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Abstract. We constrain deviations of the form T ∝ (1 + z)1+ε from the standard redshift-
temperature relation, corresponding to modifying distance duality as DL = (1 + z)2(1+ε)DA.
We consider a consistent model, in which both the background and perturbation equations
are changed. For this purpose, we introduce a species of dark radiation particles to which
photon energy density is transferred, and assume ε ≥ 0. The Planck 2015 release high
multipole temperature plus low multipole data give the limit ε < 4.5 × 10−3 at 95% C.L.
The main obstacle to improving this CMB-only result is strong degeneracy between ε and
the physical matter densities ωb and ωc. A constraint on deuterium abundance improves
the limit to ε < 1.8 × 10−3. Adding the Planck high-multipole CMB polarisation and BAO
data leads to a small improvement; with this maximal dataset we obtain ε < 1.3 × 10−3.
This dataset constrains the present dark radiation energy density to at most 12% of the
total photon plus dark radiation density. Finally, we discuss the degeneracy between dark
radiation and the effective number of relativistic species Neff , and consider the impact of
dark radiation perturbations and allowing ε < 0 on the results.
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1 Introduction

Temperature-redshift relation and distance duality. The proportionality T ∝ (1+z)
between the temperature T of massless particles with a thermal phase space distribution and
the redshift z has a central role in the history of the universe. This relation is not restricted
to the exactly homogeneous and isotropic Friedmann–Robertson–Walker (FRW) models. It
holds in general relativity (and similar theories with massless particles minimally coupled to
the metric) as long as particle number is conserved and the geometrical optics approximation
holds, i.e. the spacetime curvature scale is much larger than the wavelength and the wavefront
curvature radius. In strong fields, where the spacetime curvature scale is & T , the geometrical
optics approximation is not valid, massless particles do not travel on null geodesics, and the
relation T ∝ (1 + z) does not in general hold. For cosmological observations, the geometrical
optics approximation is well satisfied, so any deviation from T ∝ (1 + z) would be a clear
signal for new fundamental physics. Proposed possibilities include decaying vacuum energy,
coupling of photons to exotic light particles and disformal coupling of photons to a scalar
field [1–4].

Soon after the discovery of the cosmic microwave background (CMB), it was realised
that the CMB excites atoms and molecules in the intergalactic medium, so absorption line
measurements of the ratio of ground and excited levels can be used to find T as a function of z
[5]. Such observations have been made up to z = 3.025 [6, 7]. Parametrising the temperature
as T ∝ (1 + z)1+ε [8], the latest constraints are ε = −0.009 ± 0.019 (−0.047 < ε < 0.029)
[7] and ε = −0.005 ± 0.022 (−0.049 < ε < 0.039) [9] (we quote error bars as the 68% C.L.
region and limits as the 95% C.L. region). Another way to determine T (z) is to observe the
spectral distortion due to the thermal Sunyaev–Zel’dovich (tSZ) effect, i.e. collisions of CMB
photons with hot electrons. Such measurements have been made up to redshift z = 1.35, and
they give ε consistent with zero, with 95% C.L. ranges comparable to those from absorption

– 1 –



data [4, 10, 11]. Latest combination of absorption and tSZ data gives ε = −0.0064± 0.0086
(−0.024 < ε < 0.011) [9].

Violation of the temperature-redshift relation is tied to violation of the distance duality
relation DL = (1 + z)2DA between the luminosity distance DL and the angular diameter
distance DA [12, 13]. Distance duality has been observationally tested both using the relation
between T and z, as well as using a direct comparison of the distances [3, 9, 14].

In addition to looking at the tSZ effect, the CMB has been used by the Planck col-
laboration to constrain the T (z) relation by looking at the effect of change in the CMB
monopole on the CMB anisotropies [15]. The resulting limit is ε = (−0.2 ± 1.4) × 10−3 or
ε = (−0.4 ± 1.1) × 10−3, depending on the dataset (we discuss this in section 4.4). Only a
change in the background evolution of T (z) was considered. However, any new physics that
leads to violation of the background scaling T ∝ (1 + z) will in general also affect perturba-
tions directly. In general, models that have identical background evolution can differ at the
level of perturbations, so a consistent perturbative analysis will be more model-dependent.
By the same token, perturbations have to be included in the analysis in order to evaluate
how much neglecting them affects the results.

We consider one of the simplest possibilities of upgrading the relation T ∝ (1 + z)1+ε to
the perturbative level consistently, by assuming that the change in scaling is due to photon
interaction with dark radiation (dr) particles. Our main results for 1000ε are presented on
the first line of table 1 on page 8. We also compare the results to the (unphysical) case where
only the background change is taken into account.

2 Setting up the model

2.1 Distance duality and the CMB temperature

Distance duality. The relation between the temperature-redshift relation and distance du-
ality can be appreciated by considering how we could use the CMB to measure the luminosity
distance, defined as

DL =

√
L

4πF
, (2.1)

where L is source luminosity and F is the observed flux. For a source with blackbody
spectrum at temperature T , we have L ∝ AT 4

s and F ∝ T 4
o , where A is the area of emission

and s refers to source and o to observer. Part of the CMB sky with angular size dΩ has the
area dA = D2

AdΩ, where DA is the angular diameter distance. On the other hand, the flux
from that part of the sky is dΩ/(4π) of the total (neglecting the small anisotropies in the
flux), so we have

DL =

(
Ts
To

)2

DA . (2.2)

Therefore, the CMB monopole cannot be used to measure the luminosity distance, unless
the angular diameter distance is independently known. The reason is that, in contrast to
localised sources like supernovae, the CMB sources form a continuum, and their emission
cannot be disentangled from each other.

For photons travelling along null geodesics in general relativity, with conserved photon
number, we have T ∝ (1 + z), so (2.2) is equivalent to the distance duality relation, which
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follows from the Etherington reciprocity relation [12, 13]

DL = (1 + z)2DA . (2.3)

Thus, the fact that the CMB monopole cannot be used to independently measure the lu-
minosity distance can be turned around to say that testing the relation T ∝ (1 + z) also
tests distance duality, assuming that deviations from the blackbody shape can be neglected
(significant scattering by dust would change the relation, for example). Possible violation is
often parametrised as T ∝ (1 + z)1+ε [8], corresponding to

DL = (1 + z)2(1+ε)DA , (2.4)

with ε taken to be constant for simplicity.1 We consider this simple ansatz.

