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Abstract. We study the production of primordial black hole (PBH) dark matter in the case
when the Standard Model Higgs coupled non-minimally to gravity is the inflaton. PBHs can
be produced if the Higgs potential has a near-critical point due to quantum corrections. In
this case the slow-roll approximation may be broken, so we calculate the power spectrum
numerically. We consider both the metric and the Palatini formulation of general relativity.
Combining observational constraints on PBHs and on the CMB spectrum we find that PBHs
can constitute all of the dark matter only if they evaporate early and leave behind Planck
mass relics. This requires the potential to have a shallow local minimum, not just a critical
point. The initial PBH mass is then below 106 g, and predictions for the CMB observables
are the same as in tree-level Higgs inflation, ns = 0.96 and r = 5 × 10−3 (metric) or r =
4× 10−8 . . . 2× 10−7 (Palatini).
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1 Introduction

Higgs inflation. The Standard Model (SM) of particle physics is very successful in describ-
ing physics at the electroweak (EW) scale. A key part of the SM is the Higgs mechanism,
in which the Higgs field gives masses to elementary particles. If the Higgs field is coupled
non-minimally to gravity and the theory is extrapolated to high energies, the tree-level theory
provides a model of inflation [1, 2]. Its predictions for the spectral index of primordial scalar
perturbations and tensor-to-scalar ratio are in excellent agreement with observations of the
cosmic microwave background (CMB) radiation and large-scale structure [3]. Higgs inflation
is appealing in its simplicity, and it is perhaps the most minimalistic way of incorporating
inflation into known particle physics.

However, the predictions can change because of two complicating factors: choice of
gravitational degrees of freedom and quantum corrections. There are several formulations of
general relativity that are equivalent for the Einstein–Hilbert action and minimally coupled
matter. The most common is the metric formulation, where the metric and its derivatives are
the only degrees of freedom. Another one is the Palatini formulation, where the connection
is taken to be an independent variable [4, 5], which leads to different predictions when the
gravitational action is more complicated than the Einstein–Hilbert case [6–25], or when the
matter is directly coupled to the Ricci scalar [26–36], as in Higgs inflation [29, 30, 32–34].

Quantum corrections can in principle provide a consistency test between cosmology and
collider physics [37–50], but they bring up ambiguities related to the non-renormalizable na-
ture of gravity and possibly to the choice of frame [43, 44, 46, 48, 51–66], lead to possible
issues with unitarity [30, 40, 46, 51, 54, 63, 67–73], and may make the Higgs self-coupling
run to a negative value at high energies [74–78]. Nevertheless, thanks to a conjectured ap-
proximate shift symmetry at the inflationary scale, loop corrections there can be calculated
systematically independent of any problems at lower scales, though the connection between
the inflationary regime and EW scale physics is not uniquely defined [33, 46, 57, 61, 70, 79–86].
In most cases, quantum corrections don’t affect the CMB predictions much [57]. However,
if the couplings are tuned, the corrections can produce a feature at the inflationary scales,
such as a critical point where the first and second derivatives of the potential vanish (sim-
ply called an inflection point in some publications) [32, 48, 57, 79–81, 84, 86–89], a hilltop
[32, 33, 57] or a degenerate vacuum [90, 91]. Such features can change the dynamics and the
CMB predictions considerably.

Primordial black holes as dark matter. In addition to affecting CMB observables, fea-
tures in the potential could produce large scalar perturbations that seed primordial black holes
(PBHs) [92] when scales around the critical point re-enter the Hubble radius after inflation.
PBHs could then constitute part or all of the dark matter [93–100]. The recent detection of
gravitational waves from black hole mergers by LIGO and Virgo [101] has rekindled the study
of PBHs [102, 103], with many proposed models of critical point inflation [104–110] that could
produce PBH dark matter in the mass range observable by current or upcoming gravitational
wave experiments. Such predictions are subject to stringent constraints from astrophysical
observations, such as lensing and gamma-ray bursts [111–113]. Only four regions remain in
the spectrum of PBH mass that still allow a sizeable PBH population. There are two narrow
mass windows at 1018 g and 4×1019 g, a mass window at 1034 . . . 1035 g ≈ 25 . . . 100 M� close
to the LIGO/Virgo range, and finally all initial masses < 106 g are allowed, corresponding
to PBHs that evaporate before big bang nucleosynthesis (BBN) down to Planck scale relics
without spoiling baryogenesis [111, 112].
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PBH production in critical point Higgs inflation has been studied in a simple setting
in [105]. The authors concluded that with a suitable choice of parameters, their model can
produce enough PBHs in the LIGO/Virgo mass range to constitute all of the dark matter
while remaining consistent with CMB observations. However, their analysis was based on
the slow-roll (SR) approximation, which does not necessarily apply at a critical point [106–
110, 114]. Also, the running of the quartic Higgs coupling and of the non-minimal coupling
was treated phenomenologically without using the full renormalisation group equations.

