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Abstract

Determining optimal units of representing morphologically complex words in the mental lexicon

is a central question in psycholinguistics. Here, we utilize advances in computational sciences to

study human morphological processing using statistical models of morphology, particularly the

unsupervised Morfessor model that works on the principle of optimization. The aim was to see what

kind of model structure corresponds best to human word recognition costs for multimorphemic Fin-

nish nouns: a model incorporating units resembling linguistically defined morphemes, a whole-word

model, or a model that seeks for an optimal balance between these two extremes. Our results showed

that human word recognition was predicted best by a combination of two models: a model that

decomposes words at some morpheme boundaries while keeping others unsegmented and a whole-

word model. The results support dual-route models that assume that both decomposed and full-form

representations are utilized to optimally process complex words within the mental lexicon.
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1. Introduction

A fundamental issue in cognitive science and psycholinguistics is the acquisition and

representation of language and its grammar. Is language learning based on inherent con-

straints (e.g., Chomsky, 1965; Lidz & Gagliardi, 2015; Yang, 2004), and to what extent

are general learning mechanisms capable of achieving the learning outcome (e.g.,

Ambridge & Lieven, 2015; Tomasello, 2003)? A related issue is whether the learned lin-

guistic representations are grammatically structured or arise organically from statistical

regularities of the input.

Morphology represents an area of language in which related words (e.g., clearly,

unclear) bear systematic correspondences between form and meaning. Cognitive models

of morphological processing have been developed to propose how these correspondences

are encoded in our mental lexicons and whether and when during word processing we

may utilize morphological information. The models have focused on whether morphologi-

cally complex words (inflected, derived, and compound words) are decomposed into their

meaningful constituents, morphemes (e.g., clear+ly; Rastle & Davis, 2008; Taft & For-

ster, 1975), or processed as whole units (e.g., clearly; Butterworth, 1983; Hay & Baayen,

2005). These two single-route frameworks that assume only one type of representation

have been challenged by dual-route alternatives (e.g., Diependaele, Sandra, & Grainger,

2005; Kuperman, Schreuder, Bertram, & Baayen, 2009; Niemi, Laine, & Tuominen,

1994; Schreuder & Baayen, 1995) which assume that both kinds of representations are

possible.

A central theme in the research on morphological processing has been the balance

between storage and computation. The question is whether it is more economical to store

frequently co-occurring units as wholes or to compute them online, and where the limits

for these two constraints are situated. The importance of chunking smaller elements and

sequences into larger, integrated units is not only central in psycholinguistics but also

more generally in cognitive science in topics such as memory and motor learning. Rele-

vant for this discussion is the concept of optimization, that is, determining the most opti-

mal units of representation, in terms of minimizing storage capacity and processing speed

(see, e.g., Kuperman, Bertram, & Baayen, 2010; Schreuder & Baayen, 1995). Finnish, for

example, is a morphologically rich language in which each noun has about 150 paradig-

matic forms, and various clitic particles can additionally be attached to these forms. Stor-

ing all these word forms as whole units is thus unlikely to be economical for the storage

capacity of the mental lexicon, suggesting that having them decomposed into morphologi-

cal constituents is a useful strategy for the cognitive system. However, decomposition

may entail a cost as well: Inflected Finnish words robustly elicit longer reaction times

(RTs), larger error rates, and a greater number of eye-fixations than matched monomor-

phemic words (Hy€on€a, Laine, & Niemi, 1995; Laine, Vainio, & Hy€on€a, 1999; Soveri,

Lehtonen, & Laine, 2007), suggesting that recognition of complex words is associated

with a processing cost. By taking these two assumed limits into account, what is the most

economical way to represent and process complex words? Here, we utilize computational

models based on statistical learning and optimization to investigate the balance between
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storage (memorizing words as wholes) and computation (online decomposition and

composition of word meanings) in the mental lexicon.

Computational models produce quantitative output that can be directly compared to

continuous performance measures such as RTs in a word recognition task. If this kind of

a model is able to successfully explain variation in a broad dataset measured using, for

example, a word recognition task, it is likely that the way the model is built can tell us

something essential about the cognitive processes in use when performing the task. Using

computational models also forces one to be explicit about the kind of computations that

give rise to these cognitive processes. Their quantitative nature makes them particularly

well suited for investigating nuanced and graded (as opposed to categorical) effects that

are likely to be relevant to the human cognitive system. In computational modeling, unsu-

pervised statistical models utilize general learning principles to discover structure from

the input and therefore mimic a situation in which the environmental input is central in

learning of linguistic regularities such as morphology. Supervised models provide an

interesting comparison point, as they, in turn, can be trained on pre-given linguistically

structured input.

Computational models have been utilized to study a wide range of topics in language

processing, such as word recognition building on the assumption that participants perform

as Bayesian decision-makers (Norris, 2006), bilingual aphasia using self-organizing maps

(Grasemann, Kiran, Sandberg, & Miikkulainen, 2011), and sentence processing with mod-

els based on either hierarchical or sequential sentence structure (Frank & Bod, 2011).

With regard to morphological effects in word recognition, previous computational model-

ing research has not always taken morphemes as relevant units of processing. Instead,

morphological effects have often been modeled, for example, by distributed-connectionist

implementations (see, e.g., Rueckl, 2010; for a review) which assume that such effects

can be explained by form-meaning regularities coded in the hidden units within the

model. While connectionist models have succeeded in predicting some psycholinguistic

effects and are grounded in the idea of neural networks capable of learning, their typical

learning mechanism, back-propagation, has been criticized for its psychological and bio-

logical implausibility (O’Reilly, 1998, 2001).

Utilizing concepts from information theory in modeling lexical processing has, how-

ever, proved to be a promising approach, assuming processing costs of words to be pro-

portional to the amount of information carried by them (see, e.g., Kosti�c, 1991; Milin,

Kuperman, Kostic, & Baayen, 2009; Moscoso del Prado Mart�ın, Kosti�c, & Baayen,

2004). The paradigmatic view has taken lexical words instead of morphemes as the

basic linguistic units in the lexicon and assumes that lexical processing is influenced by

probability distributions of inflectional paradigms and classes (Milin, Ður�devi�c, & del

Prado Mart�ın, 2009; Milin, Kuperman et al., 2009; Moscoso del Prado Mart�ın, Kosti�c,
& Baayen, 2004) as well as morphological families (Moscoso del Prado Mart�ın, Ber-
tram, H€aiki€o, Schreuder, & Baayen, 2004; Schreuder & Baayen, 1997). Another, more

recent amorphous approach is the Naive Discriminative Reader model (Baayen, Milin,

Ður�devi�c, Hendrix, & Marelli, 2011; Baayen, Shaoul, Willits, & Ramscar, 2016). It

applies a principle of discriminative learning via a simple network structure that maps
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orthographic or phonetic input units directly to symbolic semantic units without hidden

layers. The model does not incorporate morphemes or even words in its architecture but

assumes that discriminative cues present in the visual input are enough to map the input

to correct meanings (for a detailed description of this model, see Appendix S1). The

present study, in contrast, focuses on computational models that start from the assump-

tion that morpheme-like elements may be relevant units of representation within the

mental lexicon.

One fundamental cognitive principle that is relevant within the computational language

processing framework is the minimization of processing cost. According to the principle

of least effort (Zipf, 1949), people expend the least effort possible in communicating a

concept. For example, speakers often use economy in their articulation, which tends to

result in phonetic reduction of speech forms. In computational linguistics, the principle of

least effort has been captured, for instance, using the information-theoretic Minimum

Description Length (MDL) principle (Rissanen, 1978, 1989). John Goldsmith, the inven-

tor of Linguistica (Goldsmith, 2001), the first MDL-based learning model of morphology,

describes the problem that a child faces when learning a language—including what are

the words, their constituent morphemes, and the syntax of a language—as complex

enough that only a suitable computational optimization approach could in principle solve

it: “It seems to me that the only manageable kind of approach to dealing with such a

complex task is to view it as an optimization problem, of which MDL is one particular

style” (Goldsmith, 2001, p. 190). A computational optimization method might thus inform

the selection of optimal units of representation of morphologically complex words in the

mental lexicon. The MDL principle has previously been successfully applied to studying

acquisition of grammar (Hsu & Chater, 2011).

We utilize a statistical model, Morfessor, that is inspired by the information-theoretic

MDL principle. The model is trained in an unsupervised and language-independent man-

ner, offering a description of how the learning of a morphology system might take place.

This model was developed on the hypothesis that significant parts of morphological pro-

cessing can take place via unsupervised learning.

We compare the model that attempts to find optimal lexical units in an unsupervised

manner to a supervised model which is based on linguistically defined morphemes and to a

model assuming whole-word representations. Using this approach, we aim to provide a

view on the nature of the optimal units of representation within the human mental lexicon.

We compare the performance of statistical models by using psycholinguistic word

recognition data that reflect the processing and storage cost of individual words in adults.