Violating the distance duality. Violating distance duality means abandoning travel on
null geodesics of the metric or photon number conservation. Either will, in general, lead to
deviations from the blackbody spectrum [11, 16, 17]. In the usual case, photon energy scales
as E ∝ (1 + z), photon number density goes as nγ ∝ T 3, energy density as ργ = 〈E〉nγ ∝ T 4

(where 〈〉 is the phase space average), and the temperature scales as T ∝ (1 + z).
Let us first assume that photon energy scales as E ∝ (1+z) as usual, but the temperature

as T ∝ (1+z)1+ε, where T is defined by the relation ργ ∝ T 4, i.e. T is the bolometric tempera-
ture. The number density then evolves as nγ ∝ (1 + z)3+4ε ' (1 + z)3[1 + 4ε ln(1 + z)], where
we have assumed |ε| � 1. Deviations from the blackbody shape are usually parametrised
in terms of the y-distortion [18], which corresponds to a certain reshuffling of photon ener-
gies with the photon number kept constant, and the µ-distortion [19], which corresponds a
non-zero chemical potential. The respective amplitudes are constrained as |y| < 1.5 × 10−5

and |µ| < 0.9 × 10−4 [20]. These are not a complete parametrisation of all possible dis-
tortions [21–23], but the constraints on other distortions are expected to be similar, giving
|ε| ln(1 + zi) . 10−4, where zi is the redshift at which the violation of the scaling T ∝ (1 + z)
turns on. Except in the extreme case zi � 1, we have |ε| . 10−4. Note that even if we only
multiplied the photon occupation number by a factor which is independent of energy, the
spectrum would be distorted by a greybody factor, which is constrained to be . 10−4 [16]. If
we instead change the scaling of the energy to E ∝ (1 + z)1+4ε, but keep the number density
scaling as nγ ∝ T 3, i.e. T is the occupation number temperature, and T ∝ (1 + z), we get a
generalised y-distortion [21–23], and similar limits as above.

Violations of the temperature-redshift scaling, and therefore distance duality, are thus
strongly constrained, unless they change both the scaling of the energy density and the
number density, without affecting the distribution function. Such change has to be fine-tuned:
photon injection or removal must be adiabatic [11] and satisfy a strict spectral condition [17]
(see also [24]).

In the analyses of the CMB temperature using spectral lines and the tSZ effect, restricted
to redshifts z ≤ 3.025, it has been sufficient to consider the change in the background relation
T ∝ (1 + z), without specifying the physics responsible for the change of the scaling. This
approach was also adopted in the analysis based on CMB anisotropies, reaching z = 1090
[15]. We will instead consistently consider changes also in the perturbation equations. We
introduce a gas of dark radiation particles with a coupling to photons chosen so as to obtain
T ∝ (1 + z)1+ε, although we will not specify the microphysics of the interactions.

1It is common to use −ε in the exponent instead of ε. As we focus on the case where the temperature
increases faster with redshift than usual, we prefer not to have the minus sign, so that ε ≥ 0.
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2.2 Mixing of photons and dark radiation

Motivation. We want to reproduce the scaling T ∝ (1 + z)1+ε for the background temper-
ature in a consistent model that includes perturbations. In terms of the background photon
energy density ρ̄γ ∝ T 4 ∝ (1 + z)4(1+ε) ∝ a−4(1+ε), we have

˙̄ργ + 4Hρ̄γ = −ε 4Hρ̄γ , (2.5)

where overbar refers to background quantities, a is the scale factor, dot refers to derivative
with respect to conformal time η, and H ≡ ȧ/a is the Hubble parameter defined with respect
to η. A simple way to keep (2.5) consistent with the covariant conservation of the energy-
momentum tensor is to add a new energy density component into which photon energy
density is transferred. We therefore introduce a gas of dark radiation particles, with energy
density ρ̄dr that satisfies

˙̄ρdr + 4Hρ̄dr = ε 4Hρ̄γ , (2.6)

so that ˙̄ργ + ˙̄ρdr + 4H(ρ̄γ + ρ̄dr) = 0.
These equations can be promoted to the perturbative level in different ways. We gen-

eralise (2.5) by demanding that it holds also for the local photon energy and the local ex-
pansion rate, as measured in the photon gas rest frame. We assume that the dr has no
non-gravitational interactions with any particles other than photons. We also assume that
the interaction between the photon gas and dr does not have preferred spatial directions in
the photon gas rest frame (so there is no net momentum transfer between the gases). We
now show that these assumptions uniquely determine the equations for the dr and photons.

Exact treatment. Because dr interacts only with photons, we have, neglecting here the
interactions between photons and ordinary matter (see e.g. [25]; for the covariant formalism,
see e.g. [26]),

∇αTα(γ)β = −Qβ (2.7)

∇αTα(dr)β = Qβ , (2.8)

where Qβ is the energy-momentum transfer vector. (When dealing with the exact equations,
we enclose the species label in parentheses so as not to confuse the photon symbol γ with
spacetime indices.)