In this study of critical point Higgs inflation, we start from the renormalization group
improved SM Higgs potential and run it from the EW scale up. We also run the chiral SM
down from high scales and match the two potentials at an intermediate scale, with a jump in
the quartic Higgs coupling and the top Yukawa coupling. We scan over all near-critical point
Higgs potentials and calculate the spectrum of scalar perturbations numerically, without the
SR approximation. We consider both the metric and the Palatini formulation of general
relativity. We compare to the observational limits on the CMB spectrum and on PBHs.

In section 2 we outline how we find the potential with a critical point. In section 3 we
discuss inflation and SR violation near such a critical point. In section 4 we summarize the
theory of primordial black holes and their formation in the context of critical point inflation.
In section 5 we present our numerical scans over all allowed critical and near-critical point
potentials and the results for black hole formation in Higgs inflation. Section 6 is reserved for
discussion, and in section 7 we summarize our findings. Technical details about the mass limit
of relic PBHs and non-conservation of the curvature perturbation are presented in appendices
A and B.

2 Higgs potential

2.1 Tree-level potential

The Lagrangian of the SM coupled non-minimally to gravity is

S =

∫
d4x
√
−g
[

1

2

(
M2 + ξh2

)
gµνRµν −

1

2
gµν∂µh∂νh− V (h) + LSM

]
, (2.1)

where gµν is the metric, Rµν is the Ricci tensor,M is a mass scale close to Planck mass that we
set to unity henceforth, h is the radial Higgs field, ξ is the non-minimal coupling, V (h) = λ

4h
4,

and LSM contains the rest of the SM. The Ricci tensor is built from the connection: in the
metric case we take it to be the Levi–Civita connection, but in the Palatini case it is an
independent variable determined by the field equations [29]. To make contact with the usual
analysis of inflation, it is customary to perform a Weyl transformation to the Einstein frame
and define a new canonical scalar field χ with minimal coupling to gravity and a canonical
kinetic term [1]:

gαβ → (1 + ξh2)−1gαβ ,
dh

dχ
=

1 + ξh2√
1 + ξh2 + p6ξ2h2

, (2.2)

where p = 1 in the metric formulation and p = 0 in the Palatini formulation. In the metric
case the Einstein frame potential is

U(χ) =
V [h(χ)]

[1 + ξh(χ)2]2
≡ λ

4
F [h(χ)]4 , (2.3)
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where in the metric case

F (h) ≡ h√
1 + ξh2

≈

χ h� 1/ξ

1√
ξ

(
1− e−

√
2/3χ

)1/2
h� 1/

√
ξ .

(2.4)

In the Palatini case, we have the exact result

F [h(χ)] =
1√
ξ

tanh
(√

ξχ
)
. (2.5)

It is convenient to define [57]

δ ≡ 1

ξh2
. (2.6)

The potential (2.3) is exponentially flat and supports SR inflation for h & 1/
√
ξ, that is,

δ . 1.

2.2 Quantum corrections

We take into account quantum corrections to the potential in the same way as in [33]. At
δ . 1 the theory is approximated by the chiral SM, and we add to (2.3) the chiral SM one-loop
potential correction [44]

U1−loop =
6m4

W

64π2

(
ln
m2
W

µ2
− 5

6

)
+

3m4
Z

64π2

(
ln
m2
Z

µ2
− 5

6

)
− 3m4

t

16π2

(
ln
m2
t

µ2
− 3

2

)
, (2.7)

where W and Z boson masses mW and mZ and the top quark mass mt are

m2
W =

g2F 2

4
, m2

Z =

(
g2 + g′2

)
F 2

4
, m2

t =
y2
tF

2

2
, (2.8)

and other fermions are approximated to be massless. We also let the couplings run according
to the one-loop chiral SM beta functions [44, 115]:

16π2βλ = −6y4
t +

3

8

[
2g4 + (g′2 + g2)2

]
, 16π2βyt = yt

(
−17

12
g′2 − 3

2
g2 − 8g2

S + 3y2
t

)
,

16π2βg = −13

4
g3 , 16π2βg′ =

27

4
g′3 , 16π2βgS = −7g3

S .