Information theory provides a way to relate the probabilities given by statistical language

models to the measures of cognitive processing cost of humans. Specifically, word recog-

nition times are correlated to the self-information, or “surprisal,” which refers to the

extent to which a word came unexpected to a reader or listener (Frank, 2013). Self-

information has previously been studied, for example, in the context of sentence process-

ing (Frank, Otten, Galli, & Vigliocco, 2015; Hale, 2001; Levy, 2008) and auditory word

recognition (Balling & Baayen, 2012; Ettinger, Linzen, & Marantz, 2014). Self-informa-

tion of a word is the negative logarithm of its probability estimated by a statistical
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language model. It can be considered as a cost of constructing or retrieving the word

form: It corresponds to the minimum number of bits required to encode the word using

the model. Typically self-information of a word is considered in its sentential context;

here we consider it in the case of independent word forms. By utilizing self-information

estimates, we can calculate cognitive prediction accuracy of the language model, that is,

how well a language model is able to predict a measure of cognitive effort of word

processing such as RT.

1.1. Morfessor

A specific computational model of morphology that we utilize is Morfessor (Creutz &

Lagus, 2002, 2005a,b, 2007), in which learning is driven by the information-theoretic

MDL principle. Morfessor has proven successful in various engineering tasks related to

language, for example by improving speech recognition accuracy in strongly agglutinative

languages such as Estonian, Finnish, and Turkish (Creutz et al., 2007; Hirsim€aki et al.,
2006). Although largely developed for engineering purposes, its initial inspiration came

from cognition, viewing the brain as an efficient information-processing device that is

likely to exhibit a principle of compact encoding of information. Morfessor creates a

model of word structure based on observed words and analyzes the morphological struc-

ture of new words.

Morfessor learns agglutinative morphology without supervision, that is, without pre-

given labels or feedback. It does not limit the number of morphs per word and is thus

suitable for modeling complex morphology. While the probabilistic models applied by

Morfessor can also be trained in a supervised manner with pre-segmented linguistic

morphs as input, the main benefit of the method is its ability to learn segmentations of

words from unannotated data. First, it stores word forms as wholes (assuming “one word

is one morph”; e.g., build, builder). Then it can utilize these stored “morphs” in segment-

ing other incoming words: For example, after storing build, encountering builder will lead
to storing also -er from builder separately, which can then be used in segmenting other

words. The segmentation results are affected by the number of different morphs in the

input (the different inflectional and derivational forms and compound words sharing the

particular stem or affix). It searches for a segmentation which is simultaneously compact

and provides an accurate description of the data.

Here, an accurate description can be considered as having a low average self-informa-

tion (surprisal) over the words in the data. An extremely compact lexicon would include

only letters, but it would provide a poor representation of the data, as the letters would

need to be retrieved one by one. In contrast, an extremely accurate description would be

provided by a lexicon of all the word forms in the data, but then the lexicon would be

huge. Moreover, representing new word forms, or in other words, generalizability to new

data, would then be a problem. The optimal balance between these two extremes is found

by using a cost function based on the two-part coding scheme of the MDL principle by

Rissanen (1978): The first part measures a cost of storage for the lexicon (a larger lexicon

increases the cost), while the second part is related to the cost of computation of the data
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(more holistic units reduce the cost). Without the first part, all words would be stored

only as whole units, hampering understanding of novel words consisting of the same mor-

phemes.

1.2. The present study

Here, we apply Morfessor and the self-information estimates it produces to

human morphological processing, and specifically address the controversial question of

the optimal units of representation and processing in the mental lexicon. We aim to

see whether the optimization principle that Morfessor utilizes leads to better

correspondence with human word recognition RTs than other comparable, supervised

models that build their lexicons on linguistically defined morphemes or solely on full

forms. Morfessor is based on statistical morphs, and its default version allows

some words to be segmented at their morpheme boundaries while keeping other

morpheme boundaries unsegmented. We also specifically manipulate the emphasis the

different Morfessor instances place on the cost of storage (full-form representations)

versus the cost of computation (decomposition). This allows a closer evaluation within

the same model type, on the optimal units of representation in the human mental lexi-

con.

Morfessor has previously been studied in a psycholinguistic setting by evaluating how

well predictions of unsupervised Morfessor models correlated with the RTs for a set of

monomorphemic and bimorphemic inflected Finnish nouns (Virpioja, Lehtonen, Hult�en,
Salmelin, & Lagus, 2011). The results were compared with predictions of letter-based

n-gram models and a number of variables known to affect RTs. Our current study builds

on this preliminary investigation, but considers a larger and more varied set of test words

and uses mixed-effect regression modeling in the evaluation. We compare Morfessor to

other statistical models which also produce self-information estimates, but have different

underlying assumptions about the units of representation in the lexicon. For this purpose,

we utilize supervised models (morph n-gram models) in which linguistically motivated

morphological segmentations based on a morphological analyzer are given to the model.

The performance of these morpheme-based models is compared to a word unigram model

that only includes whole word forms.

Our hypotheses reflect the predictions that the two kinds of single-route models (full

decomposition or full storage) versus dual-route models of morphological processing

make about the mental lexicon. If, as the full decomposition models predict, the human

word recognition system decomposes words exhaustively into morphemes and utilizes

them as primary processing units (e.g., Taft, 2004), we should observe a high correspon-

dence between values derived from morph n-gram models and RTs. Conversely, if the

mental lexicon relies on full-form representations, RTs should correlate highly with self-

information estimates of a word unigram model. Dual-route models, in turn, assume that

the RT should be best predicted by the optimal units discovered by the unsupervised

MDL principle (which may not always correspond to distinct linguistic morphemes), here

implemented by the Morfessor Baseline model.
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Crucially for the present question of optimal balance between storage and computation

in morphological processing, Morfessor has an interesting but so far unexplored property

that it enables manipulating the way in which the model emphasizes decomposition to

morphemes versus full-form storage by settings of a single hyper-parameter in the model

(Kohonen, Virpioja, & Lagus, 2010; Virpioja, Kohonen, & Lagus, 2011). A small value

of the hyper-parameter provides a lexicon of short units (or “morphs” that the model

stores), whereas a large value leads to a lexicon of long units. By varying the hyper-para-

meter, it is possible to investigate, within the same model type, the emphasis on full

forms versus on decomposed parts that produces the best correspondence to human word

recognition times.

Importantly, we also take into account the models’ cross-entropy and

complexity which both affect their performance in predicting word recognition RTs.

Empirical cross-entropy, which is a standard evaluation measure for statistical lan-

guage models in computational linguistics, estimates how unexpected a certain text

corpus is with regard to the model trained by other text data (text prediction

accuracy).

Cross-entropy is the average self-information (surprisal) over all words in the text, here

over our stimulus words. Thus, it gives an estimate on the text prediction accuracy for

the model. Humans have been shown to be effective in predicting linguistic material. For

example, low cross-entropy values have been associated with a high accuracy in predict-

ing reaction times in sentence processing (Fossum & Levy, 2012; Frank, 2009; Frank &

Bod, 2011). Therefore, models that apply the principle of optimizing cross-entropy (for

example, any statistical models that apply maximum likelihood or maximum a posteriori

estimation) are likely to work better in predicting cognitive processing costs than models

which do not have this feature built in them. We are not interested in models that

improve cognitive prediction accuracy just by improving cross-entropy, as it is not likely

to provide many new revelations regarding language processing of humans. Instead, if we

have multiple models that are equally good at text prediction but use different internal

representations and one is better at predicting reaction times of humans, it suggests that

the representations included in that particular model are similar to those applied by

humans.

To summarize, we use self-information estimates from computational models to inves-

tigate the optimal units of processing that adults use for recognition of morphologically

complex words. We study whether the best correspondences to lexical decision RTs are

provided by a supervised model based on linguistic morphs, by a model incorporating full

form representations only, or by an unsupervised model that finds an optimal balance

between these two alternatives. With these model comparisons, we aim to test dual- ver-

sus single-route models of morphology, that is, whether all words are exhaustively

decomposed into morphological constituents or whether full-form representations are

accessed for some or all complex words. We expect a comparison of these computational

models to shed light on the optimal balance of storage and computation in human mor-

phological processing.
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2. Methods

In this section, we describe how the psycholinguistic experiment and the statistical

models were set up and selected, and how the correspondence between the two was eval-

uated, using a regression model. We were interested in how well the different language

models are able to predict the reaction times in psycholinguistic data sets (cognitive pre-

diction accuracy). In the interpretations, we also took into account the models’ cross-

entropy, that is, text prediction accuracy, as well as the manner they segment the words

compared to linguistic segmentations. The work flow and chronological order of the dif-

ferent steps are described in Fig. 1.

