ignoring the fine-tuned edge case). As a
result the semiclassicality condition is

nvγ ≲ 8Ze2

π2
; ð67Þ

or, taking Z ¼ 82 for lead,

nvγ ≲ 6: ð68Þ

This condition is not satisfied in the LHC heavy-ion
collisions, because of their high Lorentz factor (16).
The breakdown of the semiclassical approximation

usually indicates unsuppressed particle production, as long
as all other approximations are under control at this point.
However, in our case (65) it happens because the self-
interaction correction becomes comparable to the tree-level
action and cancels it. Therefore it merely shows that one
needs to include the self-interaction to all orders, as was
done in Sec. IV C. However, in that section we were not
able to explore the relevant regime, due to the difficulty of

resolving the large hierarchy of scales that arises in
this case.
While our current work focuses on magnetic monopoles,

the need to include all orders in worldline self-interactions
at high inhomogeneities is also relevant when considering
Schwinger production of electrons. For high values of the
Keldysh parameter, the curvature of the worldline instanton
(scaled to its size) is so large that self-interactions cannot be
ignored even for weak coupling. This explains the apparent
“weak-field” divergence of the results in Ref. [92]: it in fact
corresponds to a departure from the small self-interaction
regime. Under such conditions, the nonself-interacting
worldline solution is no longer a good approximation to
the true saddlepoint solution of the full action. Increasing
curvature with increasing temporal inhomogeneity appears
to be a general feature of time-dependent fields [66], so our
current calculations and planned numerical work are rel-
evant to a wider class of Schwinger production scenarios.

2. Monopole size

The second approximation our calculation relies upon
is Eq. (15): the condition that the monopole size is small
compared to the radius of curvature of the worldline
instantons, validating our use of the worldline description
(discussed in Sec. II). Using the radius of curvature of the
ellipse (47), Eq. (15) becomes

2mRvγ
πZ2e2

≪ 1: ð69Þ

Assuming that the monopole mass is high, this is the most
stringent constraint, requiring (for lead-lead collisions)

mvγ ≪ 10 GeV: ð70Þ

This limit prevents application of our results to any energies
relevant to modern heavy-ion collisions, and for the
energies at which the small-monopole approximation does
apply, the Lorentz factor is too low to justify the assump-
tions (from the fits in Sec. III) that the electromagnetic field
varies more slowly in the transverse directions. As a result,
we are unable at present to provide a reliable monopole
production cross section.
The inapplicability of our results to realistic heavy ion

collisions at present is shown clearly in Fig. 8. This shows
the regions in the γ −m plane in which the small-monopole
and small self-interaction approximations respectively
hold, assuming monopoles with Dirac charge n ¼ 1. The
boundary of the region in which the small-monopole
assumption is valid has a turning point meaning that to
probe γ ≳ 2 (which is necessary if we are to apply the fits
from Sec. III) we must move beyond the worldline method.
Figure 8 shows that the region in which the small-

monopole approximation applies lies almost entirely within
the region where the effect of worldline self-interactions
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are small. This suggests that moving beyond the small-
monopole approximation is of the highest priority. The
results of Sec. IV C showed that, at least in the region of
parameter space we were able to study, self-interactions
yield worldline instantons with somewhat higher curvature.
This implies that the small-monopole approximation breaks
down slightly earlier than suggested in Fig. 8.

C. Overcoming the small-monopole approximation

In this paper, we have adopted the worldline formalism
from the outset, as it provides a convenient framework to
include spacetime-dependent electromagnetic fields and to
consistently account for the strong coupling of magnetic
monopoles. However, the worldline instanton description
only accounts for the infrared physics of magnetic monop-
oles and hence necessarily entails a small-monopole
approximation. Although for slowly varying fields the
small-monopole approximation is justified, we have shown
that it breaks down for the spacetime-dependent fields
which are of relevance to the production of high-mass
monopoles (m ≫ 2.4n GeV) in ultrarelativistic heavy-ion
collisions.
Overcoming the small-monopole approximation will

require explicitly accounting for the short-distance struc-
ture of magnetic monopoles. For ’t Hooft-Polyakov
monopoles, one can do this by performing an instanton
calculation in the full GUT field theory describing the
monopole of interest. In this case the short-range structure
of the ’t Hooft-Polyakov monopoles becomes apparent.