(2.9)
A term in βλ proportional to λ and the running of ξ are omitted as higher order corrections.
Everything is done in the MS renormalization scheme. In principle, the theory reduces to
the chiral SM only in the limit δ → 0; however, we assume that the above results give a
decent approximation for the potential for all δ . 1. In both the metric formulation and
the Palatini formulation the theory is asymptotically the chiral SM, but for finite values of
δ the renormalisation group running is different in the two formulations; our approximation
neglects these differences. The renormalization scale is chosen to depend on the field,

µ(χ) = κF (χ) , (2.10)

where the constant κ is chosen so that the loop correction (2.7) vanishes at a feature scale
(see below).
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χ

U

Figure 1. Sketch of a critical point potential: at the point marked by the dashed line, U ′ = U ′′ = 0.
This potential was formed with parameter values ξ = 70, δ0 = 1.5, εV 0 = ηV 0 = 0 in the metric
formulation (see section 5).

We connect the chiral SM to EW scale physics at a threshold scale chosen to be

µ1 =
κ

ξ
. (2.11)

Below this scale, the couplings run according to three loop SM beta functions and we match
them to the observed particle masses and strong coupling constant [116, 117]

g2
S(mZ)

4π
= 0.1184 , mH = 125.09± 0.24 GeV , mt = 172.44± 0.49 GeV . (2.12)

The top mass uncertainty above does not include the theoretical uncertainty in relating the
measured MCMC mass to the perturbation theory pole mass, estimated to be of the order
one GeV [77, 117]. Running and matching are done with the code [118], which also uses the
initial valuesmW = 80.399 GeV,mZ = 91.1876 GeV, the Fermi constant GF = 1.16637×10−5

GeV−2, the fine structure constant α = 1/127.916 and sin2 θW = 0.23116, where θW is the
Weinberg angle evaluated at scale mZ . At the threshold, we let couplings λ and yt jump by
∆λ and ∆yt to simulate the effects of the unknown physics between the EW and inflationary
scale. For simplicity, we omit such jumps for the gauge couplings and match their SM and
chiral SM values at the threshold.

Different values of the jumps ∆λ and ∆yt correspond to different corrections to the
potential. We consider a potential with a critical point at the inflationary scales δ . 1, where
U ′ = U ′′ = 0, see figure 1, or a near-critical point where U ′ and U ′′ are close to zero.

3 Inflation

3.1 Background evolution

The potential discussed in section 2 gives the time evolution of the homogeneous background
field χ(t) and the scale factor a(t) through the Friedmann equations (taking spatial curvature
to be negligible):

3H2 =
1

2
χ̇2 + U(χ) , χ̈+ 3Hχ̇+ U ′(χ) = 0 , (3.1)
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where H ≡ ȧ/a and dot indicates derivative with respect to the cosmic time t. For cosmic
inflation to take place, the scalar field potential energy must dominate over the kinetic term,
so the first equation in (3.1) simplifies:

1

2
χ̇2 � U(χ) ⇒ 3H2 ≈ U(χ) . (3.2)

This condition can be written in terms of the first Hubble SR parameter:

εH ≡
χ̇2

2H2
< 1 for inflation. (3.3)

3.2 Inflationary observables

To compare to observations, we have to calculate the evolution of perturbations on top of the
background solution. Gaussian perturbations are fully characterized by the power spectrum:
PR for the comoving curvature perturbation in the scalar sector, and PT for the tensor
perturbations. Observations of the CMB temperature and polarization anisotropies and CMB
lensing [3] give at the pivot scale k∗ = 0.05 Mpc−1 the amplitude

As ≡ PR(k∗) = 2.1× 10−9 , (3.4)

spectral index

ns ≡ 1 +
dPR(k)

d ln k

∣∣∣∣
k=k∗

= 0.9653± 0.0041 (3.5)

and tensor-to-scalar ratio
r ≡ PT (k∗)

PR(k∗)
< 0.070 . (3.6)

The pivot scale k∗ exits the Hubble radius when the number of e-folds until the end of inflation
is

N∗ ≈ 61−∆Nreh +
1

4
lnU∗ ≈ 57 +

1

4
lnU∗

SR
≈ 52− ln

0.07

r
, (3.7)

where ∆Nreh is the number of e-folds between the end of inflation and the end of reheating,
taken to be ∆Nreh = 4 for SM field content [119–121] (see also [122]), and U∗ is the potential
at the Hubble exit of k∗. The last equality applies in the SR approximation.