Calculating the CMB anisotropies involves following the Boltzmann hierarchy, and with
current precision data, it is important to take into account the anisotropic stress [27]. Al-
lowing for anisotropic stress (but not energy flux), the energy-momentum tensors are

T(n)αβ = (ρ(n) + p(n))u(n)αu(n)β + p(n)gαβ + π(n)αβ , (2.9)

where n = γ,dr and ρ(n), p(n), u(n)α, gαβ and π(n)αβ are the energy density, pressure, four-
velocity, metric, and anisotropic stress, respectively. Both photons and dr are ultrarelativistic
(perhaps exactly massless), so p(n) = 1

3ρ(n).
From our assumption that, in the photon gas rest frame, there are no preferred spatial

directions for the interaction between photons and dr, it follows that Qα = Qu(γ)α. For
example, this form would describe photon decay. Combining (2.7) and (2.9) and projecting
with uα(γ) gives

Q = −uα(γ)∇αρ(γ) −
4

3
ρ(γ)∇αuα(γ) − σ(γ)αβπ

αβ
(γ) , (2.10)
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where σ(γ)αβ is the photon shear tensor. Generalising the background equation (2.5) to hold
also for the corresponding local quantities, we have

uα(γ)∇αρ(γ) +
4

3
(1 + ε)ρ(γ)∇αuα(γ) = 0 , (2.11)

which in combination with (2.10) fixes the energy-momentum transfer uniquely to be

Q =
4

3
ερ(γ)∇αuα(γ) − σ(γ)αβπ

αβ
(γ) . (2.12)

This transfer rate between photons and dr is unusual in that it depends on the local expansion
rate ∇αuα(γ); this is of course already the case for the background equation (2.5). We do not

specify the microphysics leading to (2.12). But as the transfer has been defined with respect
to the photon frame, it seems difficult to justify ε < 0, as the energy transfer from dr to
photons would depend on the photon energy density. We therefore focus on the case ε ≥ 0,
so that photons are removed from the thermal bath, not added, though mathematically the
equations are well-defined also for ε < 0. For completeness, in section 4.4 we repeat our
analysis with ε < 0 not excluded, which also allows closer comparison to the Planck analysis
[15]. As discussed above, the interaction has to be specifically tuned to avoid distortions of
the blackbody spectrum larger than 10−4, though this may be less difficult to engineer for
photon removal than in the case of photon injection [17, 22–24, 28].

Background. We consider first order perturbation theory around a spatially flat FRW
universe in the synchronous gauge,

ds2 = a(η)2[−dη2 + (δij + hij)dx
idxj ] . (2.13)

For the background, the energy continuity equations (2.7) and (2.8) with (2.12) reproduce
the desired scaling laws,

˙̄ργ + 4(1 + ε)Hρ̄γ = 0 (2.14)

˙̄ρdr + 4Hρ̄dr = 4εHρ̄γ . (2.15)

Because we have ρ̄γ + ρ̄dr ∝ a−4, the evolution of the background scale factor can remain
unchanged even when there are significant amounts of dr. Thus, the limits on relativistic
extra degrees of freedom [29] do not straightforwardly apply. However, because ρ̄γ0 = π2

15 T̄
4
0

is fixed by the observed T̄0 [30], the presence of any dr today implies larger radiation density
in the past, and ε will in fact turn out to be correlated with the number of other relativistic
degrees of freedom Neff , as we discuss in section 4.2.

In addition to ε, we need one parameter that sets the redshift zi at which the scaling
T ∝ (1 + z)1+ε starts to apply. We have ρ̄dr = (ρ̄dr0 + ρ̄γ0)a−4 − ρ̄γ0a

−4(1+ε), where the
subscript 0 refers to the present day, with a0 = 1. Therefore we would have ρ̄dr < 0 at some
point in the past if the scaling extended arbitrarily far backwards. As the new parameter,
which (given ε) determines the present dr energy density ρ̄dr0 as well as zi, we choose the
fractional contribution of dr at zref ≡ 1090, roughly corresponding to last scattering,

fdr∗ ≡
ρ̄dr(zref)

ρ̄γ(zref) + ρ̄dr(zref)
, (2.16)
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and we define a derived parameter fdr0 in the same way, with the densities evaluated today.
The present day dr density can be written as

ρ̄dr0 =

[
1

(1− fdr∗)a4ε
ref

− 1

]
ρ̄γ0 , (2.17)

where aref = (1 + zref)
−1 = 1/1091. Solving the scale factor ai from ρ̄dr(ai) = 0 we find

ai = aref (1− fdr∗)
1/(4ε) , (2.18)

and the redshift at which the interaction between photons and dr turns on both in the
background and perturbation equations is zi = 1/ai − 1. Before this time we keep ρ̄dr and ε,
as well as all multipoles of the dr perturbation hierarchy, equal to zero.

Of course, the choice of fdr∗ as a primary dr parameter is not unique. We could equally
well have defined fdr at some other redshift (far enough in the past), or ρ̄dr at a given redshift,
or even used directly zi. Different primary parameters lead to different integration measures
upon marginalisation, affecting the end results to some extent. In order to test the robustness
of our results, we repeated parts of our analysis by using − log10 zi as a primary parameter,
with a uniform prior. (We include the minus sign in the plots, as we prefer time running
from left to right.) This led to slightly tighter upper bounds on ε and fdr∗, than using fdr∗
as a primary parameter. To be conservative, we report the results from the analysis where
fdr∗ is a primary parameter.

Care should be taken about the choice of the primary parameter, so that the implied
prior does not dominate the posterior. Our choice guarantees that the photon-dr interaction
is turned on at least for the whole time between last scattering and today, i.e. zi > zref ≈ z∗,
where z∗ is the redshift of last scattering. The closer to zero fdr∗ is, the less time before
last scattering the interaction is turned on. For a fixed positive fdr∗, we have ε → ∞ ⇒
zi → zref . This kind of behaviour would cause a problem if we chose e.g. fdr0 as the primary
parameter, i.e. zref = 0. If a non-zero interaction is not preferred by the data (as is the
case), it is favourable to minimise the impact of dr by making the time that it disturbs the
standard evolution as short as possible. For a fixed positive fdr0, this would be achieved
by an arbitrary large ε, since this would cause zi → 0 and thus eliminate the interaction
altogether. This would bias the results toward large positive values of ε.