2.1. Psycholinguistic data

We applied two psycholinguistic data sets: the reaction time data reported by Lehtonen

et al. (2007) and a new data set collected for the purpose of the present study. The for-

mer was used as a development set for selecting suitable parameters for the evaluated

model types. The study was approved by the Institutional Review Board of the Center for

Fig. 1. Flowchart of the different stages of the analysis. The study contains two main sets of data: psycholin-

guistic data and data from statistical language models. All the models were trained (1) on the Morpho Chal-

lenge 2007 corpus, whereafter parameters for each model were optimized using novel corpus data (2) and a

subset of the psycholinguistic data (3) not used in the final evaluation. The relationship between human mor-

phological processing (quantified in terms of reaction times) and statistical language model performance (esti-

mated in terms of self-information) was evaluated in a regression model together with a number of control

variables that were both setup-specific and word-specific (4).

8 S. Virpioja et al. / Cognitive Science (2017)



Cognitive Neuroscience, University of Turku, the Helsinki and Uusimaa Hospital District

Ethics Committee, and the Aalto University Research Ethics Committee. All participants

gave their written informed consent.

In the lexical decision study of Lehtonen et al. (2007), used as the development set, 16

native Finnish-speaking participants (8 females; mean age 24.7, SD: 2.39) were instructed

to decide as quickly and accurately as possible whether a letter string was a real Finnish

word or not, and to press the corresponding button. The stimuli included 320 real Finnish

nouns composed of 80 high-frequency monomorphemic, 80 high-frequency inflected, 80

low-frequency monomorphemic, and 80 low-frequency inflected words, extracted from an

unpublished Turun Sanomat newspaper corpus of 22.7 million word tokens by using a

search program (Laine & Virtanen, 1996). The inflected words were bimorphemic. The

words were interspersed by altogether 320 pseudowords. The elements in the pseu-

dowords could include both real morphemes and pseudo-morphemes. The lengths and

bigram frequencies (average frequency of letter bigrams) were similar for words and

pseudowords. The letter-string length was 4–11 letters (mean 6.2, standard deviation 1.2).

For additional details, please see Lehtonen et al. (2007).

For the new data set, 46 native Finnish speaking adults (38 females; mean age 27.2,

SD: 6.5) participated in a lexical decision experiment similar to Lehtonen et al. (2007).

They were recruited via university mailing lists. For 22 of these participants, eye-move-

ments were also measured during the task; those data will be reported elsewhere. All

participants reported having normal or corrected-to-normal vision and reported no

language-related difficulties or neurological illnesses.

The stimuli in the new data set consisted of 300 unique nouns that were randomly

selected from the list of word types in the Morpho Challenge 2007 corpus (Kurimo,

Creutz, & Varjokallio, 2008). The same corpus was also used for training of the statistical

models and analyzed by the morphological analyzer FINTWOL by Lingsoft, Inc. Words

that were ambiguous or had a linguistically problematic analysis were replaced with new

ones. Because of the Zipfian distribution of the words (Zipf, 1932), obtaining almost any

high-frequency nouns in such a sample is unlikely. Thus, the sample was complemented

with 60 randomly picked word forms of relatively high frequency. For the complete set,

the word length was 4–16 letters (mean 10.3, SD: 2.8) and the number of morphemes 1–
5 (mean 2.8, SD: 1.1). For other characteristics of the words, see Table 1. The mor-

phemes included stems, inflectional and derivational suffixes, and clitic particles. Com-

pound words were excluded from the sample. For the purpose of the task, we also

included 360 pseudowords that followed the phonotactic rules of Finnish and had similar

length to the real words.

Each trial began with an asterisk appearing in the middle of the screen for 500 ms,

and the participants were to fixate their eyes on it. The asterisk was followed by a

500 ms blank screen, after which a stimulus item appeared. The item was visible for

1,500 ms after which an asterisk reappeared. The stimuli were divided into 6 blocks, with

a short break between blocks. The order of the blocks was counterbalanced across partici-

pants, using a Latin Square. Before the experiment proper, a short practice session
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(consisting of 16 stimuli not included in the actual experiment) was administered in order

to familiarize the participants with the task.

As preprocessing in both data sets, we excluded all incorrect responses and reaction

times of three SDs longer than each participant’s mean; suspiciously short responses were

not observed. The RTs to pseudowords were not included in the analyses. In the new

dataset, data of two real-word items that had the same root (“sikaloitaan,” “sikamaisuut-

taan”) and of two identical pseudoword items (“vihulkaisuuteen”) were discarded from all

analyses. For the remaining data, we took the logarithm of the reaction times.

2.2. Statistical language models

In addition to our primary model of interest, Morfessor, we evaluated three other statis-

tical models: two so-called morph n-gram models (morph unigram and morph bigram)

and a word unigram model. An overview of the properties of the different models is

Table 1

Statistics of control predictors and language model predictors over the stimulus words

Predictor Range Mean (SD) Size ~H q �ΔD

Number of letters (log) 4–16 10.3 (2.8) – – +0.625 182.8
Number of morphs (log) 1–5 2.8 (1.1) – – +0.462 87.8
Surface frequency (log) 1–6,994 102.9 (548.7) – – �0.595 156.8
Lemma frequency (log) 1–54,447 2,215.3 (5218.6) – – �0.302 33.8
Morph. family size (log) 1–5,826 391.5 (791.4) – – �0.255 23.2
Inflectional entropy 1.2–8.6 4.8 (1.7) – – +0.279 28.5
Relative entropy 0.2–8.6 2.3 (2.1) – – +0.573 41.2
NDR 0.8–18.4 8.3 (2.8) – – +0.573 143.6
Word unigram 12.6–14.7 14.2 (0.6) 2.2 9 106 1.880 +0.596 157.5
Morfessor a = 10 10.4–16.7 15.7 (1.1) 2.0 9 106 2.038 +0.616 170.8
Morfessor a = 5 9.0–23.1 15.9 (1.9) 1.7 9 106 2.022 +0.542 125.3
Morfessor a = 2 8.6–29.5 17.5 (3.9) 6.9 9 105 2.099 +0.526 118.0
Morfessor a = 1 8.7–35.3 18.8 (4.5) 2.7 9 105 2.229 +0.647 195.0
Morfessor a = 0.8 8.7–35.7 19.0 (4.5) 2.1 9 105 2.254 +0.659 205.8
Morfessor a = 0.5 8.7–34.9 19.5 (4.7) 1.2 9 105 2.322 +0.640 191.0
Morfessor a = 0.2 8.7–37.1 20.5 (5.1) 5.5 9 104 2.448 +0.619 175.7
Morfessor a = 0.1 8.7–38.2 21.2 (5.5) 3.1 9 104 2.538 +0.597 159.5
Morfessor a = 0.05 8.7–40.5 21.9 (5.8) 1.8 9 104 2.620 +0.588 154.1
Morfessor a = 0.02 8.8–43.6 23.0 (6.4) 8.5 9 103 2.742 +0.577 146.8
Morfessor a = 0.01 8.7–49.9 24.1 (6.6) 4.7 9 103 2.902 +0.557 135.3
Morph unigram 8.9–41.1 22.9 (5.9) 6.3 9 104 2.782 +0.567 141.7
Morph bigram 8.6–29.4 15.7 (2.8) 8.6 9 105 1.944 +0.620 176.3

Note. The columns show range, mean, and standard deviation of a variable, size and empirical cross-entropy
~H of a language model, correlation q to the average reaction time, and decrease in deviance D for a regression

model with random intercepts for participant and word, and word order number with subject-specific random

slope as a control variable. All correlations are statistically significant (p << .05). Control variables with

“log” have been transformed by the logarithmic function ln(1 + x) prior to estimating correlation and regres-

sion model.
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presented in Table 2. The details of the mathematical implementation of each model in

the present study are reported in Appendix S1.

We focus on the simplest variant of the Morfessor methods, Morfessor Baseline

(Creutz & Lagus, 2002, 2005b). It incorporates very little prior knowledge on human

languages. We compare Morfessor to particular other statistical models that provide

self-information estimates: a morph unigram model, a morph bigram model, and a word

unigram model. The supervised morph unigram model is based on linguistically moti-

vated morphological segmentations that are given to the model. This model has a similar

structure as Morfessor as they both assume that morphs occur independently of one

another; that is, a given morph is not predicted by the surrounding morphs. The morph

bigram model is also on linguistic morphemes, but it predicts the upcoming morph on the

basis of the previous one, and it has a more comparable cross-entropy with Morfessor

than the morph unigram model. Finally, we compare these models to a word unigram

model based on whole words, representing the costs associated with a lexicon of only full

form representations.

The unsupervised Morfessor Baseline method (Creutz & Lagus, 2002, 2007) depends

on the optimization of storage (as compact as possible) and an accurate description of the

data. In accordance with the MDL principle, modeling is viewed as a problem of how to

encode a data set efficiently in order to transmit it with a minimal number of bits. In con-

trast to the segmentation methods based on low-transitional probabilities between segment

boundaries (Hafer & Weiss, 1974; Harris, 1955; Saffran, Newport, & Aslin, 1997),

criticized by Baayen et al. (2016), Morfessor is not based on the local transitional

probabilities but global probabilities of the segments. For example, although there is a

low-transitional probability boundary between “pan” and “cake,” Morfessor trained on an

English corpus is likely to keep the compound together as “pancake,” as p(pancake) is

significantly higher than p(pan) 9 p(cake) and is thus supported by the MDL criterion.