3.3 Special cases

3.3.1 Slow-roll inflation

Let us define the second Hubble SR parameter:

ηH ≡ −
χ̈

Hχ̇
. (3.8)

If both |ηH | and εH are < 1, we have SR inflation. In this case the second equation in (3.1)
also simplifies, and we have

|χ̈| � 3H|χ̇| ⇒ 3Hχ̇ ≈ −U ′(χ) . (3.9)

We can also define the potential SR parameters:

εV ≡
1

2

(
U ′

U

)2

, ηV ≡
U ′′

U
(3.10)
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with
εH ≈ εV , ηH ≈ ηV − εV in SR. (3.11)

Smallness of εV and |ηV | is a necessary (but not sufficient) condition for SR. SR predicts the
CMB observables [123]

ns = 1− 6εV + 2ηV , r = 16εV . (3.12)

SR inflation is desirable on CMB scales as it predicts a nearly scale invariant spectrum, ns ≈ 1,
in agreement with the observed value (3.5).

3.3.2 Ultra-slow-roll inflation

If the first derivative of the potential is negligible at some point during inflation, the equations
of motion become

3H2 ≈ U(χ) ≈ constant , χ̈+ 3Hχ̇ ≈ 0 . (3.13)

This regime is called ultra-slow-roll inflation (USR) [124–128]. The SR approximation does
not hold, since ηH = 3 > 1, even though εV ≈ 0 and we can have |ηV | < 1. The solution of
(3.13) is

χ̇(t) ∝ e−3Ht ⇒ χ(t) ∝ A+ e−3Ht , (3.14)

where A is a constant, so the field slows down exponentially. As we will see, the power
spectrum PR is greatly enhanced during USR.

3.3.3 Inflation near a critical point

Let us consider inflationary dynamics in the case when the inflaton potential has a critical
point at χ0, that is, U ′(χ0) = U ′′(χ0) = 0 (see figure 1). We further assume that χ starts
in SR above this feature, rolling towards χ0. There are three possible outcomes, with differ-
ent background evolution and perturbation power spectra, depending on the details of the
potential.

1. If the SR approximation holds all the way to χ0, then it takes an infinite number of
e-folds to reach the critical point. This case is not physically relevant, since χ never
gets to the vacuum at χ < χ0 (the field velocity vanishes as U ′ = 0, as (3.9) shows).
However, we may consider a near-critical point with ηV = 0, 0 < εV � 1, so that
the field rolls over the feature in a finite time. As we will see below, the scalar power
spectrum is enhanced in this case, but the SR approximation holds all the way through
the feature.

2. If the SR approximation breaks down before the critical point, but inflation continues
until χ < χ0 — that is, εV < 1 all the way through, but |ηV −εV | > 1 at least somewhere
above χ0, see (3.11) — then near the critical point the field is in USR [106–110, 129].
The USR conditions (3.13) are satisfied for only a short span of field values near the
critical point — in our numerical solutions for Higgs inflation, the USR period typically
lasts only for a few e-folds, and the transition in and out of USR is not sharp. However,
during this period, the scalar power spectrum can be strongly enhanced. This growth
can be further enhanced if we consider a near-critical point instead, with εV = 0 but
ηV > 0 so that the potential has a local minimum. After the feature the field may
return to SR or inflation may end, depending on the shape of the potential.
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3. If εV > 1 at some point above but close to the critical point, then inflation ends before
the critical point is reached, or at least leaves the SR attractor. Typically the inflaton
rolls over the critical point quickly, and there is hardly any enhancement of the scalar
power spectrum [107].

The second case is particularly interesting: the SR approximation fails in the middle of
inflation, and the scalar power spectrum can be greatly enhanced. Below we look at the
evolution of the scalar power spectrum in this case analytically, before doing a full numerical
calculation.