As we use CMB anisotropies to constrain the interaction, we concentrate on the case
where the interaction is present at least from last scattering to the present day, hence the
choice (2.16). This parametrisation allows the range 1090 < zi < ∞. However, it would be
unphysical to start the modified photon temperature scaling before reheating, i.e. the earliest
possible time that the radiation can have been produced. Hence, we apply a “top-hat” prior
zi < 1029, set by the maximum reheating temperature. The limit comes from the constraint
on the energy scale of inflation due to the upper bound r < 0.07 on the tensor-to-scalar ratio
[31]. (The limit depends on the number of degrees of freedom at reheating only very weakly,

zi ∝ g∗(Trh)
1
12 .) We will see in figure 3 and other figures that the prior − log10 zi > −29

excludes only a small fraction of models, as the data prefer the interaction to turn on later.

Perturbations. We have, in the notation of [32], to first order in perturbations,

∇αuα(n) = 3H + θn +
1

2
ḣ , (2.19)
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where θn ≡ a∂iui(n), h ≡ δijhij . Inputting (2.19) into (2.7) and (2.12) (the last term in (2.12)

does not contribute at first order) and using (2.9), and the fact that u0
(n) = −a−2u(n)0 = a−1

to first order, we get

0 = δ̇γ +
4

3
(1 + ε)θγ +

2

3
(1 + ε)ḣ . (2.20)

This replaces the first line of equation (63) in [32]. Other perturbation equations for photons
remain unchanged.

In addition to including (2.20) and the altered background, we modify the Code for
Anisotropies in the Microwave Background (CAMB, [33]) to include the Boltzmann hierarchy
for the perturbation evolution of a new species of massless radiation. It is identical to that of
massless neutrinos, except that the evolution of the density contrast δdr (the zeroth multipole)
is given by

δ̇dr +
4

3
θdr +

2

3
ḣ = ε

ρ̄γ
ρ̄dr

(
4

3
θγ +

2

3
ḣ+ 4Hδγ − 4Hδdr

)
, (2.21)

which replaces the first line of equation (49) in [32]. For the general derivation of perturbation
equations of interacting fluids in an arbitrary gauge, see [34, 35]; (2.20) and (2.21) can be
straightforwardly read from [35].

We also consider two alternative treatments of the dr perturbations. In one, we truncate
their Boltzmann hierarchy at the ideal fluid level, i.e. we set anisotropic stress and all higher
multipoles to zero, as done in [27] for neutrinos. We also study the case where the dr
perturbations are zero (in the synchronous gauge); this involves setting ε = 0 in (2.20) to
keep the energy-momentum tensor covariantly conserved at the perturbative level. Neglecting
perturbations is not physically meaningful, but it allows us to compare to the Planck analysis
[15], where only change in the background scaling T ∝ (1 + z) was considered.

As we assume that there is no dr initially, at the moment ti when the interaction between
photons and dr turns on, we have ρ̄dr(ti) = 0. The initial condition for the dr density contrast
follows from (2.21), using (2.15); at t = ti, we have

δdr = δγ +
1

3H

(
θγ +

1

2
ḣ

)
. (2.22)

3 Data and methods

We use CMB data from the Planck 2015 data release [36, 37] available via the Planck Legacy
Archive (PLA), supplemented by baryon acoustic oscillation (BAO) data2 from the 6dFGS,
BOSS and SDSS DR7 surveys [38], labelled 6DFGS, DR11CMASS, DR11LOWZ and SDSS
MGS in [15], and a Gaussian prior on the deuterium abundance, D/H=(2.53 ± 0.04) ×
10−5, from Lyman-α absorption lines [39]. We consider the Planck data in two different
sets. The first consists of the high multipole temperature anisotropy data (TT), named in
PLA as plik dx11dr2 HM v18 TT.clik, plus the low multipole (large scale) temperature,

2The BAO data analysis leading to the published values has been done assuming the standard distance
duality relation. However, this makes no difference for our results, because the constraints we obtain without
BAO data on the violation of the distance duality relation are tighter than the precision of the BAO constraints,
and adding the BAO data has little impact on our results.
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TT+lowP TT,TE,EE+lowP
+D/H +BAO +BAO +D/H +BAO +BAO

+D/H +D/H

1000ε : full dr 4.5 1.8 4.4 1.6 2.1 1.5 2.0 1.3
ΛCDM parameters fixed 0.4 0.4 0.3 0.3
+ nuisance parameters fixed 0.3 0.3 0.2 0.2
full dr + Neff 6.6 4.7 2.8 2.5
ideal fluid dr 4.6 1.9 1.9 1.3
no dr perturbations 4.2 2.5 3.4 2.1

100fdr∗: full dr 25.9 12.8 23.7 13.0 12.2 9.2 12.7 9.5
ΛCDM parameters fixed 1.5 1.5 0.9 0.9
+ nuisance parameters fixed 0.9 0.9 0.6 0.6
full dr + Neff 32.5 12.3 18.6 9.2
ideal fluid dr 18.1 7.8 9.6 7.7
no dr perturbations 5.7 5.0 4.4 3.6

100fdr0: full dr 34.5 16.1 32.6 16.2 16.2 12.0 16.7 12.1
ΛCDM parameters fixed 2.3 2.3 1.4 1.4
+ nuisance parameters fixed 1.5 1.5 1.0 1.0
full dr + Neff 40.4 19.4 22.1 12.5
ideal fluid dr 26.7 10.8 13.3 10.1
no dr perturbations 15.9 11.0 13.2 8.8

Table 1. The 95% C.L. upper bounds on the dark radiation parameters with various datasets. For
each parameter, “full dr” gives the result for our baseline case, where the full Boltzmann hierarchy
for dr is considered, and in addition to ε and fdr∗ also all the other 6 cosmological parameters (ωb,
ωc, θ∗, τ , logAs, ns) as well as the nuisance/foreground parameters of the Planck likelihoods (15 for
TT+lowP and 27 for TT,TE,EE+lowP) are varied. Then, in the “ΛCDM parameters fixed” case, the
above-mentioned 6 cosmological parameters are kept at their best-fit vanilla ΛCDM values. In the
“+ nuisance parameters fixed” case, the nuisance/foreground parameters of the Planck likelihoods
are in addition fixed to their best-fit vanilla ΛCDM values. The case “full dr + Neff” is the same as
“full dr”, but the number of neutrino degrees of freedom is extended from 3.046 to the free parameter
Neff . In the “ideal fluid dr” case, dr is treated as an ideal fluid, i.e. only the zeroth (density contrast,
δdr) and the first multipole (fluid velocity divergence, θdr) of the Boltzmann hierarchy are kept. In
the “no dr perturbations” case, the dr perturbations are turned off, so only the background evolution
equations are modified with respect to the vanilla ΛCDM case.

