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A B S T R A C T

Precipitation extremes have a strong influence on the exchange of energy and water between the land surface
and the atmosphere. Although the Horn of Africa has faced recurrent drought and flood events in recent decades,
it is still unclear how these events impact energy exchange and surface temperature across different ecosystems.
Here, we analyzed the impact of precipitation extremes on spectral albedo (total shortwave, visible, and near-
infrared (NIR) broadband albedos), energy balance, and surface temperature in four natural vegetation types:
forest, savanna, grassland, and shrubland. We used remotely sensed observations of surface biophysical prop-
erties and climate from 2001 to 2016. Our results showed that, in forests and savannas, precipitation extremes
led to divergent spectral changes in visible and NIR albedos, which cancelled each other limiting shortwave
albedo changes. An exception to this pattern was observed in shrublands and grasslands, where both visible and
NIR albedo increased during drought events. Given that shrublands and grasslands occupy a large fraction of the
Horn of Africa (52%), our results unveil the importance of these ecosystems in driving the magnitude of
shortwave radiative forcing in the region. The average regional shortwave radiative forcing during drought
events (−0.64 W m−2, SD 0.11) was around twice that of the extreme wet events (0.33 W m−2, SD 0.09). Such
shortwave forcing, however, was too small to influence the surface–atmosphere coupling. In contrast, the surface
feedback through turbulent flux changes was strong across vegetation types and had a significant (P < 0.05)
impact on the surface temperature and net radiation anomalies, except in forests. The strongest energy exchange
and surface temperature anomalies were observed over grassland and the smallest over forest, which was shown
to be resilient to precipitation extremes. These results suggest that land management activities that support
forest preservation, afforestation, and reforestation can help to mitigate the impact of drought through their role
in modulating energy fluxes and surface temperature anomalies in the region.

1. Introduction

Precipitation extremes across the Horn of Africa have become more
frequent and intense in recent decades (Masih et al., 2014; Lyon and
DeWitt, 2012). During 2011, for example, the region faced the worst
drought in 60 years (UNDP, 2011). Precipitation volumes during the
main rainfall season (March through June) have also declined con-
tinuously in recent decades (Nicholson, 2017; Lyon and DeWitt, 2012).
Understanding how the ecosystem responded to rainfall variability in
the past is a critical step in the prediction of ecosystem response to
future extreme events, as well as to set effective adaptation and miti-
gation strategies.

Precipitation extremes can affect the feedback between the land
surface and the atmosphere through different mechanisms. For

instance, extreme events affect soil moisture and vegetation, causing
changes in the surface albedo and, consequently, the amount of avail-
able energy at the land surface. Drought-induced albedo changes have
been studied since the 1970s (Charney et al., 1975). Earlier studies have
hypothesized that an albedo increase triggers atmospheric subsidence,
weakens convective activity, and leads to less precipitation, further
amplifying droughts (Charney et al., 1975).

Although modeling experiments have supported this hypothesis
(e.g., Evans et al., 2017; Meng et al., 2014a, 2014b), observation-based
studies in Europe have found contradicting evidence (e.g., Teuling and
Seneviratne, 2008), arguing that drought-induced albedo changes are
too small to have an impact on the surface–atmosphere coupling. The
main causes for the small changes in albedo were shown to result from
opposite changes in visible (VIS, 0.3–0.7 µm) and near-infrared (NIR,
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0.7–5.0 µm) broadband albedos, which canceled each other, limiting
changes in the total shortwave (SW) broadband albedo (0.3–5.0 µm)
(Teuling and Seneviratne, 2008; Sütterlin et al., 2016). However, it is
still unknown if this contrasting albedo pattern exists in shrublands and
grasslands, which are the dominant ecosystem in East Africa. Further-
more, previous studies were largely focused on single or few drought
events from relatively shorter time series (Teuling and
Seneviratne, 2008; Meng et al., 2014a, 2014b). The assessment of
multiple extreme events, using longer time series, is needed to under-
stand and ascertain the relationship between climate and albedo
variability, as well as the dependence of this relationship on geographic
location, seasons, and biomes.

Precipitation extremes are also likely to have an impact on the en-
ergy budget and land surface temperature (LST) through their effect on
net radiation and turbulent fluxes. This process can change the stability
of the planetary boundary layer, playing an important role in the link
between land surface and atmosphere (Eltahir, 1998; Betts and
Ball, 1998). Their impact can be strong in a water-limited environment
compared with a humid environment (Small and Kurc, 2003). This is
due to the stronger impact of precipitation extremes in determining the
amount of water available for evaporation and transpiration, which
directly affects surface temperature (Yin et al., 2014; Betts and
Ball, 1998).

Changes in the energy exchange between the land and atmosphere
during extreme rainfall events, as well as the resulting surface tem-
perature, vary among vegetation types given that plants respond dif-
ferently to soil-moisture variability. For instance, during the 2003
European drought, grassland showed stronger energy exchange and LST
anomalies in comparison with forests (Teuling et al., 2010). Studies in
Mexico also showed strong fluctuation in surface temperature in
shrubland and grassland when the driest and wettest periods were
compared (Small and Kurc, 2003). Globally, observational evidence to
understand and quantify ecosystem-specific responses to climate ex-
tremes is still lacking (Miralles et al., 2018). As a result, climate models
are still immature in representing the influence of surface feedback on
temperature changes (Miralles et al., 2018).

The consequences of this bottleneck are particularly evident in the
Horn of Africa, where fragile socioeconomic conditions often make the
region susceptible to climate variability. Despite the frequent occur-
rence of precipitation extremes, it is still unclear how these events
impact the energy exchange and surface temperature across major East
African ecosystems, such as shrubland, grassland, and savanna. For
instance, the impact of precipitation extremes on individual spectral
changes in VIS and NIR, which were shown to be critical in driving SW
albedo changes in Europe, has not yet been investigated in dominantly
arid ecosystems. As a result, the contribution of radiative forcing to
surface warming or cooling is still largely unknown.

The objective of this study was to analyze the impact of precipita-
tion extremes on albedo, energy exchange, and surface temperature
anomalies in the Horn of Africa during 2001–2016. More specifically,
we investigated the impact of rainfall extremes across different eco-
systems and seasons on: (1) VIS, NIR, and SW albedo anomalies and the
associated radiative forcing, and whether these have any impact on the
surface–atmosphere coupling in the region, and (2) anomalies of tur-
bulent fluxes (sensible and latent heat), radiation energy exchanges,
and LST.