3.4 Perturbations

3.4.1 Mode equation

Scalar perturbations during inflation are typically described in terms of the Sasaki-Mukhanov
variable ν [130]. Its Fourier modes µk satisfy the equation of motion

µ′′k +

(
k2 − z′′

z

)
µk = 0 , (3.15)

where prime denotes derivative with respect to conformal time η =
∫
dt/a(t), and

z ≡ a χ̇
H

(3.16)

is determined by the background solution. We solve (3.15) in the Bunch–Davies vacuum [131],
corresponding to the initial conditions

µ′k = −ikµk , |µk| =
1√
2k

(3.17)

at an early time when the mode is deep inside the Hubble radius, aH � k.
To compare to observations, we calculate from µk the power spectrum of the comoving

curvature perturbation,

PR(k, t) =
k3

2π2

|µk(t)|2

z(t)2
. (3.18)

In SR inflation with adiabatic perturbations, PR(k, t) does not depend on t after Hubble exit,
aH � k. This is not true in USR, so we define

PR∞(k) ≡ lim
t→∞
PR(k, t) (3.19)

and compare this quantity to the observed value (3.4) and its running or to the conditions
for PBH formation.

Thus far, the treatment in this section has been exact in linear perturbation theory, with
no assumptions about the background evolution. Next, we solve PR in some special cases, to
get analytical understanding of its behaviour near a critical point.
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3.4.2 Slow-roll

Let us first calculate PR in SR inflation to zeroth order in the SR parameters. In this
approximation, H and χ̇ are constant, z(η) ∝ a(η) ∝ −η−1, and the solution of the mode
equation (3.15) with the initial conditions (3.17) is

µk =
1√
2k

(
1− i

kη

)
e−ikη . (3.20)

Inserting this and (3.16) into (3.18), PR freezes on super-Hubble scales −ηk � 1 to the
scale-independent value

PR∞ =
H4

4π2χ̇2
. (3.21)

Calculating to first order in SR parameters modifies this result slightly by adding scale-
dependence, but the super-Hubble freeze still happens. It is conventional to calculate PR∞(k)
using an asymptotic expression evaluated at Hubble exit, giving

PR∞(k) ≈ H4

4π2χ̇2

∣∣∣∣
k=aH

=
H2

8π2εH

∣∣∣∣
k=aH

≈ V

24π2εV

∣∣∣∣
k=aH

. (3.22)

This is the standard SR result for PR∞.
In the general, non-SR case it is convenient to define a new variable, especially for the

numerical considerations of section 5:

gk ≡
µke

ikη

z
. (3.23)

Multiplication by eikη removes the rapid phase oscillations on sub-Hubble scales present in
(3.20), and the factor 1/z absorbs all of the time-dependence of PR(k, t) into gk(t):

PR(k, t) =
k3

2π2
|gk(t)|2 . (3.24)

When PR freezes to a constant value at super-horizon scales, so does gk(t), unlike µk whose
exponential growth obscures details of the solution.

In terms of gk, the Bunch–Davies initial conditions read

ġk = − ż
z
gk , |gk| =

1√
2k|z|

at k � aH , (3.25)

and the mode equation (3.15) becomes

g̈k +

(
H + 2

ż

z
− 2ik

a

)
ġk −

2ik

a

ż

z
gk = 0 , (3.26)

where we have switched back to cosmic time t for easier numerical treatment — the dynamical
range of t is smaller than that of the exponentially changing η. Here

ż

z
= H(1 + εH − ηH) . (3.27)

This is an exact expression. At zeroth order in SR, ż/z = H, and in super-Hubble limit
k � aH, equation (3.26) reduces to

g̈k + 3Hġk = 0 ⇒ ġk ∝ e−3Ht ⇒ gk ∝ A+ e−3Ht , (3.28)
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where A is a constant. The mode gk and hence the power spectrum PR(k, t) freeze to
constant values as time goes on, as discussed above. Taking k-dependence into account, two
independent solutions of (3.26) at zeroth order in SR are

gk1 =

(
i+

k

aH

)
, gk2 =

(
i− k

aH

)
e−2ik/(aH) , (3.29)

and the solution with the Bunch–Davies initial conditions (3.25) is

gk =
1√
2k

H2

kχ̇
gk1 . (3.30)

3.4.3 Ultra-slow-roll

In USR, we have ηH ≈ 3, εH ≈ 0, so ż/z ≈ −2H. The equation corresponding to (3.28) reads

g̈k − 3Hġk = 0 ⇒ ġk ∝ e3Ht ⇒ gk ∝ A+ e3Ht , (3.31)

where A is a constant. We see that in USR, the spectrum does not freeze on super-Hubble
scales, but is instead exponentially amplified. The mode function grows without limit as long
as USR lasts. This is a known phenomenon [125]; we explain in appendix B why the usual
arguments about modes freezing in the super-Hubble limit fail.