E polarisation and B polarisation data (lowP, lowl SMW 70 dx11d 2014 10 03 v5c Ap.clik,
also dubbed lowTEB). The second dataset contains, in addition to the previous ones, the high-
multipole E polarisation data (TE+EE), called in PLA plik dx11dr2 HM v18 TTTEEE.clik.
In all figures dashed lines refer to the first dataset (possibly with non-CMB data added), and
solid lines or shaded colours refer to the case where also high-multipole polarisation data are
utilised.

Our baseline dataset is Planck TT+lowP, and unless otherwise stated, our quoted con-
straints refer to it. The maximal dataset is TT,TE,EE+lowP+BAO+D/H. As indicated in
table 1, we find the posterior probability densities for 8 different data combinations in our
baseline full dr model. We study also five special cases with 4 data combinations. We scan
the likelihood surface using Markov Chain Monte Carlo (MCMC) method as implemented
in CosmoMC [40], which calls our modified version of CAMB [33] to calculate the theoretical
temperature and polarisation angular power spectra for each set of the values of parameters
drawn by CosmoMC. In addition to the changes discussed above, we have modified the calcu-
lation of the sound horizon to be consistent with the dr model; see appendix A for details.
The number of our CosmoMC runs for the dr model(s), each containing 8 Markov Chains, is
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14. The data combinations containing D/H are importance sampled from the other runs.
For comparison we also perform MCMC analysis of the vanilla ΛCDM model for the 8 data
combinations, and the ΛCDM+Neff case for 2 data combinations. Finally, we rerun 8 cases
allowing also for negative values of ε.

We fix the number of (other than photon and dr) relativistic degrees of freedom, cor-
responding to the three neutrino species, to Neff = 3.046, except in the runs described in
section 4.2 where we leave Neff as a free parameter. Following the convention established
by the Planck collaboration, we assume two massless neutrinos and one massive, and set∑
mν = 0.06 eV.

4 Results

As discussed near the end of section 2.2, we consider three different treatments of the dr
perturbations: (1) full perturbation equations with the usual Boltzmann hierarchy, (2) as-
suming dr to be an ideal fluid and (3) setting the dr perturbations to zero (in this case, to
guarantee consistent energy-momentum tensor conservation we also put ε = 0 in (2.20)). In
the first case we also test what happens when we allow Neff to vary.

4.1 Results with the full Boltzmann hierarchy for dark radiation perturbations

In our baseline case we vary the usual ΛCDM model parameters (ωb, ωc, θ∗, τ, logAs, ns as
well as the 15 nuisance parameters for the TT+lowP data, plus an additional 12 for the
TE+EE data), and in addition ε and fdr∗. For the definition of the standard parameters,
see [41]. The 95% C.L. upper bounds for the two primary dr parameters (and the derived
parameter fdr0) are given in table 1.

If we fix the cosmological parameters other than ε and fdr∗ to their best-fit vanilla ΛCDM
values, the TT+lowP data alone give the constraints ε < 0.4 × 10−3, fdr∗ < 0.015. These
constraints slightly tighten if the nuisance parameters are also fixed (see table 1). There
is no significant improvement when additional datasets are added, as they mainly serve to
constrain the vanilla parameters. The CMB anisotropies are more sensitive to change in the
temperature scaling than the combination of absorption line and tSZ measurements by one
to two orders of magnitude, if degeneracies are not taken into account. The constraint on ε is
of the same order of magnitude as the one from spectral distortion [16]. (If it were stronger,
there would be no need to to worry about tuning the model separately so as not to distort
the blackbody spectrum, because not spoiling the anisotropy pattern would be even more
difficult.)

However, in contrast to spectral distortion, the effect of ε on the anisotropies is de-
generate with changes in other parameters; see figure 1. The limits relax by one order of
magnitude when the other parameters are not artificially fixed. From the TT+lowP data
alone, we get ε < 4.5× 10−3, fdr∗ < 0.26. The numbers for different data combinations and
treatments of the perturbations are listed in table 1.

As shown in figure 1, the well-fitting values of ε (and fdr∗) are positively correlated with
both ωb and ωc (and hence also with ωm). This strong degeneracy is due to the fact that the
height of the acoustic peaks in the temperature angular power spectrum are sensitive to the
ratio ρ̄b/ρ̄γ . Larger ε corresponds to larger ρ̄γ at early times, which can be compensated by
increasing ρ̄b. The densities ωb and ωc are positively correlated with each other, in contrast
to the vanilla ΛCDM case, where they are anticorrelated. This can be explained by the need
to change ωc in tune with ωb so as to keep the peak height ratios fixed (see e.g. [42]). In
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Figure 1. Degeneracies of selected parameters with ε (top 3 rows) and fdr∗ (bottom 3 rows) in the
full dr model, with the 68% C.L. and 95% C.L. posterior regions for various data sets.