2. Material and methods

2.1. Study domain

The study area encompasses Kenya, Somalia, Ethiopia, Eritrea, and
Djibouti. It represents a large geographic area (∼ 2.48×106 km2) in
the Horn of Africa and covers a wide range of climate, topography, and
vegetation (Fig. 1a–c). The region has a multimodal rainfall pattern and
receives up to three rainfall maxima. Eritrea and northern parts of

Ethiopia receive maximum rainfall during June to August. The rest of
the region receives “long rains” (the main rainfall season) from March
to May (MAM, hereafter) and “short rains” from October to December
(OND, hereafter). Such rainfall patterns largely result from the biannual
equatorial passage of the Intertropical Convergence Zone and show
considerable interannual and intraseasonal variability under the influ-
ence of the Indian Ocean dipole, the El Niño–Southern Oscillation, and
the Madden–Julian oscillation (Nicholson, 2017; Indeje et al., 2000). In
recent decades, precipitation extremes have become very common and
severe droughts and floods have prevailed in the region (Li et al., 2016;
Masih et al., 2014; Fig. 1d and e). Locally, rainfall patterns are influ-
enced by topography, which ranges from−125m below sea level in the
Danakil Depression in Ethiopia to 5199m above sea level at the top of
Mount Kenya. According to 2001–2016 Tropical Rainfall Measuring
Mission (TRMM) data, the mean annual precipitation ranges from 81 to
2130 mm year−1 (Fig. 1f).

Based on the Moderate Resolution Imaging Spectroradiometer
(MODIS) land cover product (MCD12Q1, collection 6, 500m resolution;
Friedl and Sulla-Menashe, 2015) and the International Geosphere-Bio-
sphere Programme (IGBP) classification scheme, mainly shrubland
(open and closed), grassland, savanna (wooded savanna and savanna),
bare land, mixed (crop/vegetation), cropland, and forest (mainly
evergreen broad-leaf forest) cover the study area. Of these, shrubland
covers the largest part (33%), followed by grassland (19%), savanna
and bare land (each 16%), mixed crop/vegetation (8%), cropland (5%),
forest (2%), and others (1%). Photos of some of the natural vegetation
covers are shown in Fig. 2.

2.2. Remote sensing and climate data

To assess the intensity of precipitation extremes during drought and
extreme wet events, we used TRMM3B43, version 7, monthly data with
a spatial resolution of 0.25°, which are freely available from the
Goddard Earth Sciences Data and Information Services Center (GES
DISC) (Tropical Rainfall Measuring Mission (TRMM), 2011). This pro-
duct provides precipitation estimates based on good quality microwave,
infrared, and rain gauge data (Huffman et al., 2010) and has been
compared with gridded data in Africa and reported to be more feasible
for drought monitoring (Naumann et al., 2012). Furthermore, our
comparison of TRMM with monthly automatic weather station data in
southern Kenya showed moderate agreement (Fig. S1).

For monitoring albedo and LST changes during precipitation ex-
tremes, MODIS MCD43C3 Bidirectional Reflectance Distribution
Function (BRDF)/Albedo and MOD11A2 LST/Emissivity products were
used, respectively. The daily albedo product used here (MCD43C3) has
a spatial resolution of 0.05° and was temporally aggregated to a
monthly scale to match the other data by taking the average of all daily
retrievals in each month. We downloaded this product from the Land
Processes Distributed Active Archive Center (LP DAAC) (Schaaf and
Wang, 2015). We used VIS (0.3–0.7 µm), NIR (0.7–5.0 µm), and total
SW (0.3–5.0 µm) broadband black-sky albedo. We chose black-sky al-
bedo over white-sky albedo given that black-sky albedo represents al-
bedo at local noon and it is consistent in time with the model used in
this study for estimating the G/Rn ratio (where G is ground heat flux
and Rn is net radiation). Furthermore, the choice of albedo type does
not affect our results as they are strongly correlated in the region
(Abera et al., 2019).

The LST product (MOD11A2, version 6, 8-day composite), which
has a spatial resolution of 1 km, was similarly downloaded from the LP
DAAC (Wan et al., 2015). All cloud contaminated pixels were filtered
and removed from our analysis using quality control flag bits (i.e.,
cloud-free and high-quality pixels were identified using quality control
flag bits= 0). This product has an accuracy better than 1 K in most
cases (Wan et al., 2015).

For inferring the vegetation condition during precipitation ex-
tremes, we calculated the enhanced vegetation index (EVI; Huete et al.,
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2002):

= ×
−

+ × − × +

ρ ρ
ρ ρ ρ

EVI 2.5
(6 7.5 ) 1

NIR red

NIR red blue (1)

where ρ refers to BRDF corrected reflectance using the BRDF model
parameters in red, blue, and NIR bands of the MCD43B1 MODIS pro-
duct (NASA LP DAAC, 2014). The EVI time series (2001–2016) were
corrected for sun-sensor geometry artifacts by fixing the sensor view
angle at nadir and sun angle at 45°. EVI, compared with the normalized

difference vegetation index (NDVI), is sensitive to NIR reflectance, less
affected by signals from background soil, and has less of a saturation
problem over dense canopies (Huete et al., 2002). Furthermore, version
2.0 leaf area index (LAI) data (2001–2016) with 1 km spatial resolution
and 10-day temporal resolution were downloaded from the Copernicus
Global Land Service (https://land.copernicus.eu/global/products/lai).
This product is produced from SPOT VEGETATION and PROBA-V
sensors, and 90% of samples meet the Global Climate Observing System
accuracy requirements (Verger et al., 2014). In areas with large LAI, it
was also reported to have better accuracy than the MODIS LAI (Li et al.,
2015).

For the radiation flux anomaly calculation, the 2001–2016 monthly
mean downwelling and upwelling SW and longwave (LW) radiation
fluxes from the Clouds and the Earth's Radiant Energy System (CERES)
Energy Balanced And Filled (EBAF) Surface product (version 4.0, 1°
spatial resolution) were used. Radiation fluxes from CERES instruments
provide a long-term (2000 to present) global radiation budget, and its
measurements were found to be consistent and stable (Dong et al.,
2008; Loeb et al., 2009). This product was downloaded from NASA
(https://ceres.larc.nasa.gov/products.php?product=EBAF-Surface).

Latent heat flux was retrieved from the Global Land Evaporation
Amsterdam Model (GLEAM), version 3.2a, evapotranspiration data
(using Eqs. (3) and (4)). This daily product has 0.25° resolution
(Martens et al., 2017) and can be downloaded from https://www.
gleam.eu/. It uses the Priestley and Taylor evaporation model driven
mainly by satellite-observed soil-moisture, vegetation optical depth, air
temperature, radiation (e.g., CERES), and precipitation data. Validation
of this product showed that it correlates well with eddy-covariance
measurements (r=0.78–0.81) (Martens et al., 2017).

Air temperature data, at a monthly timescale and 0.5° × 0.6°

Fig. 1. (a) Location of the study area, (b) topographic elevation (USGS 30m digital elevation model), (c) MODIS land cover map, (d) number of drought months
during 2001–2016, (e) number of extreme wet months during 2001–2016, and (f) annual average rainfall from the Tropical Rainfall Measuring Mission 3B43 data.
Drought and extreme wet months represent pixels with a 3-month Standardized Precipitation Index (SPI) of <−1 and >1, respectively. Number expressed in
percentage of drought (extreme wet) months from the total number of months in 16 years (192 months).