The same learning criterion can be used to find lexical constructions that consist of multi-

ple words (Lagus, Kohonen, & Virpioja, 2009).

The outcome of the model optimization is dependent on the training data. In particular,

increasing the size of the training corpus will produce a larger lexicon and longer lexical

units (Creutz & Lagus, 2007; Virpioja, Kohonen et al., 2011). Let us assume that the ini-

tial corpus is doubled without entering any new word forms; that is, the same words are

presented several times. This will double the cost of the computation (second part of cost

Table 2

Evaluated language models categorized by their units of representation and the structure of the statistical model

Model Units

Model Structure

Context-independent Context-dependent

Statistical morphs Morfessor Baseline –
Linguistic morphs Morph unigram Morph bigram

Surface word forms Word unigram –
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function) if the model parameters (i.e., the lexicon; first part of cost function) are not

changed. The MDL criterion will balance the increase by favoring a more accurate

model, which means including longer units in the lexicon. Longer lexical units mean an

increase in the number of lexical units.

The size of the lexicon can be explicitly controlled by including a hyperparameter a,
which modifies the weight of the training data in the optimized cost function and thus

influences the size of the morphological units (Kohonen et al., 2010; Virpioja, Kohonen

et al., 2011). That is, the parameter modifies the balance between the size of the lexicon

and efficient description of data. By systematically manipulating the parameter a, we

study how much the human cognitive system emphasizes a compact lexicon and process-

ing efficiency in the human cognitive system. The extreme version of a compact lexicon

would store all words as decomposed into single letters, whereas the most efficient pro-

cessing would be achieved if all words are stored as holistic full form units. In Morfessor,

a small value of a means that a greater number of observations are needed to store the

input as it is encountered (e.g., as holistic units). Roughly speaking, the a parameter

determines how sensitive the system is to storing repeatedly observed morpheme combi-

nations.

With our training corpus, a large a value of 10 will result in long units correspond-

ing to the full form word unigram model, whereas, a smaller value of 0.01 leads to

decomposed units closest to linguistic morphs according to our investigations (see

Fig. 2 and the section on linguistic segmentation accuracy below). Either these

extremes or some value between the two may thus be able to capture the unit size that

is most relevant to human word processing. We therefore trained several model

instances between the extreme a values of 10 and 0.01 to study the effect on reaction

time prediction.
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Fig. 2. Evaluation of Morfessor Baseline segmentations against linguistic reference segmentation. Increasing

the likelihood weight a increases the length of the segments induced by the model, resulting in higher preci-

sion (fewer boundaries in within a linguistic morph) and lower recall (fewer boundaries between two linguis-

tic morphs).
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However, changing the weight hyper-parameter will also affect the size of the model.

A large model inherently has a lower cross-entropy and therefore also a better text pre-

diction accuracy (see Table 1). Since previous studies on sentence processing have

implied that the text prediction accuracy may covary with the cognitive prediction accu-

racy (Fossum & Levy, 2012; Frank & Bod, 2011), we must make sure that any differ-

ences between the models’ ability to predict human reaction times is not merely a direct

consequence of the model size or cross-entropy. We therefore included cross-entropy as a

relevant criterion in assessing theoretically interesting models with which to compare the

Morfessor performance on predicting human reaction times.

The Morfessor model family is cognitively inspired and follows the principle of mini-

mization of processing cost. We thus hope that the unsupervised learning algorithm of

the Morfessor finds segmentations of words that have cognitive relevance. We know from

previous studies on Morfessor (Creutz & Lagus, 2007; Virpioja, Kohonen et al., 2011)

that the segmentation boundaries typically follow the boundaries of linguistic morphs, but

that there are also differences. Thus, it makes sense to compare the performance of the

Morfessor model to similar models trained in a supervised manner on linguistically moti-

vated morphs.

The supervised morph unigram model determines the morphological unit based on

rule-based linguistic morpheme borders. That is, the morph boundaries for the data set

based on the morphological parser and the model parameters are estimated from the

entire data set, before applying the model for the calculation of the probability for the

words. An n-gram model is an (n�1)th order Markov model. The unigram model (n = 1)

therefore assumes that the units occur independently and is in this respect similar to the

Morfessor Baseline model. However, the unigram model has a larger cross-entropy than

Morfessor at any a value above 0.02 (Table 1). A better comparison to Morfessor in this

respect is offered by the morph bigram model which has more comparable cross-entropy

values but is still based on linguistically defined morphemes. In this model, morphs are

not context-independent: A given morph is predicted by the previous one.

The final model, the word unigram model, was chosen as it captures the probability of

a word form as estimated based on its frequency in the training data. This model entails

no morphological segmentation, as each word is represented in its full form.

2.2.1. Model training and optimization
The language models were trained on the Morpho Challenge 2007 data set distributed

in the Morpho Challenge 2007 competition (Kurimo et al., 2008), available from

http://morpho.aalto.fi/events/morphochallenge/. The Finnish-language corpus has been

collected from World Wide Web as a part of the Wortschatz collection (Quasthoff, Rich-

ter, & Biemann, 2006). The number of word types in the corpus is 2,206,719, and the

number of word tokens is 44,076,925.

The morphological analysis required by the supervised morph n-gram models was

performed by the morphological analyzer FINTWOL by Lingsoft, Inc. It applies the two-

level morphology model by Koskenniemi (1983). FINTWOL was able to analyze 1.7 mil-

lion of the 2.2 million words. The rest of the words—mostly proper nouns, foreign words,
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and misspelled words—were discarded. The analyzer is highly accurate; for example, the

360 word forms in our development set, selected independently of the analyzer’s output,

were all correctly analyzed. The analyses were further processed using the automatic

tools by Creutz and Lind�en (2004) to obtain both linguistic morphemes and the corre-

sponding segments (morphs) for each word.

The smoothing methods for the n-gram models, described in Appendix S1 of the Sup-

plementary Material, were selected based on the psycholinguistic development set. For

the optimization of the discount parameters used by the smoothing methods we used a

corpus consisting of the Finnish subtitles of a single movie (High Fidelity; 2,478 word

types and 6,614 word tokens) from the OpenSubtitles corpus collected from http://www.

opensubtitles.org/ (Tiedemann, 2009). The development corpus has to be small for com-

putational efficiency, and selecting a domain that differs from the training corpus helps to

avoid overfitting.

It is not evident whether the language models for individual word forms should be

trained on word tokens, on word types, or on something in-between. The Morfessor Base-

line model extracts segments that correspond more closely to linguistic morphs when

trained on types than tokens, as many inflected high-frequency words will not be seg-

mented in the latter case (Creutz & Lagus, 2005b). An example of interpolating between

types and tokens is application of a Pitman-Yor process to adapt the distribution of word

types into the observed token count distribution (Goldwater, Griffiths, & Johnson, 2006,

2011).

We took a more straightforward approach and applied a logarithmic function f (x) = ln

(1 + x) to dampen the effect of the counts. This way of dampening improved the reaction

time prediction on the psycholinguistic development set when assessed by the word uni-

gram model. We did not select the dampening separately for each language model,

because then we would not have been able to fairly compare the cross-entropies of the

models.

2.2.2. Linguistic segmentation accuracy for the Morfessor model
In order to investigate in more detail what kinds of units the unsupervised Morfessor

Baseline produced in our set of items, we assessed its segmentation performance in light

of linguistically correct segmentations. Accuracy of a morphological segmentation is typi-

cally estimated by calculating the precision and recall of the segmentation boundaries

(Hafer & Weiss, 1974). Precision and recall are usually combined by taking their har-

monic mean, which is called an F-measure. The F-measure was used to find the instance

of Morfessor in which the segmentations were closest to a linguistic analysis.

As an example, consider possible segmentations for word segmentations. There are 12

possible boundaries between the letters. Two boundaries can be considered linguistically

correct (segment+ation+s). Given a predicted (non-linguistic) segmentation, precision is

the ratio of correct boundary predictions (“true positive”) to all the predicted boundaries

(“positive”), while recall is the ratio of correct predictions (“true positive”) to all correct

boundaries (“true”). If our prediction was seg+men+ta+tion+s, precision would be 1/4,
recall 1/2, and F-measure (2 9 1/2 9 1/4)/(1/2 + 1/4) = 1/3.
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We calculated linguistic segmentation accuracy of the Morfessor Baseline model for

the stimulus words. Fig. 2 shows the precision, recall, and F-measure of model as func-

tion of the likelihood weight parameter a. According to the F-measure, the segmentation

is closest to the linguistic segmentation at a = 0.01, but the steepest decrease in F-mea-

sure and recall starts when a increases above 1.