– 10 –



200 400 600 800 1000 1200
0

1000

2000

3000

4000

5000

6000

Mult ip ole (` )

`
(
`
+

1
)C

`
/
(
2
π

)
[µ

K
2
]

Temp e ratu re Angu lar Powe r Sp e c tra of S e le c te d Ex amp le Mode ls

 

 

Fu l l d r mode l w ith ε = 2 .4 × 10− 3 and fd r ∗ = 0 .115 (ω b = 0 .0237, ω c = 0 .135) ; ∆χ 2 = χ 2 − χ 2
b e s t d r = 5 .8

The ab ov e mod e l , bu t ε = fd r ∗ = 0; ∆χ 2 = χ 2 − χ 2
b e s t d r= 673

B e st- fi t ΛCDM mode l (ω b = 0 .0222, ω c = 0 .120) ; ∆χ 2 = χ 2 − χ 2
b e s t d r= 0 .5

The ab ov e mod e l , bu t ε = 2 .4 × 10− 3 and fd r ∗ = 0 .115; ∆χ 2 = χ 2 − χ 2
b e s t d r = 629

Figure 2. The effect on the CMB temperature angular power spectrum. The goodness-of-fit values
χ2 have been obtained with the Planck TT+lowP data. Due to cosmic variance, the lowP (` = 2–29)
data gives almost identical χ2 for all the example cases. The first model has been selected by requiring
∆χ2 < 6, which roughly corresponds to 2σ, and then finding the model with the maximum ε. (This
model also happens to have the maximum fdr∗.) The large values of ωb = 0.0237 and ωc = 0.135
almost perfectly compensate for the effect of the relatively large ε = 2.4 × 10−3 and fdr∗ = 0.115
(fdr0 = 0.173).

figure 2 we show how the peaks are significantly raised by the change in the temperature
scaling and the inclusion of dark radiation. The change in the peak height ratios is also clear,
and without changing the vanilla parameters to compensate, the χ2 is worse by more than
600 (compare the red and blue lines). Increasing ωb and ωc allows for a good fit even with a
significant amount of dark radiation (green dashed line).

For clarity, we do not show in figure 1 data combinations that involve BAO. The
combination TT+lowP+BAO is virtually indistinguishable from TT+lowP, and likewise
TT,TE,EE+lowP+BAO from TT,TE,EE+lowP. This is due to the fact that BAO data
are mostly sensitive to ΩΛ (or Ωm = 1 − ΩΛ, not ωm), but adding BAO data does not
significantly shift ΩΛ. Thus, the only noticeable effect is slightly tighter constraints on ns,
H0 and ΩΛ. In contrast, the D/H prior constrains ωb directly, reducing the (ωb, ε) and
(ωb, fdr∗) degeneracies significantly and improving the limits to ε < 1.8× 10−3, fdr∗ < 0.13.
Adding the high-multipole TE,EE data also reduces the degeneracy by improving the con-
straints on standard parameters. Hence, we can most efficiently reduce the degeneracies
by using TT,TE,EE+lowP+D/H. Comparison of the third last and last columns of table
1 shows that adding BAO to this combination marginally tightens the constraint on ε, but
actually weakens the constraint on fdr∗. Since we are mainly interested in ε, we quote
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Figure 3. 1d marginalised posterior probability density functions of selected parameters.

here and in the abstract as our definite constraints the numbers with the maximal data set
TT,TE,EE+lowP+BAO+D/H (the last column): ε < 1.3× 10−3, fdr∗ < 0.095.

As the sound horizon at last scattering r∗ is proportional to ω
−1/2
b and ω

−1/2
m , it is

correspondingly negatively correlated with ε (see appendix A). The angle covered by the
sound horizon remains precisely determined (at the few per mille level, to the value θ∗ =
1.040 × 10−2 rad), so the angular diameter distance DA∗ = r∗/θ∗ has the same negative
correlation with ε as r∗. Because DA∗ ∝ H−1

0 , the Hubble constant H0 is shifted upwards,
fromH0 = 67.2±1.0 km s−1Mpc−1 toH0 = 71.6+2.3

−4.5 km s−1Mpc−1, and the age of the universe
is correspondingly shifted downwards, from the vanilla ΛCDM value t0 = 13.82 ± 0.04 Gyr
to t0 = 13.1+0.6

−0.3 Gyr. When more data are added, the shift becomes smaller.
The 1d marginalised posterior probability densities for selected parameters with our

minimal and maximal datasets are shown in figure 3. For comparison we also indicate the
vanilla ΛCDM results. While the standard cosmological parameters can shift by several
standard deviations in terms of the vanilla model error bars (more than 18σ in the case of
t0), the shifts are not more than 2σ in terms of the dr model error bars. In the dr model
some 1d posteriors are noticeably non-Gaussian, in particular those of ωb, ωc, H0, t0, r∗, and
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between dr parameters and Neff .

DA∗. As the goodness-of-fit (best-fit χ2) is not improved by the addition of dr, the parameter
combinations with standard parameters at almost their best-fit vanilla ΛCDM values and ε
and fdr∗ almost zero receive quite a large weight. However, as explained above and seen in
figure 2, with larger ωb and ωc one can compensate the changes caused by non-zero ε and
fdr∗. This results in a long tail at large ωb and ωc, reflected as a long tail at small values of
r∗, DA∗, and t0 and large values of H0. Adding high-multipole TE+EE data and/or D/H
prior significantly reduces these tails.

4.2 Allowing the number of relativistic degrees of freedom Neff to vary

We also consider a case where the number of relativistic degrees of freedom Neff other than
photons and dr is not fixed to the standard value 3.046, but is left as a free parameter.
(The value could be higher if there are new light degrees of freedom, and smaller if there
are late decaying particles that contribute more to photons than neutrinos [29, 43].) The dr
constraints weaken by less than a factor of 1.5. The range of Neff changes from the vanilla
ΛCDM+Neff result 3.01 < Neff < 3.20 to the dr+Neff result 1.57 < Neff < 5.05 for TT+lowP,
and from 2.62 < Neff < 3.17 to 2.64 < Neff < 3.77 for the maximal dataset, as shown in figure
4. The fraction fdr∗ is negatively correlated with Neff , as their effect is similar. However, the
correlation between ε and Neff is instead positive. This is somewhat surprising, especially as
ε and fdr∗ are positively correlated for the TT+lowP dataset, and for extended datasets their
correlation is small (see the fourth panel of figure 1). The reason may be that for a fixed
fdr∗, a larger ε decreases the impact of dr at times before decoupling. This interpretation is
supported by the last panel of figure 4, which indicates that the larger the value of Neff the
later (closer to last scattering surface) the photon-dr coupling is allowed to be turned on;
compare also − log10 zi in the dr and dr+Neff cases in figure 3.