Fig. 2. (A) Forest with tall trees and understory coffee bushes in Kaffa province,
southwestern Ethiopia, (B) Savannah with scattered trees and wild animals in
Taita Taveta County, southeastern Kenya, (C) Grassland in Taita Taveta County,
southeastern Kenya, (D) Shrubland in Central Ethiopia. Photos: Petri Pellikka.
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resolution, were downloaded from the Modern-Era Retrospective ana-
lysis for Research and Applications (MERRA-2) (https://gmao.gsfc.
nasa.gov/reanalysis/MERRA-2/). This product is a screen-level (2m)
air temperature derived from satellite observation and weather data by
the Global Modeling and Assimilation Office in the USA. Evaluation of
the product against in situ data over land surfaces showed a daily mean
and maximum bias of 0.1 K and 1.5 K, respectively (Michael et al.,
2015).

Besides, vegetation cover from land cover product (MCD12Q1,
version 6, 500m resolution) (Friedl and Sulla-Menashe, 2015) and the
Vegetation Continuous Fields product (MOD44B, version 6, 250m re-
solution) for identifying the percentage of soil and vegetation cover in
each pixel (Dimiceli et al., 2015) were used.

All data were obtained for the period between 2001 and 2016. The
data were temporally and spatially synchronized to a monthly timescale
and 0.25° resolution, respectively.

2.3. Identifying the impact of precipitation extremes on albedo

Precipitation extremes were defined based on the 3-month
Standardized Precipitation Index (SPI) value using TRMM3B data and
refer to drought (SPI ≤ 1) and extreme wet (SPI > 1) events based on
World Meteorological Organization (WMO) SPI value classification
(WMO, 2012). We chose the MAM (“long rains”) and the OND (“short
rains”) seasons for our analysis as these are the major rainfall seasons in
the region. This choice also helps to minimize the impact of periods
with little rainfall (or dry periods), where a small deviation in pre-
cipitation can give exaggerated (positive or negative) SPI values
(WMO, 2012).

To identify the impact of precipitation extremes on VIS, NIR, and
SW broadband black-sky albedos, we used the following steps. Long-
term trends from the albedo and precipitation data were identified
using ordinary least squares regression and were removed from our
analysis. This helps to avoid spurious correlations resulting from long-
term trends. To investigate albedo change attributed only to climate
extremes, pixels affected by land cover conversions, which also cause
albedo change (Abera et al., 2019), were discarded from our analysis.
For this, stable pixels were identified for the whole region on a pixel-by-
pixel basis using the MCD12Q1 time-series data (2001–2016). Then, the
frequency of land cover type for each pixel was calculated and pixels
with a maximum frequency of 16 were retained (i.e., the maximum
frequency for stable pixels during 2001–2016). The remaining 10.8% of
pixels (268 324.7 km2), which have experienced land cover change at
least once during the 16-year period, were discarded from our analysis.

We restricted our analysis to the four dominant natural vegetation
types in the region (shrubland, grassland, savanna, and forest). This is
(1) to reduce the impact of albedo change from other anthropogenic
activities, such as land management change through irrigation for
agriculture and the application of fertilizers and pesticides
(Luyssaert et al., 2014), and (2) due to the difficulty in accurately
identifying, for instance, cropland, which often occurs mixed with other
vegetation types in the region at 1 km resolution (Zhang et al., 2005;
Abera et al., 2018).

Absolute anomalies were calculated using the detrended albedo
(VIS, NIR, and SW) data to estimate the albedo change. Then, the
average absolute anomalies of albedo were computed for each SPI bin,
according to WMO SPI ranges, from the entire time series (2001–2016)
for the four land cover types. Furthermore, to check the consistency and
robustness of our results over shrubland and grassland, which showed a
different NIR pattern during drought in the region, we did the same
analysis using an 8-day composite SW black-sky albedo product from
the Global LAnd Surface Satellite (GLASS) project with 1 km spatial
resolution (Liang and Liu, 2012). GLASS albedo was downloaded from
the Global Land Cover Facility (http://glcf.umd.edu/data/abd/).
Compared with MODIS (MCD43C3) albedo, GLASS albedo showed si-
milar results during precipitation extremes in the region

(Supplementary Fig. S2).
To statistically explore the impact of precipitation extremes (pre-

dictor variable) on albedo (response variable), quantile regression was
used. Quantile regression, unlike ordinary least squares regression, does
not require any assumption about the underlying data distribution, is
robust against outliers in the distribution of the response variable, and
estimates the response of a variable in all parts of its data distribution
(Koenker, 2005). Meaning, it measures the effects of predictor variable
not only in the center of a distribution but also in the lower and upper
tails. This helps to understand and investigate the impacts of pre-
cipitation extremes on albedo or another environmental variable (e.g.,
LST) at different intensities (for details of its application on climate
extremes refer Gao and Franzke, 2017). Finally, the quantile regression
coefficient (y-axis) were plotted for each quantile (10th, 25th, 50th,
75th, and 90th percentile) on the x-axis.

2.4. Estimating the effect of precipitation extremes on the energy balance
and land surface temperature anomalies across vegetation types

To quantify the impact of albedo changes on the energy balance
during precipitation extremes, average instantaneous SW surface ra-
diative forcing (ISRF) was estimated across vegetation types during
2001–2016:

= − αISRF SW *(Δ )in (2)

where SWin is the incoming SW radiation, and Δα is the change in SW
albedo due to precipitation extreme.

To estimate the impact on radiation and the turbulent energy ex-
change, first the net radiation (Rn) was calculated from the monthly
2001–2016 CERES EBAF surface flux product for the two seasons (MAM
and OND):

= − + −R (SW SW ) (LW LW )n in out in out (3)

where SWin is the downwelling SW radiation flux at the surface; SWout is
the upwelling SW radiation flux at the surface; LWin is the downwelling
LW radiation flux at the surface; and LWout is the upwelling LW radia-
tion flux at the surface. Second, the latent heat flux (ʎE in W m−2) was
computed from the GLEAM version 3.2a evapotranspiration data
(Dingman, 2015):

(4)

(5)

where ρw is the density of water (1000 kg m−3); λv is the heat of va-
porization (MJ kg−1); Tair is air temperature (K) from MERRA-2; and ET
is evapotranspiration (mm day−1). Third, the G/Rn ratio was estimated
using an empirical equation that estimates values near local noon
(Bastiaanssen, 2000):

= − + −
G

R
T α( 273.15)(0.0038 0.0074* )(1 0.98*NDVI )

n
s

4
(6)

where G is ground heat flux; Ts is the LST; α is black-sky albedo at local
noon and is thus consistent in time with the model; and NDVI is the
normalized difference vegetation index (NIR− R/NIR+ R, where NIR
and R are the near-infrared and red reflectance, respectively, which
were corrected from sun-sensor geometry artifacts using the MCD43B1
BRDF/Albedo model parameter). Then, G was obtained by multiplying
the G/Rn ratio by the Rn estimated in Eq. (3). Fourth, the sensible heat
flux (H) was computed as the closure of the energy balance:

(7)

Finally, absolute anomalies were computed for each of the turbulent
energy (ΔH and ʎE) as well as radiation energy balance terms (ΔRn,
SWin, SWout, LWin, and LWout) to estimate the change during pre-
cipitation extremes, and relationships were explored using quantile
regression. Ground heat flux anomalies (ΔG) were very small for all
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vegetation types in the region and ignored in our analysis
(Supplementary Fig. S3).