In weak, constant magnetic fields, such a calculation has
been carried out in Ref. [49]. Going beyond this to the
spacetime-dependent fields of interest here, the same
formalism can be adopted, due to the reality of the
Wick-rotated fields, given in Eq. (25). Such a calculation
could be performed numerically using classical lattice field
theory techniques. Similar calculations have been per-
formed in Georgi-Glashow SUð2Þ theory investigating
the monopole-antimonopole potential [94,95], and in
electroweak theory in the context of the electroweak
sphaleron [96]—a saddle-point solution of the field equa-
tions that shares similarities with our instantons.
On the other hand, for elementary monopoles, the

effective monopole size arises from quantum effects, and
therefore including it would require a nonperturbative
quantum field theory calculation.

VI. CONCLUSIONS

In this paper, we have computed the cross section for
magnetic monopole production in ultrarelativistic heavy-
ion collisions. Our results hold for collision and monopole
parameters such that the worldline instanton curvature is
large compared to the size of the monopole—this unfortu-
nately removes the possibility of applying our results
directly to real heavy-ion collisions at the LHC.
We have shown that, for Schwinger production of

magnetic monopoles, the only relevant spacetime inhomo-
geneities in the electromagnetic field are time dependence
and spatial variation along the beam axis, perpendicular to
the direction in which the field points. In the worldline
formalism, this feature of the spatial dependence means that
we do not find the exponential suppression present in
systems where there is significant spatial variation along
the direction of the field (such as in the electric field in a
heavy-ion collision, relevant for electron-positron pair
production). The temporal inhomogeneity, which is the
only relevant variation for computation of the worldline
instanton, is well-approximated by an expression for which
the exponential dependence of the pair production prob-
ability is known in closed form in the weak-field limit.
We have extended previous work on Schwinger pair

production in spacetime dependent fields [61–68] by
including the dynamical effects of the photon field, which
manifest as self-interactions in the worldline formalism.
These are important for application to strongly-coupled
monopoles. For the monopole production cross section,
we find

σ ∝ exp

�
−
πm2

gB
4½Eð−ξ2Þ −Kð−ξ2Þ�

πξ2

þ g2

8

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ2

p
þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ξ2
p ��

: ð71Þ

FIG. 8. Plot showing the regions in the γ −m plane in which the
approximations of semiclassicality (blue) and small monopoles
(orange) are valid (assuming the Dirac charge n ¼ 1). Note that in
there is a turning point in the region of applicability of the small
monopoles approximation, preventing us from going to large
Lorentz factors.
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Substituting parameter values relevant to heavy-ion colli-
sions results in Eq. (66).
Our result, in agreement with previous analyses, encodes

the temporal inhomogeneity of the field via a single
dimensionless parameter ξ, defined by Eq. (34), which
depends on the mass m and charge g of the monopole, the
peak strength B of the magnetic field, and the field’s decay
constant ω. As expected, the well-known constant field
result [49,50] is obtained in the ξ → 0 limit.
As well as the properties of the monopoles, the total

cross section depends on three collision parameters: the
heavy-ion charge Z, its radius R, and the collision Lorentz
factor γ. Both B and ω are linearly proportional to the ions’
Lorentz factor, γ, in the center of mass frame [Eqs. (21) and
(22)]. This means that ξ is independent of collision energy,
and for a fixed ion species can be considered to be solely a
property of the monopole. For collisions of lead ions, the
condition for the time dependence of the field to have a
significant effect is

m≳ 2.4n GeV ð72Þ

where the integer n is the number of Dirac charge quanta
the monopole carries. If this condition is satisfied, taking
the effects of time dependence into account is crucial at all
relativistic collision energies.
Our results show that, when our approximations are

valid, the time dependence of the collision and the effects of
the monopole self-interactions both enhance the production
rate compared with the constant-field Schwinger process.
This suggests that if the calculation can be extended to
realistic LHC heavy-ion collisions, the mass bounds
obtained would be stronger than previously estimated
(see Fig. 9). At least for ’t Hooft-Polyakov monopoles,

this can be done by performing an instanton calculation in
the full field theory describing the monopole of interest.
This would provide theoretically sound predictions for
collider searches such as at the LHC.
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APPENDIX A: FINITE DIFFERENCE
FORMULATION