There are constraints on Neff from big bang nucleosynthesis (BBN), but because chang-
ing the temperature-redshift relation also affects nucleosynthesis, they cannot be translated
into constraints on fdr∗ or ε without redoing the BBN analysis [1]. In fact, for zi > 108 we
should in principle take into account the effect of the dr on BBN, as it could change the
hydrogen and helium abundances at decoupling. However, we expect that this would have
only a small effect on our results, as the amount of dr at early times is typically small in
comparison to the usually allowed range of Neff .

4.3 Treating dark radiation as an ideal fluid or neglecting the dr perturbations

Considering dr as an ideal fluid, i.e. neglecting anisotropic stress and higher moments in the
Boltzmann hierarchy, does not have a large effect. In the ideal fluid case, the constraints on ε
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Figure 5. Comparison of degeneracies of parameters with ε (top 3 rows) and with fdr∗ (bottom 3
rows) in three different treatments of dr perturbations with our minimal and maximal datasets.
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are almost unchanged, but the constraint on fdr∗ tightens slightly to fdr∗ < 0.18 (fdr∗ < 0.08
for the maximal dataset), as listed in table 1. It might have been expected that dropping
the anisotropic stress would have made both constraints weaker, on the grounds that if the
data do not prefer dr, then decreasing its impact on the physics would be favoured, but this
is not the case.

Neglecting the dr perturbations altogether has a larger effect, and again the impact on
fdr∗ is more pronounced: the constraints become tighter, fdr∗ < 0.06 (fdr∗ < 0.04 for the
maximal dataset). In other words, if adding dr to the background makes the fit worse, then
its perturbations act in the opposite direction, weakening the constraints. (Note that the
perturbative description does not involve any additional parameters.) Also, the correlation of
ε and fdr∗ with many standard parameters becomes weaker when perturbations are ignored,
and the ideal fluid case lies between the full case and the background-only treatment, as
shown in figure 5. Regardless of the treatment of perturbations, the goodness-of-fit is not
improved by the presence of dr.

4.4 Comparison to existing CMB constraints; allowing ε < 0

The Planck analysis [15], which considered only a change in the background, obtained the
constraint ε = (−0.2± 1.4)× 10−3 (−3.0× 10−3 < ε < 2.6× 10−3) for TT+lowP+BAO data,
and ε = (−0.4 ± 1.1) × 10−3 (−2.6 × 10−3 < ε < 1.8 × 10−3) for TT,TE,EE+lowP+BAO
data. In the Planck analysis, ε was allowed to have either sign. It was also different in that
there was no dr, in which case ε 6= 0 also affects the scaling of the total background radiation
energy density. In table 2 we compare our results to those of the Planck collaboration. In
order to make the models more comparable, we also consider our model in the case where
negative values of ε are allowed.

When ε is negative, we need to make sure that the dr density today remains positive.
Therefore, according to (2.17), we introduce a prior requirement (1 − fdr∗)a4ε

ref < 1 between
ε and fdr∗. In addition, with ε < 0, we always set zi = 1029. The first condition reduces the
prior parameter space volume of the negative ε models compared to the positive ε case. The
second condition disfavours large negative values of ε, since the interaction is turned on very
early, compared to the positive ε models, where zi is sometimes much closer to last scattering.
Despite the large difference in the models, in all cases our constraints on ε are of the same
order of magnitude as those obtained by the Planck collaboration, as seen in table 2.

TT+lowP TT,TE,EE+lowP
+BAO +BAO+D/H +BAO +BAO+D/H

1000ε : Full dr (ε ≥ 0; our main case) (0; 4.4) (0; 1.6) (0; 2.0) (0; 1.3)
Full dr (ε < 0 allowed) (−1.4; 4.5) (−0.4; 1.6) (−1.0; 2.0) (−0.3; 1.4)
No dr perturbations (ε < 0 allowed) (−0.7; 4.4) (0.1; 2.6) (−0.4; 3.5) (0.1; 2.1)
Planck collaboration [15]; no dr,

background ρ̄γ ∝ (1 + z)4(1+ε) (−3.0; 2.6) (−2.6; 1.8)

Table 2. The posterior 95% C.L. intervals for 1000ε. The first line repeats our main results with
ε ≥ 0 from table 1. On the next two lines we report constraints in our model when we allow negative
values of ε. The last line lists the constraints obtained by the Planck collaboration for a different
model, where only the background scaling of ργ was modified [15].
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5 Conclusions

Tight constraints on temperature scaling. We have tested deviations from the stan-
dard temperature-redshift relation of the form T ∝ (1 + z)1+ε using CMB anisotropies, with
changes to the perturbation equations taken into account for the first time. The Planck
collaboration considered such a test, but looked only at the effect of the change of the back-
ground [15]. Assuming a blackbody spectrum, such a change is equivalent to modifying the
distance duality relation as DL = (1 + z)2(1+ε)DA. We have used the CMB anisotropies
as measured by the second data release of Planck (published in the Planck Legacy Archive
in July 2015), supplemented by BAO data [38] and measurements of deuterium abundance,
D/H=(2.53 ± 0.04) × 10−5 [39]. Such a test presents a major increase in the redshift range
compared to constraints from absorption lines and the tSZ effect, which go up to z = 3.025.
In a sense, the test extends even earlier than the last scattering surface at z = 1090, because
a modified scaling relation changes the evolution of the photon density at early times, which
has an impact on the dynamics at last scattering.

Including perturbations makes the treatment more model-dependent. We have simply
added a species of dark radiation (dr) particles, into which photon energy density is trans-
ferred, to obtain a consistent set of equations. The total energy density of photons plus
dr particles evolves as in the usual case (∝ a−4), so our dr is not directly limited by the
constraints on the number of extra relativistic degrees of freedom Neff [29]. The model also
involves the parameter fdr∗, which measures the ratio of the dr energy density to the sum of
dr and photon energy densities around last scattering. Compared to the observations of ab-
sorption lines and the tSZ effect, the CMB anisotropies strengthen the limit on ε by an order
of magnitude, from −24× 10−3 < ε < 11× 10−3 to ε < 1.8× 10−3 for TT+lowP+D/H and
ε < 1.3 × 10−3 for our maximal dataset TT,TE,EE+lowP+BAO+D/H. The corresponding
limits on fdr∗ are fdr∗ < 0.128 and fdr∗ < 0.095. Details of the constraints for different data
combinations are given in table 1.