3. Results

3.1. Albedo changes during precipitation extremes in the Horn of Africa

The average spectral albedo during drought and extreme wet events
are displayed in the four vegetation types between 2001 and 2016
(Fig. 3). On average, VIS albedo consistently increased during droughts
(SPI ≤ 1) and decreased in extreme wet events (SPI > 1) across all

vegetation types. In NIR, an opposite pattern was observed. The VIS
albedo changes during both extreme wet and drought events were
stronger in magnitude than the NIR changes, resulting in a net increase
in SW albedo during drought in all vegetation types and a decrease in
SW albedo during extreme wet events with the exception of forests.
Note that the SW broadband albedo product has its own weighting
coefficients and anomalies not necessarily equal to the sum of VIS and
NIR albedo anomalies (see Liang, 2001 for the coefficients and their
calculation).

Forest showed opposite changes in VIS and NIR albedos during both
extreme-dry (0.004 vs −0.002) and extreme wet events (−0.002 vs

Fig. 3. Average changes in visible (VIS), near-infrared (NIR), and shortwave (SW) broadband albedos for each 3-month Standardized Precipitation Index (SPI) bin
during 2001–2016 in the Horn of Africa in forest, savanna, shrubland, and grassland. Left (a, c, e, and g) and right (b, d, f, and h) panels show changes during
March–April–May and October–November–December, respectively.
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0.004) in MAM, respectively. In extreme wet events, the rise in NIR
albedo outweighed the decrease in VIS albedo and hence the SW albedo
anomaly increased (0.001). During OND, the changes in albedo were in
general minor (Fig. 3a and b and Table 1).

VIS and NIR albedo in savanna showed a consistent and opposite
spectral change during drought and extreme wet events in both seasons.
However, in MAM droughts, the contrasting spectral changes had a
relatively small impact on SW albedo anomalies (0.004) due to the
strong VIS albedo increase (0.006), which offset the smaller NIR de-
crease (−0.001) (Fig. 3c,d and Table 1).

Shrubland, unlike other land cover types, showed an increase in
albedo in all spectral ranges during drought events in both seasons
(Fig. 3e and f). Such a pattern in shrubland was illustrated in the NIR
and VIS albedo anomaly time series (2001–2016), making it the least
divergent compared with the others (Table 1 and Supplementary Fig.
S8d). This, however, does not mean that NIR increased in all pixels;
rather it showed an average increase (i.e., the increase in NIR domi-
nated the decrease in NIR in the region) (see Supplementary Fig. S9).
Besides, compared with other vegetation types, the SW albedo anomaly
increase was the strongest during OND droughts (0.005) (Table 1). In
extreme wet events, however, the spectral changes showed a con-
trasting pattern in the VIS and NIR albedo as displayed in other vege-
tation types, with the magnitude of SW albedo decrease being stronger
(−0.003) in both seasons (Table 1).

In grassland, the spectral changes in VIS and NIR albedo showed a
similar contrasting pattern during extreme wet conditions in both sea-
sons, but during MAM droughts it displayed a pattern similar to
shrubland (i.e., both VIS and NIR albedo increased on average) (Fig. 3g
and h). The SW albedo anomaly showed the biggest increase (0.005)
during MAM droughts; this was due to a maximum increase in the VIS
albedo anomaly (0.008) which was not counterbalanced by NIR albedo
changes (0.001) (Table 1).

To understand the magnitude and statistical significance of albedo
response to precipitation extremes, a quantile regression was applied
(Fig. 4). With the exception of forests, the SW albedo anomaly had a
statistically significant (P < 0.01) and negative relationship with SPI.
Given the opposite spectral change between NIR and VIS albedo, forests
showed the smallest change in SW albedo in all quantiles, followed by
savanna. Furthermore, SW albedo anomalies were the least sensitive to
drought and extreme wet events in forest and savanna, in both seasons,
whereas shrubland showed the biggest SW albedo anomaly response to
SPI changes in the region in all quantiles during OND, followed by
grassland (Fig. 4b). During MAM, however, SW albedo anomaly re-
sponses to SPI change were stronger in grassland than in shrubland in
all quantiles (Fig. 4a).

To examine the underlying process causing the spectral changes in
albedo during precipitation extremes, the role of vegetation was in-
ferred from the LAI anomaly (ΔLAI hereafter) (Fig. 5a and b) and the
EVI anomaly (ΔEVI hereafter) (Fig. 5c and d). Both ΔLAI and ΔEVI

consistently showed an opposite pattern to that of ΔαVIS and ΔαSW

(except in forest) for both drought and extreme wet events (i.e., ΔLAI
and ΔEVI decreased during drought and increased during extreme wet
events across all vegetation types). With ΔαNIR, ΔLAI and ΔEVI dis-
played a similar pattern in savanna, forest (except during extreme wet
events in OND), and grassland (except during MAM drought). In
shrubland, however, ΔLAI and ΔEVI exhibited an opposite pattern to
that of ΔαNIR during drought events in both seasons.

3.2. Instantaneous shortwave surface radiative forcing due to albedo change
during 2001–2016 precipitation extremes

The ISRF during precipitation extremes was computed using the SW
broadband albedo shifts (Fig. 6). Forest and savanna, due to the strong
opposing spectral changes between VIS and NIR albedo, exerted the
smallest (near-zero) surface SW radiative forcing both during drought
(−0.12 W m−2, SD 0.03) and−0.38 W m−2, SD 0.17) and extreme wet
events (0.12 W m−2, SD 0.14) and 0.14 W m−2, SD 0.1) in OND, re-
spectively (Fig. 6a and b). Unlike other vegetation types, forests showed
inconsistencies in the radiative forcing sign between seasons (i.e., ne-
gative during MAM and positive during OND, in the extreme wet
events).