Our linguistic analysis of the corpus based on FINTWOL also indicates the functional

types of the morphs, and we use those to provide further automatic analysis of the seg-

mentations indicated by Morfessor. The morphs in our stimuli include stems (STEM),

derivational suffixes (DERIV), inflectional suffixes that consist of case inflections or pos-

sessive suffixes (INFL), and clitics (CLITIC). Each proposed segmentation boundary that

occurs inside of a morph lowers precision; we will call this a disparity in precision. Each

missed segmentation boundary between two morphs lowers recall; we will call this a dis-

parity in recall. Thus we can calculate precision disparities for each of the four morph

types and recall disparities for each ordered pair of morph types (STEM+DERIV, STEM
+INFL, DERIV+INFL, etc.). Given our example (segment+ation+s), it contains a stem, a

derivational suffix, and an inflectional suffix. Thus, the prediction seg+men+ta+tion+s
would receive two precision disparities for STEM, one precision disparity for DERIV,

and one recall disparity for STEM+DERIV.

2.2.3. Self-information as a predictor of human reaction times
In order to determine how an arbitrary probabilistic model such as n-gram model or

Morfessor should relate to the human reaction times, the processing cost for each word in

the respective models needs to be quantified. The self-information or surprisal of a word,

�log p(w), has been shown to correlate strongly with the cognitive load when a word is

processed in context (Boston, Hale, Kliegl, Patil, & Vasishth, 2008; Frank, 2009; Hale,

2001; Levy, 2008; Wu, Bachrach, Cardenas, & Schuler, 2010). Self-information is also

directly related to the common frequency statistics used in psycholinguistic experiments:

For example, the logarithm of the surface frequency of word w in a corpus is simply an

unnormalized self-information from a unigram language model estimated from the same

corpus. Accordingly, we made the assumption that the reaction time for a word is linearly

proportional to the self-information of the word estimated by a probabilistic model (e.g.,

Smith & Levy, 2013).

For language models based on morph-like units, there may be several ways to split

one word form into the units. Then the probability p(w) is actually the sum of probabili-

ties over all possible segmentations of w:

pðwÞ ¼
X

m1...mn¼w

pðm1. . .mnÞ ð1Þ

However, this would include ungrammatical segmentations even for the supervised

models based on linguistic morphs. For example, the English word stairs could be seg-

mented ungrammatically to linguistic morphs st + air + s, where st is a common superla-

tive suffix for adjectives. Instead of marginalizing over the segmentations in Eq. (1), we
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used the probability of a single segmentation. For the morph n-gram models, we took the

grammatically correct segmentation. For the unsupervised Morfessor models, we found

the most likely segmentation with an extension of the Viterbi algorithm and used the

probability of that segmentation. We also tested the sum over all possible segmentations,

but that yielded worse reaction time predictions on the development set.

2.3. Comparing statistical language models and psycholinguistic data

2.3.1. Regression models
To evaluate how well the language models can predict the reaction times of the test

participants, we used mixed-effect multiple regression (for an introduction, see Baayen,

Davidson, & Bates, 2008). We applied the lme4 R software package (Bates, M€achler,
Bolker, & Walker, 2015); for details, see Appendix S2 of the Supplementary Material. In

general, we studied whether the prediction of a certain language model could improve the

regression model in the presence of centered control predictors. The improvement over

the baseline model (i.e., control predictors only) was measured with the decrease in

deviance. The likelihood ratio test was applied to test whether the nested model improved

significantly over the baseline model. For the comparison of two different language mod-

els, we considered the Akaike information criterion (AIC) of the regression models; a

smaller value means a better quality of the regression model.

We studied several regression models with an increasing number of control predictors.

As we are interested in how the language models alone can predict human word recogni-

tion, we first did not include any word-specific control predictors. However, we did

include a setup-specific control predictor accounting for the order in which the stimulus

words were presented to the participants.

In the second test we added the word unigram predictions as a control variable. This

was done in order to evaluate if language models based on linguistic or statistical morphs

would improve the predictions only because they approximate the self-information based

on the surface frequencies.

In order to investigate whether the language models contribute anything additional to

the known psycholinguistic variables, we next considered regression models that incorpo-

rated a whole range of word-specific variables known to affect human word recognition

in addition to the word unigram model (see list below). We looked for the combination

of these variables and their two-way interactions that would provide the best baseline

regression model, measured by the lowest AIC. We selected the control variables with a

greedy search: Instead of testing all possible combinations, which would be computation-

ally difficult, we added one predictor (or interaction of two predictors) at a time, retained

the one that yielded the largest improvement for the current regression model, and contin-

ued until there was no further improvement.

Finally, we considered which of the original word-specific control predictors would

improve the regression model result if the language model prediction was already in use.

The aim was to study the relationships between each language model and these known

variables, for example, to see how much of the effects of these variables are incorporated

16 S. Virpioja et al. / Cognitive Science (2017)



in our language models. We took the regression model of the first test as a baseline

model, and for each of the word-specific variables, we used the likelihood ratio test to

see whether it provided any further improvement.

2.3.2. Control predictors
Word order number: As the average reaction times tend to change according to how

many stimulus words the participant has already seen, we added the logarithmically trans-

formed presentation order number of the word for each participant as a setup-specific

control predictor.

Word length: Two measures of word length were included: the number of letters and the

number of morphemes.

Lemma frequency: Lemma frequency is the summative frequency of all the inflectional

variants of a single stem (e.g., Baayen, Dijkstra, & Schreuder, 1997; Bertram, Baayen, &

Schreuder, 2000; Taft, 1979) and assumed to affect the speed of accessing the stem when

decomposing a complex words.

Morphological family size: Morphological family size is the number of derivations and

compounds where the noun occurs as a constituent (e.g., Bertram et al., 2000; Moscoso

del Prado Mart�ın, Bertram, et al., 2004; Schreuder & Baayen, 1997). As such, it is con-

sidered a measure of lexical interconnectivity between morphologically related words.

Complex words with a large family size have been shown to be processed faster than

those with small morphological families (Bertram et al., 2000).

Paradigmatic entropy: Paradigmatic entropy (Kosti�c, 1991; Milin, Kuperman et al.,

2009; Moscoso del Prado Mart�ın et al., 2004) is operationalized as two different vari-

ables, which are based on the assumption that processing of a word is influenced by the

amount of information in its inflectional paradigm and inflectional class (Milin, Ður�devi�c,
& del Prado Mart�ın, 2009). Inflectional entropy is the expected amount of information

load in an inflectional paradigm. The lexical units with a higher information load are

assumedly more costly to retrieve. The more balanced the frequency distribution of the

inflected variants within a paradigm is for a word, the higher the entropy. However, this

variable has been reported to show facilitatory effects in lexical decision (Baayen, Feld-

man, & Schreuder, 2006). Relative entropy, in turn, measures the divergence between the

distribution of the word’s inflectional paradigm and the frequency distribution of the case

endings for the inflectional class of the word (the set of words that are inflected in the

same way). Lexical processing costs have been shown to be larger the greater the diver-

gence between these distributions (Milin, Ður�devi�c, & del Prado Mart�ın, 2009). For

implementation details, see Appendix S1 in the Supplementary Material.

Naive discriminative reader (NDR): The naive discriminative reader is a two-layer net-

work based on the Rescorla-Wagner model (Rescorla, 2007; Rescorla & Wagner, 1972)
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that associates a set of cues with a set of outcomes. It has been proposed as an amor-

phous model of morphological processing (Baayen et al., 2011, 2016). Following Baayen

et al. (2011), we used letter unigrams and bigrams as cues, and morpheme labels from a

morphological analysis as outcomes (see Appendix S1 for details). Given the input cues,

activation of the correct outcome, relative to the activations of competing outcomes, is

used for predicting the reaction times.

2.3.3. Factors affecting the interpretation of the regression models
When comparing different statistical language models to each other, one needs to

account for the inherent properties of the models such as the model’s text prediction

accuracy and model size. The size or complexity of the models provides an idea of how

accurate predictions of the text data can be expected. We defined the model size as the

number of non-zero probability estimates stored by the model. For unigram models,

including Morfessor Baseline, it is the size of the lexicon. For n-gram models, it is the

total number of n-grams. The model sizes are reported in Table 1.

The accuracy of the statistical language models with respect to the text data can be

measured with cross-entropy. We used the empirical cross-entropies ~H calculated over

the psycholinguistic test set (for details, see Appendix S1). The words were weighted

with log-dampened frequencies in the same manner as in training the language models.

The use of the same dampening as for training the models is important, as otherwise the

cross-entropy measure would not correspond to the maximum likelihood optimization cri-

terion used in training. As empirical cross-entropy is a weighted average of the self-infor-

mation estimates �log p(w) over the test set words, the smaller the self-information

estimates, the better the text prediction accuracy of the model. However, the self-informa-

tion values are bounded by the fact that that ∑w2T p(w) ≤ 1 for any set of words T. As
we predict also the reaction times with the self-information values, accurate estimates of

self-information for the test set words, indicated by a low ~H, should generally improve

the outcome of the regression models. The cross-entropy values are shown in Table 1.