In this Appendix we give our discrete approximation to
the action in Eq. (11) and the corresponding equations of
motion. We first integrate out the Schwinger parameter, s,
and scale the worldlines by gB=m, making them dimen-
sionless. We then discretize the worldline into N points and
use a simple finite difference approximation

gB
m2

S½x� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N
X
i;μ

ðxiþ1
μ − xiμÞ2

s

þ
X
i

xi4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðξxi4Þ2

p ðxiþ1
2 − xi2Þ

−
g3B
2m2

X
i;j

ðxiþ1
μ − xiμÞðxjþ1

μ − xjμÞGRðxi; xj; aÞ

ðA1Þ

where i and j run over 0; 1;…; N − 1 and contractions of
Euclidean indices μ are implied. As discussed in Ref. [83]
we choose an exponential counterterm, rather than the
simpler length counterterm of Polyakov [76], so that the
bare mass is positive,

GRðx; y; aÞ ¼
−1

4π2ððx − yÞ2 þ a2ÞÞ

þ
ffiffiffi
π

p
4π2a2

e−ðx−yÞ2=a2 : ðA2Þ

This exponential counterterm is equivalent to the length
counterterm for a → 0, via the delta function limit of the
Gaussian. Note also that we have dropped the gauge-
dependent parts of GR as they integrate to zero over any
closed worldline.
In the absence of spacetime inhomogeneity, there are

translational zero modes which must be fixed to find a
unique solution. We do this by imposing that the center
of mass of the worldline is at the origin. The timelike

FIG. 9. The total cross section in heavy-ion collisions for
Schwinger production of magnetic monopoles with mass
m ¼ 100 GeV, Dirac charge n ¼ 1 and spin s ¼ 0 is shown
here in blue. The huge enhancements from the time-dependence
can be seen by comparison with the locally constant field result
(see Appendix B) in dashed orange. Corrections from self-
interactions (not shown here) provide even greater enhancements
still. However, they also show the breakdown of our approx-
imations at all relevant energies (see Sec. V B).
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inhomogeneity of the background field breaks the trans-
lational symmetry in the time direction, though not that in
the x2 direction. There is also a zero mode resulting from
the reparametrization symmetry. We fix this by imposing
x02 − xN=2−1

2 ¼ 0, which essentially fixes the point i ¼ 0

and i ¼ N=2 − 1 to be at the bottom and top of the
worldline. We fix all these constraints using Lagrange
multipliers, λμ and σ, which amounts to,

gB
m2

S½x� → gB
m2

S½x� þ
X
i;μ

λμxiμ þ σðx02 − xN=2−1
2 Þ: ðA3Þ

We then solve the 2N þ 2þ 1 equations of motion derived
from this action,

∂S
∂xjμ ¼ 0;

∂S
∂λμ ¼ 0;

∂S
∂σ ¼ 0; ðA4Þ

for μ ¼ 2, 4, j ¼ 0;…; N − 1, using the Newton-Raphson
method. The analytic solutions at g3B=m2 ¼ 0 and at ξ ¼ 0

provide initial guesses for the solutions at small g3B=m2

and ξ respectively. One can then step out in parameter
space, using the solution at the previous parameter point
as the initial guess. In this way we were able to solve the
worldline instanton equations in the region shown in Fig. 6.

APPENDIX B: THE LOCALLY CONSTANT
FIELD APPROXIMATION

The locally constant field approximation (LCFA) is
applicable when the electromagnetic fields vary on larger
length and time scales than those of the worldline instanton,
and hence the constant field result for pair production
can be used locally. In this approximation, and when
FμνF̃μν ¼ 0 (see Fig. 2), the probability for monopole pair
production is given by [49,97]

PLCFA ¼ ð2sþ 1Þg2
8π3

×
Z

d4xðB2ðxÞ − E2ðxÞÞ2e
− πm2

g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2ðxÞ−E2ðxÞ

p þg2

4

; ðB1Þ

Evaluating this for the fields of Eqs. (19), and using the
saddle point approximation for the integrals, gives

PLCFA ≈
ð2sþ 1ÞðgBÞ4
18π3m4ω2Ω2

e−
πm2

gB þg2

4 ; ðB2Þ

where Ω is the decay rate of the field in the x1 and x2

directions and this formula is accurate up to an Oð1Þ
multiplicative factor. Finally, using the impact parameter
dependence of B and ω (see Sec. III) and integrating over
the impact parameter, we arrive at the total cross section,

σLCFA ≈ 0.009
ð2sþ 1ÞðnZγÞ9=2

m5R3γ2
e−

4.03m2R2
γvnZ þπ2n2

e2 ; ðB3Þ

measured in GeV−2. This result is what is plotted in Fig. 9.
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