Shrubland and grassland had relatively strong ISRF compared with
forest and savanna The mean differences between shrubland/grassland
and forest/savanna were also statistically significant (P < 0.01, un-
paired t-test). During drought events, shrubland displayed an average
ISRF ranging from −1 W m−2 (SD 0.27) in MAM to −1.28 W m−2 (SD
0.20) in OND, while grassland had an ISRF of−0.8 W m−2 (SD 0.17) in
OND and−1.42 W m−2 (SD 0.49) in MAM on average (Fig. 6a). During
extreme wet events (SPI > 1) shrubland had a slightly stronger radia-
tive forcing of 0.71 W m−2 (SD 0.08) in OND and 0.72 W m−2 (SD
0.03) in MAM than grassland (0.45 W m−2, SD 0.12) in OND and
0.63 W m−2 (SD 0.07) in MAM in both seasons (Fig. 6b).

The regional ISRF was calculated from the sum of the average ra-
diative forcing during drought (SPI ≤ 1) and extreme wet (SPI > 1)
events from individual contributions of the four vegetation types (i.e.,
%forest × ISRF (forest) + %savanna × ISRF (savanna) + %
shrubland × ISRF (shrubland) + %grassland × ISRF (grassland)). The
results showed that during drought events, SW albedo increase exerted
a regional ISRF of −0.64 W m−2 (SD 0.11) in MAM and −0.56 W m−2

(SD 0.16) in OND, whereas during extreme wet events, the regional
ISRF was 0.33 W m−2 (SD 0.09) and 0.31 W m−2 (SD 0.09) for the
corresponding seasons.

3.3. Impact on energy balance terms in the Horn of Africa

Anomalies of turbulent fluxes (latent and sensible heat fluxes)
during 2001–2016 precipitation extremes are showed in Fig. 7a–d. With
the exception of forest (during extreme wet periods), all vegetation

Table 1
Average spectral changes in albedo (VIS, visible; NIR, near-infrared; SW, shortwave) during drought and extreme wet events in the Horn of Africa (2001–2016).
Standard deviation shown in brackets. α, black-sky albedo at local noon; IGBP, International Geosphere-Biosphere Programme; SPI, Standardized Precipitation Index.

IGPB vegetation
types

March–April–May/October–November–December

Average Δα during drought (SPI < −1) Average Δα during extreme wet events (SPI > 1)

ΔαVIS ΔαNIR ΔαSW ΔαVIS ΔαNIR ΔαSW

Forest 0.004 (0.002)/
0.002 (0.000)

−0.002 (0.001)/−0.001
(0.000)

0.001 (0.002)/
0.000 (0.000)

−0.002 0.001)/−0.001
(0.001)

0.004 (0.001)/
0.000 (0.001)

0.001 (0.000)/−0.001 (0.001)

Savanna 0.006 (0.002)/
0.004 (0.001)

−0.001 (0.001)/−0.002
(0.001)

0.004 (0.002)/
0.002 (0.001)

−0.005 (0.001)/−0.003
(0.000)

0.004 (0.001)/
0.002 (0.001)

−0.001 (0.000)/−0.001 (0.000)

Shrubland 0.005 (0.001)/
0.007 (0.001)

0.001 (0.000)/0.001
(0.001)

0.004 (0.001)/
0.005 (0.001)

−0.005 (0.001)/−0.006
(0.001)

0.001 (0.002)/
0.001 (0.002)

−0.003 (0.000)/−0.003(0.000)

Grassland 0.008 (0.002)/
0.007 (0.001)

0.001 (0.001)/−0.002
(0.000)

0.005 (0.002)/
0.003 (0.001)

−0.006 (0.002)/−0.006
(0.001)

0.002 (0.002)/
0.003 (0.001)

−0.003 (0.000)/−0.002 (0.000)
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types consistently exhibited a negative latent energy anomaly (ΔLE)
during drought and a positive ΔLE during extreme wet events, while the
sensible heat flux displayed the opposite pattern in both drought and
extreme wet events in all vegetation types. Furthermore, all anomalies
had a significant relationship (P < 0.01) with precipitation extremes
during both seasons, except in forest during OND (Supplementary Fig.
S4).

Forest, compared with other vegetation types, displayed the smal-
lest ΔLE decrease during OND drought (−2.69 W m−2, SD 0.72).
Furthermore, the extreme wet period changes in forest, in contrast to

the others, show a slight decrease in ΔLE (−1.64 W m−2, SD 3.73 in
OND), whereas grassland exhibited the biggest ΔLE changes during
both drought and extreme wet events (i.e., grassland had a ΔLE of
−28.10 W m−2 (SD 4.86) during OND drought and 24.51 W m−2 (SD
8.87) during MAM extreme wet periods). Savanna exhibited the second
biggest ΔLE (−21.73 W m−2, SD 5.37) in MAM during drought, fol-
lowed by shrubland, while the extreme wet period ΔLE had a similar
magnitude (∼ 21 W m−2) in savanna and shrubland.

The sensible heat flux anomaly (ΔH) showed an opposite change
compared with ΔLE across vegetation types (i.e., it increased during

Fig. 4. Quantile regression slope for the 3-month Standardized Precipitation Index (SPI) (predictor variable) and shortwave broadband albedo anomaly (dependent
variable) at 10th, 25th, 50th, 75th, and 90th percentile during 2001–2016 in the Horn of Africa across vegetation types in (a) March–May, (b) October–December .
The shaded region shows the 95% confidence interval of the estimated regression coefficients (slopes).The ns refers to statistical non-significance (P > 0.05).

Fig. 5. Average leaf area index (LAI) and enhanced vegetation index (EVI) anomaly for each 3-month Standardized Precipitation Index (SPI) bin during
March–April–May and October–November–December 2001–2016 in forest, savanna, shrubland, and grassland.
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drought and decreased during extreme wet events), except in forest
(Fig. 7c and d). The magnitudes of ΔH were also comparable with ΔLE.
Thus forest during OND drought had the smallest ΔH increase
(1.42 W m−2, SD 0.7) in OND, while grassland had the biggest ΔH in
both drought (23.40 W m−2, SD 4.13) in OND and extreme wet periods
(−21.67 W m−2, SD 7.91) in MAM. Similarly, savanna showed the
second biggest ΔH increase (21.44 W m−2, SD 5.02) in MAM followed
by shrubland during drought, while the maximum extreme wet period
ΔH was of similar magnitude (∼ −19 W m−2) in both savanna and
shrubland.

The radiation energy exchange anomalies during precipitation ex-
tremes are displayed in Fig. 8a–f. The incoming SW radiation anomaly
(ΔSWin) and the outgoing LW radiation anomaly (ΔLWout) both in-
creased during drought and decreased during extreme wet events, ex-
cept for forest. In contrast, the net radiation anomaly (ΔRn) exhibited
the opposite pattern (i.e., decreased during drought and increased
during extreme wet periods) (Fig. 8e and f). All anomalies displayed a
significant relationship (P < 0.05) with precipitation extremes, except
for forest ΔRn during OND (Supplementary Fig. S5).