3. Results

3.1. Deviance in the regression model versus cross-entropy

In our evaluations, we focused on four models: Morfessor Baseline, morph uni- and

bigram models, and a word unigram model. In our first regression test, the baseline

regression model included only word presentation order number as a control predictor.

The self-information estimates of the language models were added to this model and the

decrease in deviance; that is, the improvement in the prediction ability compared to the

baseline regression model, was measured. The decreases in deviance with respect to the

cross-entropies of the language models are shown in Fig. 3. The baseline regression

model and the coefficients and p-values for the language model predictors are presented

in Appendix S2 (Tables B1 and B2).

18 S. Virpioja et al. / Cognitive Science (2017)



Our results show that the best Morfessor model instance outperformed both of the

morph n-gram models, based on linguistically defined morphs, despite a more favorable

cross-entropy of the morph bigram model. Moreover, this Morfessor model instance also

performed better than the word unigram model that had the best cross-entropy value of

all the models studied. When comparing the different Morfessor model instances with

one another, the best prediction accuracy was found at the likelihood weight value

a = 0.8: It performed better than the model instance at a = 10, based on whole words, as

well as the instance providing units closest to linguistic morphs (a = 0.01; see Figure 2).

The difference between the word unigram and Morfessor at a = 10 results are due to the

smoothing method applied in the unigram model (see Appendix S1).

With regard to the effect of cross-entropy on cognitive prediction accuracy, the general

pattern of results follows the tendency that has been observed previously in sentence pro-

cessing (Fossum & Levy, 2012; Frank & Bod, 2011): Text prediction accuracy covaries

with cognitive prediction accuracy. However, a few interesting exceptions are observed.

When increasing the value of a, Morfessor had good cognitive prediction accuracy

with respect to its cross-entropy until the conspicuous drop in the accuracy for the model

with a likelihood weight at 2. An explanation for the drop is revealed by further analysis

of the self-information values (Fig. 4). With this value, an approximately even number of

words are represented as a whole (single fragment) or by two fragments. Given that the

self-information is based on the product of the fragment probabilities, doubling the

number of fragments means a large increase in self-information. While both sets are indi-

vidually well correlated with the reaction times, the difference between their average

self-information is so large that it lowers the correlation over the whole set of words.

This sets a limitation to exact interpretations of the cognitive prediction accuracy of the

model with a values at this range.
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of the language models. The improvement over the baseline regression model is statistically significant

(panova ≤ .05) for all models.
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Beyond the likelihood weight value of 2, the performance of Morfessor did not rise

close to the level of Morfessor at a = 0.8 even at the lowest cross-entropy values at

a = 10, that is, the level at which the predictions were based on full word forms. While

both Morfessor at a = 10 and the word unigram model performed moderately well in pre-

dicting RTs in the present study, they also had the lowest cross-entropy values and still

did not outperform the Morfessor instances with lower values of a.
In the first stage of analyses, the regression model included only one estimate for self-

information at a time. The next step was to check if any of the language models could

improve the regression model even when the typical estimator of self-information, surface

frequency, was included as a control variable. We added the predictions from the word

unigram model as both a fixed effect and a participant-specific random effect. The results

are shown in Fig. 5; the details of the regression models are given in Appendix S2 of the

Supplementary Material (Tables B3 and B4). All language models still yielded significant

improvements. However, the Morfessor Baseline models with high values of a as well as

the morph bigram model performed relatively worse than the other language models

despite their lower cross-entropies.
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Fig. 4. The effect of using a large likelihood weight for Morfessor. Each point represents a stimulus word.

When the likelihood weight a is increased from 1.0 (left) to 2.0 (right), the words are more clearly divided

into two clusters by their self-information. The change of the self-information of individual words between

1.0 and 2.0 is shown by the light gray lines in the right-side scatter plot. With a high value of a (e.g., 10), in

practice all words are stored in the lexicon as whole. When the value of a is low, only the most frequent

words are unsegmented, and many words are segmented to more than two lexical items. In between (here at

a = 2.0), there is the case where a considerable part of the words are encoded directly in the lexicon, while

other, slightly less frequent words, are still segmented, mostly into two fragments. The difference in average

self-information between the words that are represented as whole forms and split into two or more fragments

is so large that it dominates the variance of self-information over the stimulus words. This lowers the correla-

tion over the whole set of words even if the two correlation was high for both subsets separately.

20 S. Virpioja et al. / Cognitive Science (2017)



Next we studied how the models used here relate to commonly investigated psycholin-

guistic variables and selected an optimal set of the additional predictors and their two-

way interactions by a greedy search as explained in Section 2.3.1. The initial regression

model included only the word order number and word unigram predictions. The coeffi-

cients of the baseline regression model after the search are shown in Table B5 of

Appendix S2. Then we again computed nested regression models with each remaining

language model. The decreases in deviance are shown in Fig. 6 and details of the regres-

sion models in Table B6 of Appendix S2. This time only the morph bigram model and

Morfessor at a = 0.8, 1, 5, and 10 provided significant improvements.

3.2. Language models as control predictors

For the final regression model evaluation, we took combinations of a language model

predictor and each of the word-specific variables. Now the self-information values from a

language model were added as a control predictor to the first baseline regression model

(Table B1 in Appendix S2), including random slopes for the predictor. Then each of the

other variables were tested for any further improvement in regression model accuracy. The

results for word unigram, the best-performing Morfessor Baseline instance (a = 0.8), and
morph bigram model are shown in Table 3. The results show, for example, that the Morfes-

sor model instance explains the same variance as variables related to morphology, such as

lemma frequency and morphological family size, but not the same variance as NDR.

3.3. Linguistic segmentation accuracy

The segmentations of the Morfessor models were compared against linguistic morph seg-

mentations to get quantitative assessment for the segmentation. As explained in the Methods
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section, we calculated segmentation boundary precision, recall, and F-measure, and catego-

rized the precision and recall disparities based on the surrounding morph types. Table 4

shows the different types of disparities in the segmentations of Morfessor Baseline models

at a = 0.01 (closest to linguistic morpheme-level segmentation according to F-measure) and

a = 0.8 (best cognitive prediction accuracy). For example, when a = 0.01, Morfessor has

placed a segmentation boundary to 381 of the possible 1,910 boundaries within stems

(19.9% of the maximum), whereas at a = 0.8, there are only 51 boundaries within stems

(2.7% of the maximum). The precision values of the two models are 0.433 and 0.678, recall

values 0.511 and 0.283, and F-measures 0.469 and 0.399, respectively. Examples of the seg-

mentations produced by the models are shown in Table 5.

The numbers of recall disparities for the full range of Morfessor Baseline models are

shown in Fig. 7. Most of the disparity types are increasing quite consistently. However, a

large part of the boundaries between two derivational suffixes are missed already with

low values of a. In contrast, some clitics cease to be split only when a ≥ 3.

4. Discussion

We investigated human morphological processing by using an MDL-based computa-

tional model Morfessor Baseline (Creutz & Lagus, 2002, 2005a,b, 2007) that works on

the principle of optimization. We asked what this kind of a model can tell us about opti-

mal units of representation and the cognitive architecture within the mental lexicon. Mor-

fessor utilizes rather simple learning principles and is unsupervised, that is, it creates a

morphological lexicon based solely on observing individual words and is thus capable of

learning without supervision. We compared models that utilize pre-segmented linguistic
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morphs (morph n-gram models) to the different variants of Morfessor which can also

yield other kinds of units (e.g., longer than linguistic morphs). As a measure of whole

word frequency we studied the performance of the word unigram model along with the

morph-based models. The aim was to see what kind of model structure corresponds best

to human word recognition costs in processing multimorphemic Finnish words. We thus

compared the performance of these statistical models of morphology in predicting RTs in

a visual lexical decision task. Throughout the results, we took into account models’

cross-entropy, shown to be closely linked to their cognitive prediction accuracy (e.g.,

Frank, 2009), as we are interested in how well other aspects of the models apart from

cross-entropy perform in predicting RTs.