In addition to calculating the dr Boltzmann hierarchy self-consistently, we have consid-
ered two alternative treatments: truncating at the ideal fluid level or neglecting dr perturba-
tions altogether. Treating dr as an ideal fluid makes negligible difference on ε and a moderate
difference on fdr∗, while dropping perturbations altogether loosens the upper limit on ε to
2.5 × 10−3, but tightens the limit on fdr∗ to 0.050 for TT+lowP+D/H. For the maximal
dataset we find without dr perturbations ε < 2.1 × 10−3 and fdr∗ < 0.036. In other words,
including perturbations does not have a large impact on ε, but (unlike one might naively
expect) ignoring them may lead to artificially tight constraints on fdr∗. Another model with
the same background T (z) relation could have very different perturbation dynamics, leading
to stronger or weaker constraints. However, our results show that it is at least possible to
construct a consistent perturbative model where considering only the background captures
the effect of ε on the CMB anisotropies, to within a factor of two, providing an estimate of
the reliability of the analysis of the Planck collaboration, where perturbations were not taken
into account [15].

The role of degeneracies. The CMB anisotropies are highly sensitive to changing the
temperature-redshift scaling, and the strength of the constraints is mainly limited by degen-
eracies: ε is particularly degenerate with the physical baryon density ωb and the physical cold
dark matter density ωc. If we fixed these and other cosmological parameters to their best-fit
vanilla ΛCDM values, the constraint on ε would be an order of magnitude stronger. Such
a constraint would be competitive with the one from distortion of the blackbody spectrum,
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which currently puts the strongest limit on possible changes to the temperature-redshift re-
lation [16], though it is possible to avoid it by suitably tuning the change in photon energy
and number density [11, 17].

In order to improve the constraints obtained from the CMB anisotropies, independent
measurements of some of the cosmological parameters that are most degenerate with ε and
fdr∗ are required. We have seen that a prior on D/H reduces the ωb degeneracy significantly.
An independent measurement of a low Hubble parameter, H0 . 69 km s−1Mpc−1, would also
further constrain dark radiation.
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A Modified sound horizon

The comoving sound horizon at redshift z is

r(z) =

∫ η(z)

0
cs(η̃)dη̃ , (A.1)

where cs is the sound speed in the photon-baryon fluid. The sound horizon is the distance a
sound wave has been able to propagate since the big bang. The sound speed is given by

c2
s =

δp

δρ
=

δpγ
δργ + δρb

=
˙̄pγ

˙̄ργ + ˙̄ρb
=

1

3

˙̄ργ
˙̄ργ + ˙̄ρb

. (A.2)

In the standard vanilla ΛCDM calculation we would replace ˙̄ρb by −3Hρ̄b and ˙̄ργ by −4Hρ̄γ ,
according to the continuity equations. However, in our model the continuity equation for
photons (2.5) contains ε. Hence, after using the continuity equations, the result is

c2
s =

1

3

1

1 + R
1+ε

, where R(η) =
3

4

ρ̄b(η)

ρ̄γ(η)
. (A.3)

In the case ε = 0 this reduces to the vanilla ΛCDM result. In our model, there is another ε
dependency hidden in the baryon-to-photon ratio R, namely

R =
3

4

ρ̄b0a
−3

ρ̄γ0a−4(1+ε)
=

3

4

ρ̄b0

ρ̄γ0
a1+4ε =

3

4

ωb

ωγ
a1+4ε = R0a× a4ε , (A.4)

where today’s baryon-to-photon ratio is R0 = 3
4 ρ̄b0/ρ̄γ0 = 3

4ωb/ωγ . With ρ̄γ0 = π2

15 T̄
4
0 and

T̄0 = 2.7255 K [30], we obtain ωγ = 2.4728 × 10−5. Substituting R from (A.4) to (A.3) and
this further to (A.1) leads to

r(z) =
1√
3

∫ a(z)

0

1√
1 + R0a1+4ε

1+ε

dη

da
da . (A.5)
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Here dη/da = ȧ−1, where ȧ is given by the Friedmann equation

ȧ = H0a
2
√

Ωr,tota−4 + Ωma−3 + ΩΛ ≈ H0

√
Ωr,tot + Ωma = H0

√
Ωm

√
aeq + a , (A.6)

where aeq = Ωr,tot/Ωm = ωr/ωm. As the range of interest is 0 < a . 10−3, we can ignore the
ΩΛ term. Since H−1

0 ≈ h−12998 Mpc, we find

r(z) =
2998 Mpc√

3ωm

∫ a(z)

0

1√
1 + R0a1+4ε

1+ε

1√
aeq + a

da (A.7)

=
2

3

2998 Mpc√
ωm

√
(1 + ε)ωγ√

ωb

∫ a(z)

0

[
a2+4ε + aeqa

1+4ε +
1 + ε

R0
a+

1 + ε

R0
aeq

]− 1
2

da . (A.8)

On the second line we have taken
√

(1 + ε)/R0 out from the integral and substituted R0

defined after (A.4). In the vanilla case the remaining integral is easy to calculate analytically,
and it is slightly less than unity. With ε 6= 0, there is no analytical solution. We have edited
CAMB to use (A.3) with R given by (A.4) when integrating the sound speed according to (A.1)
to find rdrag (needed when using the BAO data) and r∗, and when determining the derived
parameter H0 from the primary parameter θ∗ = r∗/DA∗ drawn by CosmoMC.

Result (A.8) is important in explaining why r∗ and rdrag are negatively correlated with
ε. Although there is an intrinsic positive correlation from the

√
1 + ε factor and ε terms in

the integral, the dominant dependence is ∝ (ωmωb)−1/2, since ε � 1. As explained in the
main text, both ωm and ωb are positively correlated with ε in well-fitting models, so r is
negatively correlated with ε.
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