ΔSWin was relatively bigger in savanna and forest during drought,

while it was the smallest for the same vegetation type during extreme
wet periods. Forest, despite the stronger increase in ΔSWin during
drought, emitted the smallest ΔLWout (3 W m−2, SD 0.63) in OND and
exhibited ∼ 0 W m−2 ΔRn in MAM during drought, whereas grassland
emitted the strongest ΔLWout (6.81 W m−2, SD 1.07), closely followed
by shrubland (6.27 W m−2, SD 0.97). Hence, the strongest decrease in
ΔRn was in grassland (−4.70 W m−2, SD 0.74) and shrubland
(−4.55 W m−2, SD 0.67). The extreme wet period ΔLWout and ΔRn

were also dominated by the relatively stronger response from shrubland
and grassland, whereas forest, followed by savanna, showed the smal-
lest change (Fig. 8d and f).

3.4. Impact on the land surface temperature anomaly across vegetation
types in the Horn of Africa

The mean temperature anomalies (ΔLST) during precipitation ex-
tremes (2001–2016) in forest, savanna, shrubland, and grassland are
displayed in Fig. 9. All vegetation types consistently displayed an in-
crease (decrease) in ΔLST during drought (extreme wet events). How-
ever, the magnitude of change varies between vegetation types. Forest

Fig. 6. Average instantaneous shortwave surface radiative forcing (ISRF) due to albedo changes during precipitation extremes in the four vegetation types (forest,
savanna, shrubland, and grassland) in the Horn of Africa between 2001 and 2016. Panels a and b show ISRF during drought and extreme wet events, respectively.
MAM , March, April, May (“long rains”); OND, October, November, December (“short rains”). Error bars show ± standard deviation.

Fig. 7. Turbulent energy exchange anomalies (in W m−2) during precipitation extremes in forest, grassland, savanna, and shrubland during 2001–2016. Panels a and
b show latent heat flux anomalies, and c and d show sensible heat flux anomalies. Left and right panels display drought and extreme wet event changes, respectively.
MAM, March, April, May (“long rains”); OND, October, November, December (“short rains”). Error bars show ± standard deviation.
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and shrubland displayed the smallest average ΔLST of a similar mag-
nitude (1.4 K) during drought in MAM. Besides, forest again showed the
smallest ΔLST during extreme wet events in MAM (−0.95 K) and
during both extreme wet (−0.74 K) and dry (0.63) events in OND,
whereas the biggest ΔLST came from savanna (2.52 K in MAM and

1.37 K in OND) and grassland (1.74 K in MAM and 1.78 K in OND)
during drought. During extreme wet events, however, the average ΔLST
in grassland responded strongly (−2.33 K in MAM and −2.48 K in
OND) and consistently in both seasons, followed by shrubland
(−1.85 K and −2.04 K).

Fig. 8. Radiation energy exchange anomalies (in W m−2) during 2001–2016 precipitation extremes in forest, grassland, savanna, and shrubland. Panels show
incoming shortwave (SW) radiation (a and b), outgoing longwave (LW) radiation (c and d), and net radiation (e and f) anomalies. Left and right panels represent
drought and extreme wet period changes, respectively. MAM, March, April, May (“long rains”); OND, October, November, December (“short rains”). Error bars
show ± standard deviation.

Fig. 9. Average land surface temperature anomaly for each 3-month Standardized Precipitation Index (SPI) bin during 2001–2016 precipitation extremes across
forest, savanna, shrubland, and grassland in the Horn of Africa.
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The quantile regression results showed that the ΔLST response to
both drought and extreme wet events was statistically significant
(P < 0.01) in all vegetation types (forest, savanna, shrubland, and
grassland) and precipitation extremes had an impact on LST anomalies
in the region (Fig. 10). The impact was stronger in grassland (during
OND) and savanna (MAM), while being weaker in forest in both sea-
sons.

3.5. Difference between wet event and drought changes across vegetation
types

As the difference between extreme wet and drought anomalies
showed, the degree of sensitivity to precipitation extremes varied across
vegetation types in the region (Table 2). Grassland, followed by
shrubland, responded strongly to precipitation extremes, while forest
displayed the smallest changes. Savanna exhibited the second smallest
changes in precipitation extremes, except in LST.

4. Discussion

4.1. Changes in spectral albedo during precipitation extremes

Our results revealed that during 2001–2016 precipitation extremes,
an increase in VIS albedo dominated during droughts, while a decrease
was observed during extreme wet events. In forest and savanna, the
opposing spectral changes in VIS and NIR albedo during drought largely
averaged out, limiting the changes in SW albedo. Under severe drought
conditions, as occurred during 2011, the VIS and NIR counterbalance
can further limit the SW albedo changes in forest and savanna
(Supplementary Fig. S6). Similar opposing changes in VIS and NIR al-
bedo were reported in forest and woody savanna during the 2003
European heat wave and drought (Teuling and Seneviratne, 2008).
Sütterlin et al. (2016) further showed that such opposing changes in
albedo occur not only during drought but also during extreme wet and

normal precipitation events in Europe.
The mechanisms driving the observed spectral changes can be re-

lated to the soil-moisture depletion and the associated stress in vege-
tation (Lobell and Asner, 2002; Teuling and Seneviratne, 2008). Albedo
is negatively related to soil-moisture content in all wavelengths (i.e.,
with a decrease in soil-moisture content, soil albedo increases and vice
versa; however, the relationship is nonlinear and better described by
exponential models) (Idso et al., 1975; Lobell and Asner, 2002). Hence
during droughts, the decrease in soil moisture can contribute to an
increase in VIS albedo. Besides, the consistent negative ΔLAI and ΔEVI
during drought (Fig. 5) indicate vegetation stress and reduced chlor-
ophyll production for photosynthesis, which might cause less absorp-
tion in the blue and red spectral regions (Gibson, 2000; Lillesand et al.,
2008). Consequently, this leads to higher albedo in the blue and red
spectral regions and an overall increase in the broadband VIS albedo
anomaly. NIR albedo can decrease in stressed vegetation as NIR ra-
diation can penetrate deep into the middle layer of the leaf's cell
structure, where it will be absorbed by stressed mesophyll and palisade
cells (Gibson, 2000). Moreover, the decrease in ΔLAI indicates a loss of
leaves during drought and this can further contribute to the NIR albedo
reduction.

Shrublands showed different NIR albedo patterns compared to the
contrasting VIS and NIR patterns reported from previous studies in
other vegetation class (e.g., Teuling and Seneviratne, 2008). Contrary
to the expected reduction in NIR albedo associated with the decline in
NIR reflectance from stressed vegetation (Fig. 5), the average NIR al-
bedo increased in shrublands. This indicates that the NIR albedo
changes in shrublands were not driven by vegetation changes, and can
be explained by the background soil albedo changes. We observed that,
in shrubland areas, the bare soil fraction (∼60%) was dominantly
higher than the vegetation cover fraction (∼40%) (see Supplementary
Fig. S10). During drought, the decrease in soil moisture can lead to an
increase in bare soil reflectance in all wavelengths (Idso et al., 1975;
Lobell and Asner, 2002). Consequently, the increase in NIR from bare

Fig. 10. Quantile regression slope for the 3-month Standardized Precipitation Index (SPI) (predictor variable) and land surface temperature (LST) anomaly (de-
pendent variable) at 10th, 25th, 50th, 75th, and 90th percentile during 2001–2016 across vegetation types. Shaded region shows the 95% confidence interval of the
estimated regression coefficients (slopes). All slopes were statistically significant (P < 0.01, two-tailed test).