The results generally show that the best RT predictions were reached by the unsuper-

vised Morfessor and specifically its instance at a = 0.8, which decomposes some words

at (some of) their morpheme boundaries and keeps others unsegmented. It performed

Table 3

Contribution of word-specific variables to the regression model when a language model is used as a control

predictor

Language Model (control) Predictor b AIC panova

Word unigram Num. of letters 0.2573 �6695.6 .0000
Morfessor a = 0.8 Num. of letters 0.2043 �6805.3 .0000
Morph bigram Num. of letters 0.2328 �6791.3 .0000
Word unigram Num. of morphs 0.1346 �6599.1 .0000
Morfessor a = 0.8 Num. of morphs 0.0774 �6747.2 .0007
Morph bigram Num. of morphs 0.0746 �6702.3 .0028
Word unigram Surface frequency �0.0241 �6564.3 .1216
Morfessor a = 0.8 Surface frequency �0.0204 �6752.7 .0000
Morph bigram Surface frequency �0.0259 �6719.5 .0000
Word unigram Lemma frequency �0.0058 �6565.7 .0506
Morfessor a = 0.8 Lemma frequency �0.0036 �6737.4 .1974
Morph bigram Lemma frequency �0.0112 �6710.3 .0000
Word unigram Morph. family size �0.0056 �6564.4 .1117
Morfessor a = 0.8 Morph. family size �0.0047 �6737.8 .1489
Morph bigram Morph. family size �0.0095 �6701.6 .0039
Word unigram Infl. entropy 0.0063 �6564.6 .1016
Morfessor a = 0.8 Infl. entropy 0.0030 �6736.4 .4107
Morph bigram Infl. entropy 0.0110 �6702.8 .0021
Word unigram Relative entropy 0.0080 �6569.2 .0070
Morfessor a = 0.8 Relative entropy 0.0061 �6740.5 .0289
Morph bigram Relative entropy 0.0117 �6711.4 .0000
Word unigram NDR 0.0176 �6608.1 .0000
Morfessor a = 0.8 NDR 0.0122 �6755.9 .0000
Morph bigram NDR 0.0137 �6714.6 .0000

Note. With morph 2-gram as a control predictor, all variables yield significant contributions. With word

1-gram as a control predictor, surface frequency, morphological family size, and inflectional entropy do not

provide significant improvements. With Morfessor Baseline (a = 0.8) as a control predictor, lemma fre-

quency, morphological family size, and inflective entropy do not provide significant improvements.
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better than the supervised models that are strictly based on linguistic morphs. This finding

suggests that linguistic morphs may not always be the primary processing units within

the mental lexicon. On the other hand, the whole-word based word unigram model did

not perform as well as Morfessor, either.

Overall, the results confirmed that self-information of a word (see, e.g., Boston et al.,

2008; Frank, 2009; Levy, 2008), as determined by a statistical language model, correlates

strongly with human word recognition costs in a lexical decision task that includes mor-

phologically complex Finnish nouns (Table 1). The psycholinguistic control variables

mostly showed the typically observed correlations with the RTs; for example, both lemma

frequency and morphological family size showed a significant negative correlation (e.g.,

Bertram et al., 2000; Taft, 1979), whereas the relative entropy measure correlated posi-

tively with the RTs (e.g., Milin, Kuperman et al., 2009). Inflectional entropy also corre-

lated positively with the RTs. This is in line with the assumption that lexical units with

higher information load are more costly to retrieve, although studies have also reported

facilitatory effects for this variable in word recognition (e.g., Baayen et al., 2006). We

also observed that cross-entropy and the model’s ability to predict recognition times dis-

played a correlation: High text prediction accuracy tends to imply high cognitive predic-

tion accuracy (Fig. 3). Interestingly, however, some of the language models predicted

RTs better than was to be expected on the basis of their cross-entropies.

Table 4

Precision and recall disparities for segmentations of Morfessor Baseline a = 0.01 and a = 0.8

max.

a = 0.01 a = 0.8

# % # %

Precision disparities

STEM 1,910 381 19.9 51 2.7

DERIV 285 25 8.8 16 5.6

INFL 453 21 4.6 19 4.2

CLITIC 71 1 1.4 0 0

Total 2,719 428 14.7 86 3.2

Recall disparities

STEM+DERIV 121 55 45.5 94 77.7

STEM+INFL 196 61 31.1 129 65.8

STEM+CLITIC 8 0 0 0 0

DERIV+DERIV 21 13 61.9 20 95.2

DERIV+INFL 101 72 71.3 85 84.2

DERIV+CLITIC 3 0 0 0 0

INFL+INFL 169 111 65.7 131 77.5

INFL+CLITIC 21 1 4.8 0 0

Total 640 313 48.9 459 71.7

Note. Columns show the type of disparity, maximum number of disparities for the type (max.), number of

found disparities (#), and ratio of the found disparities to the maximum disparities (%). A precision disparity

means that the method has inserted a boundary within a linguistic morph of a certain type; a recall disparity

means that the method has not inserted a boundary between two linguistic morphs.

24 S. Virpioja et al. / Cognitive Science (2017)



4.1. The best-performing model segments at some but not all morpheme boundaries

When comparing the performance of the different types of morphological models, an

instance of Morfessor (at a = 0.8) performed the best in predicting RTs when no vari-

ables apart from word presentation order were included in the analysis. The supervised

morph unigram model, which bases its analysis on linguistic morphs, has a similar struc-

ture as Morfessor as it assumes that morphemes occur independently of one another. The

performance of this supervised model was not as high as that of Morfessor, suggesting

that linguistic morphemes are too short to give a good estimate of self-information of the

whole word. Inaccurate self-information estimates are also indicated by the higher cross-

entropy of the supervised model. Morfessor optimizes the likelihood of the training data

as part of its cost function and thus also reaches a lower cross-entropy. Morfessor, how-

ever, also outperformed the supervised model that has a more favorable cross-entropy

value, that is, the morph bigram model which takes into account the context in which

individual morphemes occur. An MDL-based statistical model trained in an unsupervised

manner was thus able to predict RTs more accurately than this supervised implementa-

tion. While Morfessor often produces segmentations that correspond to linguistic mor-

phemes, it offers cognitively more accurate predictions than models solely based on

linguistic morphemes.

Table 5

Examples of stimulus words segmented according to the linguistic analyzer and Morfessor Baseline

Word Linguistic Segmentation Baseline a = 0.01 Baseline a = 0.8

haastajaksi

as a challenger

haasta V ja + DV-JA ksi +TRA

challenge [-r] [transitive]

haasta ja ksi haastaja ksi

julkaisuineen

with her publications

julkais V u +DV-U ine +CMT en +3SGPL

publish [verb to noun] [comitative] [her/his]

julkaisu ineen julkaisu ineen

kattilaan

into a kettle

kattila N an +ILL

kettle [il lative]

kat tila an kattilaan

maksujaankaan

her payments either

maksu N j +PL a +PTV an +3SGPL kaan CLI

payment [plural] [partitive] [her/his] [either]

maksu ja an kaan maksuja an kaan

monologissaan

in her monologue

monologi N ssa +INE an +3SGPL

monologue [inessive] [her/his]

mon ologi ssa an monologi ssaan

ohjaajana

as the instructor

ohjaa V ja +DV-JA na +ESS

instruct [-or] [essive]

ohjaaja na ohjaajana

peruutuksestasi

about your cancel lation

peruut V ukse +DV-US sta +ELA si +2SG

cancel [-lation] [elative] [your]

peruu tuksesta si peruutuksesta si

porojen

of reindeers

poro N j +PL en +GEN

reindeer [plural] [genitive]

poro jen porojen

vaikeuksiakin

also difficulties

vaike A uks +DA-US i +PL a +PTV kin CLI

difficult [-y] [plural] [also]

vaike uksia kin vaikeuksia kin

yst€av€allenne
to your friend

yst€av€a N lle +ALL nne +2PL

friend [al lative] [your]

yst€av€a lle nne yst€av€alle nne

Note. In the linguistic segmentation, subscripts mark the morph categories: A, N, and V refer to adjective,

noun, and verb stems, respectively, and DA-, DN-, and DV- to their derivational suffixes. Inflectional suffixes

start with a plus sign. Clitics are marked by CLI.
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To further investigate optimal units of lexical representation, we were able to manipu-

late the same model’s emphasis on decomposition versus full-form storage by assessing

the performance of Morfessor Baseline for different values of the likelihood weight

parameter a. Low values of a in Morfessor are associated with more extensive morpho-

logical segmentation and high values with dominating full-form storage.

The model instance at a = 0.01 produced morphs that resembled linguistic segmentations

the closest (Fig. 2). This model instance did not show particularly high cognitive prediction

accuracy. This result is in line with the observation above that the supervised models based

on linguistic morphemes did not fare very well in their present RT predictions.

With a high value of a, all words are in practice stored in the lexicon. Increasing

the value of a from 0.8 to 10 did not lead to an improved cognitive prediction accu-

racy, although the model instance at a = 10 had a lower, that is, better, cross-entropy

value than the one at a = 0.8. The same was true for the word unigram model which

has the best cross-entropy in the present set of models. This is a different pattern of

results than that of Frank (2009), who found that in sentence processing cross-entropy

had a monotonous relation to the accuracy in predicting RTs within each model type.