Table 2
Differences between 2001 and 2016 extreme wet and dry period anomalies of energy balance terms (Rn, net radiation; LH, latent heat flux; H, sensible heat flux; SWin,
incoming shortwave radiation; LWout, outgoing longwave radiation), leaf area index (LAI), enhanced vegetation index (EVI), and land surface temperature (LST)
during March–May and October–December. The range of values indicates variation between two seasons. IGBP, International Geosphere-Biosphere Programme.

Extreme wet – drought (Difference)

IGBP Vegetation type ΔRn (W m−2) ΔLH (W m−2) ΔH (W m−2) ΔSWin (W m−2) ΔLWout (W m−2) ΔLAI ΔEVI ΔLST (K)

Forest 1–2 1–26 −0.1 to −24 −14 −6 to −9 0.3–0.5 0.02–0.06 −1 to −2
Savanna 2–3 21–42 −19 to −40 −12 to −16 −8 to −11 0.4–0.5 0.05–0.08 −3 to −4
Shrubland 4–7 35–38 −31 −13 to −15 −11 to −12 0.2–0.4 0.06–0.08 −3
Grassland 5–7 46–49 −41 to −42 −13 to −15 −13 0.5–0.6 0.09–0.1 −4
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soil dominated the decrease in NIR albedo from stressed vegetation,
resulting in a net increase in the average NIR albedo.

In grassland, unlike other vegetation types, variability in NIR albedo
was shown to be seasonally dependent during drought. That is, different
patterns were observed in MAM and OND. Contrary to previous studies
that reported opposite VIS and NIR albedo changes during drought
(Teuling and Seneviratne, 2008; Sütterlin et al., 2016), NIR albedo in-
creased with VIS albedo during MAM. This seasonal variation can be
related to the competing effects between soil and vegetation NIR albedo
changes. The NIR albedo changes in soil and vegetation can vary with
season as the fraction of bare soil and vegetation cover is not expected
to be exactly the same in the two seasons. As the bare soil fraction from
MOD44B indicated, grassland had a bare soil fraction of around 40% on
average, under all precipitation conditions (normal, drought, and ex-
treme wet) (Supplementary Fig. S10). Hence during drought, with an
increase in vegetation stress, more soils will be exposed to the surface
and the proportion of bare soil fraction can increase, and thus the NIR
albedo can increase/decrease depending on the dominant effect be-
tween soil and vegetation in the two seasons. This result indicates that
the average NIR albedo change in grassland can vary depending on the
season, bare soil fraction, and geographical location during drought,
which was not yet reported in previous studies (e.g., Teuling and
Seneviratne, 2008). However, further investigation using ground al-
bedo data are needed to accurately quantify the impact of soil and
vegetation fraction change on the seasonal variation of NIR albedo in
grassland, where the proportions of vegetation and the soil fraction can
increase to comparable magnitude.

Changes in albedo during extreme wet events were rather consistent
and opposite to that of the drought season changes in all vegetation
types, except forests. In forests, the ΔSW albedo anomaly increased,
driven by the stronger increase in NIR that outweighed the decrease in
the VIS albedo anomaly during MAM. We argue that this pattern is
explained by the enhanced greening during MAM compared with the
negligible changes during OND (i.e., spectral changes during this season
were negligible in all parts of the spectrum) (Fig. 3b). With the en-
hanced soil-moisture condition in the extreme wet periods, vegetation
productivity increases (Fig. 5) and photosynthetic activity will be en-
hanced. This will cause more absorption of blue and red radiation for
photosynthesis and more scattering of NIR radiation from green leaves,
which can lead to a decrease in VIS albedo and an increase in NIR al-
bedo. Soil reflectance in contrast decreases in all wavelengths during
extreme wet periods and can contribute to a reduction in albedo
(Gibson, 2000; Lillesand et al., 2008).

The magnitude of SW albedo changes during droughts was larger
than during extreme wet events. This can be partly related to the sa-
turation of soil reflectance at lower soil-moisture content (i.e., around
20% volumetric water content) (Lobell and Asner, 2002), which can
contribute to the smaller changes in the resulting SW albedo. Further-
more, unlike extreme wet periods, VIS albedo anomalies during
droughts increased consistently and linearly for each step increase in
drought severity level (except in forests) (Fig. 3). This further indicates
that albedo is more likely to be affected by droughts than extreme wet
events.

4.2. Energy exchange during precipitation extremes and its impact on
climate

The ISRF was relatively strong in shrubland and grassland, com-
pared with forest and savanna, due to their relatively larger SW albedo
changes during precipitation extremes. Furthermore, as much of the
study area (around 50%) was covered by shrubland and grassland, their
contributions to regional surface radiative forcing were also relatively
high (i.e., 80–93% and 92–95% of the regional ISRF during drought and
extreme wet periods, respectively). The magnitude of the regional ISRF
associated with extreme wet periods (0.31 to 0.33 W m−2) was smaller
than during droughts (−0.56 to −0.64 W m−2). Hence, in all extreme

events, SW albedo changes had a small impact on the regional net SW
radiation.

Although the impact of albedo change on ISRF can be locally as high
as −8 W m−2 in some pixels during strong drought events (e.g., during
the 2011 Horn of Africa drought; Supplementary Fig. S7), its regional
impact on average was too small (−0.56 to −0.64 W m−2) to affect
surface-atmosphere link during 2001–2016. Other studies in Europe
also reported smaller magnitude (–1 W m−2) at regional scale during
drought (e.g., Teuling and Seneviratne, 2008). Our results support
previous findings in forests and savanna showing that albedo changes
during extreme events had limited impact on the coupling between the
land surface and atmosphere (Teuling and Seneviratne, 2008). Hence,
as albedo changes affected the available net SW radiation by only a
small fraction (<3%), the remaining energy was channeled to turbulent
energy fluxes.

Our results showed that energy fluxes and LST had opposite patterns
when drought and extreme wet events were compared. During drought,
anomalies of incoming SW radiation increased, latent heat flux de-
creased, sensible heat flux increased, and LST increased. The reverse
pattern occurred during extreme wet events. The significant (P < 0.01)
increase (decrease) in the SW radiation anomaly can be explained by
the decrease (increase) in cloud cover and water vapor in the atmo-
sphere during drought (extreme wet periods) (Greene et al., 2011).
With decreased cloud cover during drought, more radiation load is
expected and the reverse would occur during extreme wet events. In
semi-arid, water-limited environments, the increase in LST is likely due
to the reduction in evaporative cooling associated with less evapo-
transpiration following soil-moisture stress. The opposite would occur
during extreme wet periods. These explanations are supported by both
ground and satellite observations (Whelan et al., 2015; Yin et al., 2014;
Alexander, 2011; Jung et al., 2010; Meyers 2001).

Furthermore, the decline in net radiation during drought and the
increase during extreme wet periods across vegetation types, except in
forests, can be related to the changes in albedo, surface temperature,
and upwelling LW radiation (Eltahir, 1998). This means that in addition
to the reduction in net radiation during drought caused by the albedo
effect, a reduction in evapotranspiration raises the LST, which in turn
increases the emitted LW radiation and hence decreases net radiation
(Fig. 8) (Yin et al., 2014; Small and Kurc, 2003).

Although forest areas were exposed to a stronger incoming SW ra-
diation anomaly, they responded the least to precipitation extremes, as
indicated by the smallest anomalies in turbulent and radiation energy
exchange, LST, as well as minor changes in vegetation conditions
(Table 2). The small decrease in latent heat flux during drought in-
dicates that the impact of drought in limiting evapotranspiration was
relatively small and some of the extra energy is likely used for evapo-
transpiration. Forests can access groundwater through their deep
rooting system and are able to regulate water loss through stomatal
closure, being able to endure mild drought conditions (Kerhoulas et al.,
2013; Ehleringer and Dawson, 1992; Kramer and Boyer, 1995). But
with prolonged and severe drought, followed by increasing temperature
and aridity, forests become vulnerable to hydraulic failure, and sub-
sequent tree mortality can occur (Choat et al., 2012; Allen et al., 2010;
Williams et al., 2012).

Savanna exhibited the second smallest anomalies in response to
rainfall extremes, except in LST. The LST anomaly difference between
extreme wet and drought in savanna ranges from −3 K to the highest in
the region (−4 K). This characteristic can be explained by the stronger
latent and sensible heat flux anomaly ranges of savanna, which had
comparable magnitude to those of grassland (Table 2). The rationale
behind the range of LST anomalies (−3 to −4 K) in savanna is likely
related to its plant composition. As a mix of trees and grasses coexist in
savanna, they can compete or support each other during precipitation
extremes (Dohn et al., 2013). The occurrence of trees in savanna might
counteract, to a smaller degree, the impact of drought by limiting the
reduction in latent heat flux and increasing resilience to drought
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(Whelan et al., 2015). Furthermore, in such a water-limited environ-
ment, trees can help to reduce water stress in grasses by lifting water
from groundwater to the top dry soil layer via their roots and mini-
mizing incoming SW radiation (Dohn et al., 2013).

In contrast, grassland responded strongly to precipitation extremes.
It showed the strongest anomalies in all variables, except in incoming
SW anomalies (Table 2). Previous studies also showed strong sensitivity
of grassland to water availability in semi-arid environments
(Huxman et al., 2004; Knapp and Smith, 2001). Grassland, due to its
shallow rooting systems, responds quickly to water stress but also re-
covers fast when soil-moisture conditions improve. This characteristic
likely caused the changes observed in grassland during precipitation
extremes. Furthermore, the strong net radiation and turbulent flux
anomalies in grassland and shrubland might indicate greater influence
of soil-moisture variability in a semi-arid environment (Jung et al.,
2010; Small and Kurc, 2003). Besides, compared with other vegetation
types, the stronger reduction in evaporative cooling and concurrent
increase in sensible heat flux anomaly during drought, with larger
magnitude, might be explained by the use of much of the incoming
radiation to strongly increase the LST anomalies, which in turn caused
strong upwelling LW irradiance in grassland (Fig. 8). Our results are in
line with previous studies during the 2003 European heat wave and
drought (Teuling et al., 2010), in which a stronger heating from
grassland compared with forest was reported under longer timescale
conditions.

Shrubland displayed the second strongest anomalies in most vari-
ables. Given the arid characteristics of this vegetation type, a stronger
influence of soil-moisture variability is expected (Jung et al., 2010),
whereas the smaller changes in vegetation status (ΔLAI and ΔEVI)
during droughts, in comparison with grassland, imply stronger resi-
lience to water shortage (Varela et al., 2016). Shrubland can survive
longer during water stress by maintaining turgor through osmotic ad-
justment and changing cellular elasticity and oxidant mechanisms
(Reddy et al., 2004). Associated with the smaller vegetation stress
condition, a relatively low reduction in latent heat flux and surface
temperature anomaly can thus be expected in shrubland (Table 2).

It is interesting that grassland and shrubland, despite having bigger
and positive shortwave radiative forcing, exhibited the strongest net
surface warming during OND drought. This shows that the surface
cooling from the strong shortwave albedo feedback was outweighted by
the warming from the reduction in latent heat flux and resulting in
higher sensible heat flux and land surface temperature. Given strong
surface feedback from moisture recycling in the region (Notaro et al.,
2019), this process can reduce moisture and increase heat at the at-
mospheric boundary layer, limiting cloud formation (Miralles et al.,
2018) and, consequently, amplifying surface warming and intensifying
drought events. For more information on surface feedbacks, refer the
conceptual flow diagram in the supplementary material (Fig. S11).

5. Conclusions

In this paper, we analyzed the impact of precipitation extremes on
albedo, energy exchange, and surface temperature anomalies across
four vegetation types (shrubland, grassland, savanna, and forest) in the
Horn of Africa. The VIS albedo showed a stronger response to pre-
cipitation extremes compared with NIR albedo. Opposite changes in VIS
and NIR albedo generally canceled each other in forest and savanna,
limiting albedo changes when considering the entire SW spectrum. This
pattern was not observed in shrubland and grassland, where both VIS
and NIR albedo increased during droughts, contributing for a stronger
shortwave radiative forcing. We demonstrated that the increase in NIR
albedo in shrubland and grassland was caused by the dominant influ-
ence of bare soil NIR albedo, which was weakly counterbalanced by
vegetation NIR albedo decrease.

At a regional level, the ISRF due to albedo change was small both
during drought (−0.56 to−0.64 Wm−2) and extreme wet events (0.31

to 0.33 W m−2). Hence our results support the view that drought-in-
duced changes in albedo are not strong enough to influence the surfa-
ce–atmosphere coupling. In contrast, precipitation extremes had a
stronger impact on the exchange of latent and sensible heat, leading to
a surface feedback that contributed to LST anomalies during these ex-
treme events, except in forests. When the impact of precipitation ex-
tremes on the radiation balance and turbulent fluxes was compared
across vegetation types, grassland was found to be the most sensitive,
while forest was relatively resilient. These results highlight the attrac-
tiveness of forest preservation and afforestation to counteract the cli-
matic impact of drought through regulating net radiation and LST
anomalies.
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