Although the models based on full forms had good text prediction accuracy, they

were not the best predictors of word recognition times in the present study.
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Our results do not rule out the possibility that lexical items corresponding to human

processing could be longer than those found at a = 0.8. Because of the limitation

observed at a = 2.0 (described in Section 3.1), cognitive prediction accuracies for Mor-

fessor instances that select a full form representation for a large proportion of the words

may appear lower than could be reached without the limitation. Thus, the value 0.8 can

be considered as a lower boundary for the optimal a. Moreover, the optimal value must

be clearly under 10, as the limitation does not apply there, and the performance at

a = 10 is still worse than that at a = 0.8.
When investigating the segmentations produced by the highest-performing Morfessor

instance (at a = 0.8) in the current set of words, we found that it left all clitic particles

distinct (see Tables 4 and 5; e.g., the word vaikeuksiakin). Moreover, it did not seg-

ment words at the majority of boundaries that were followed by a derivational suffix

(see Table 5; e.g., the word ohjaajana). Several studies (see, e.g., Bozic & Marslen-

Wilson, 2010; Laudanna, Badecker, & Caramazza, 1992; Niemi et al., 1994) suggest

that derivations, which are often semantically less transparent and less productive than,

for example, inflected words, are processed as holistic units via full-form representa-

tions. Inflected words are often assumed to be fully decomposed, although full-form

representations have also been proposed for high-frequency word forms (see, e.g., Ale-

gre & Gordon, 1999; Baayen et al., 1997; Lehtonen & Laine, 2003; Soveri et al.,

2007). Here, however, the best Morfessor model variant left two-thirds of bimorphemic

stem + inflectional suffix combinations unsegmented (Table 5; e.g., the word kattilaan),
and the same was true with the majority of derivation + inflection boundaries (see

Table 5; e.g., the words peruutuksestasi and ohjaajana). Thus, a model which also

allows full-form recognition for many complex words, both derived and inflected ones,

performed better than a model which segments all complex words exhaustively into

their morphemic constituents. While Morfessor at a = 0.8 did not segment all linguisti-

cally determined morpheme boundaries, it should be noted that it sometimes produced

segmentations that were located within the morpheme, and thus in implausible posi-

tions. However, this took place only in 3.2% of the morpheme boundaries in the stimu-

lus words (Table 4).

In the Finnish language, many nouns have multiple stem allomorphs and undergo stem

changes when inflected (e.g., kenk€a; keng€a+n). Morfessor Baseline does not specifically

model allomorphic variations, so the possible allomorphs need to be stored separately in

the model’s lexicon. Morfessor segments some of these word forms into their stem allo-

morphs, depending on how frequently the allomorph occurs in different words. Behav-

ioral evidence from Finnish adults in fact shows that different allomorphs also have their

own lexical representations (J€arvikivi & Niemi, 2002; Niemi et al., 1994).

4.2. The best prediction ability is obtained with both decomposition and full-form
measures

The best cognitive prediction accuracy was found for Morfessor at a = 0.8 in an analy-

sis which did not include any control predictors apart from word order number in the
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regression model. This instance of the MDL-based Morfessor thus seemed to capture rele-

vant aspects of the human word recognition process. With regard to its likelihood weight

a, this model instance was in the middle ground in the range between emphasizing full-

forms versus decomposition, that is, it segments words at some morpheme boundaries,

but it also leaves many of the boundaries unsegmented.

When the instance of Morfessor at a = 0.8 was included in the regression analysis

together with the word unigram model, Morfessor could still improve the predictions.

Thus, a regression model that included measures that allow both decomposition

and whole-word processing was better able to predict the processing costs of human word

recognition than a model that included only one type of measure. This suggests that the

frequency of the whole word also plays an independent role in word recognition.

As the different word-related control variables are likely to explain partly similar vari-

ance as our language models (but differently for each specific model), our primary analy-

sis was the one without any control predictors in order to study the optimal processing

units of the mental lexicon without the influence of these variables. However, we also

studied how each of the models relate to known psycholinguistic variables such as lemma

frequency, word length, and morphological family size, as well as the NDR model

(Baayen et al., 2011). That is, to what extent do these psycholinguistic variables capture

the same variance in the RTs as the statistical language models. When the word-specific

variables were included as control predictors in the regression model, Morfessor Baseline

at a = 0.8 and the morph bigram model further improved the predictions. This indicates

that they add something relevant to the known word-specific psycholinguistic variables in

explaining variance in the RTs. The analysis which included different language models as

control predictors for each word-specific variable (see Table 2) showed that Morfessor at

a = 0.8 was able to capture to a large extent similar variance as morphological family

size, lemma frequency, and inflectional entropy but not that of surface frequency, word

length (in letters or morphs), or NDR. Thus, Morfessor explains largely morphological

aspects of word recognition. The morph bigram model also clearly showed an indepen-

dent effect, likely because it predicts upcoming morphs based on the previous ones,

which is an aspect of multimorphemic word processing not directly captured by the

included lexical variables.

Both Morfessor and a whole-word model provided independent contributions to RT pre-

dictions within the same regression model (Tables B4 and B6 in Appendix S2). Dual-route

models of morphological processing (e.g., Baayen et al., 1997; Frauenfelder & Schreuder,

1992; Schreuder & Baayen, 1995) assume that both decomposed and full-form representa-

tions are simultaneously activated and these processing “routes” thus work in parallel. On

the basis of data on compound processing, Kuperman et al. (2009) have sketched a multi-

ple-route model of morphological processing that would allow access to full forms, morpho-

logical constituents, and morphological families at different times and to a different extent.

According to Kuperman et al. (2009), readers take advantage of multiple sources of infor-

mation in a parallel and interactive way. Such a model could also explain the present find-

ings. On the other hand, it has been proposed that measures of decomposition and full-form

processing may reflect different stages of word recognition (e.g., Fruchter & Marantz, 2015;
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Taft, 2004): Decomposition at the visual word form level may be more sensitive to measures

of decomposition (see also Rastle & Davis, 2008), whereas a later recombination stage in

which the meaning of decomposed morphemes is integrated would be sensitive to measures

of the whole word, that is, combination of the morphemes. As the present study used simple

RTs which provide an end-point measure of the entire recognition process, either or both of

these alternatives about the word recognition process could be correct. Time-sensitive neu-

roimaging may provide opportunities to specifically target different levels of morphological

processing (see, e.g., Lehtonen et al., 2007, 2006; Vartiainen et al., 2009). Future work

should determine whether the predictions of the models tested here might be specific to par-

ticular processing levels.

The present study investigated lexical processing in adult native speakers that is looked

at the processes in an established language system and therefore speaks to the issues of lan-

guage learning only indirectly. Nevertheless, the results show that an unsupervised model,

using general statistical learning principles corresponds better to human word recognition

than a model utilizing only linguistically structured units. In fact, there are similarities

between the learning process of Morfessor and how learning of morphological regularities

has been suggested to take place in humans as well (e.g., Schreuder & Baayen, 1995): The

process may start from forming initial whole-word representations of the observed input,

proceeding to discovering structural regularities, and forming morpheme-based representa-

tions. With increased exposure to commonly occurring morpheme combinations, it will

become economical to store such chunks as full forms again (for evidence of storage of

inflected forms from Finnish children, see, e.g., R€as€anen, Ambridge, & Pine, 2016). Accord-

ing to the present results, the adult system seems to code some words as full forms and pro-

cess others as decomposed parts, and, for some words at least, utilize both kinds of

representations in their processing. While commonly occurring morpheme combinations

may develop full-form representations, it is unlikely that morpheme-based representations

would altogether vanish in this process. Such representations are needed when encountering

novel words including these morphemes or words in which this morpheme is combined with

an unusual affix or compound constituent.

Apart from the dual-route model framework, it is interesting to consider particular

alternative accounts that might be used to describe processing of complex words. The

present study focused on statistical models of morphology which give self-information

estimates and which assume that morphemes may play a role in the architecture of the

mental lexicon. This choice enabled us to investigate the optimal balance between decom-

position and full-form recognition in the human mental lexicon. At the same time, this

focus leaves out implementations based on other principles, such as the NDR (Baayen

et al., 2011) which maps orthographic units directly to meanings via a discriminative

learning mechanism without a morphological (or lexical) level. However, we included the

NDR model as a control variable and found that both Morfessor and NDR contribute

independently to the RTs (see Table 3) and can thus be interpreted to describe different

aspects of word recognition costs. It appears that together they provide better prediction

ability than either one does alone. An intriguing possibility would be to allow the units

provided by Morfessor to serve as input cues to the NDR model (instead of the
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predetermined letter bigrams or trigrams in Baayen et al., 2011; or triphones in Baayen

et al., 2016). Such a combination could provide more accurate predictions than either

model alone and capture relevant processing aspects at different levels of word recogni-

tion, from visual processing to lexical units and further to semantics.

4.3. Conclusions

The present results show that a computational model that works in an unsupervised

manner, using the MDL optimization principle performs well in predicting recognition

times of morphologically complex words. The best-performing Morfessor instance was

one that decomposes words at some morpheme boundaries and keeps other boundaries

unsegmented. Unsegmented boundaries were found especially in words containing deriva-

tional suffixes but also for a large part of words with inflectional suffixes. This kind of

implementation corresponded better to human word recognition times than supervised

models based solely on linguistic morphemes or those that only included whole word

forms. However, an even better prediction accuracy was provided by a combination of a

Morfessor model and a word unigram model based on full forms. These results support

cognitive models that assume that both kinds of representations, decomposed and full

form representations, are utilized in order to optimally process and store complex words

within the mental lexicon.
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