Exact solutions of (3.26) to zeroth order in USR, with constant H and ż/z = −2H, are
linear combinations of

gkA =

(
i+

k

aH

)
a3 , gkB =

(
i− k

aH

)
a3e−2ik/(aH) . (3.32)

3.4.4 Tensor perturbations

At this point, let us mention how the story goes for the tensor perturbations. Their modes
follow the equation [123]

h′′k +

(
k2 − a′′

a

)
hk = 0 . (3.33)

This is equal to (3.15) with z = a, so ż/z = H always, in both SR and USR. Thus the tensor
equivalent of the power spectrum (3.18) is not amplified, and the standard result

PT (k) = 8

(
H

2π

)2∣∣∣∣
k=aH

(3.34)

applies as long as inflation lasts. Of course, the tensor-to-scalar ratio r is modified if the
scalar power spectrum changes.

3.4.5 Critical point

Let us then estimate the evolution of PR in the vicinity of a critical point in the case when
the inflaton starts in SR, rolls over the critical point in USR, and then returns to SR. During
the first SR period, the field velocity is approximately constant, χ̇ = χ̇1; during USR |χ̇|
decreases exponentially; and after USR ends, χ̇ stays constant at its new smaller value. Let
H be approximately constant all the way through. Then ż/z (3.27) jumps from H to −2H
instantly at time t1 when USR starts, and jumps back to H at time t2 when USR ends.
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For t < t1, the mode function gk follows the solution (3.30) and approaches the constant
SR value G ≡ iH2/(2k3/2χ̇1). After t1, gk is a linear combination of the solutions (3.32), and
after t2 it is a linear combination of the solutions (3.29). We solve gk(t) by matching these
solutions and their first derivatives at the transition times. Since the field ends in SR, the
mode function freezes to a constant value at t� t2 that depends on the time of Hubble exit.
The leading behaviour is

gk∞ ≡ lim
t→∞

gk(t) =


G k � a(t1)H

G
(
1− 4

5e
3NUSR−2N1

)
k . a(t1)H

2Ge3NUSR a(t1)H � k � a(t2)H

Ge3NUSR k � a(t2)H ,

(3.35)

where NUSR = (t2− t1)H is the number of e-folds of USR, assumed to be large, and N1 is the
number of e-folds between Hubble exit and the start of USR, assumed to be small. Modes
that exit the Hubble radius deep in the initial SR phase are not affected by USR, whereas
modes that exit near the beginning of or during USR are amplified. For N1 � 3

2NUSR there is
no amplification: the mode function has already settled to the value G before the beginning
of USR and doesn’t significantly change afterwards. Amplification starts for N1 . 3

2NUSR.
The mode function gk is amplified by a factor proportional to e3NUSR , so PR∞ is amplified
proportional to e6NUSR . The maximum amplification occurs for the USR scales, with a lower
plateau afterwards. An exact solution for gk together with the above approximations is plotted
in figure 2.

The result (3.35) can be compared to the SR approximation for gk corresponding to
(3.22):

gk∞ =


G k ≤ a(t1)H

G
(

k
a(t1)H

)3
a(t1)H ≤ k ≤ a(t2)H

Ge3NUSR k ≥ a(t2)H .

(3.36)

This agrees with the USR approximation for k ≤ a(t1)H and k ≥ a(t2)H, but rises monoton-
ically in-between, while our result (3.35) shows that there is an extra enhancement factor of
two during USR. Note that the last expression in (3.22) diverges during USR when εV = 0.

The model presented here is just a crude approximation. To get accurate results for Higgs
inflation, we solve the mode equation (3.26) with the initial conditions (3.25) numerically.
Nevertheless, these examples demonstrate the effect of USR on the power spectrum: scales
that exit the Hubble radius during USR are amplified without limit as long as USR lasts, and
scales that exit just before or after USR are also amplified. This gives a peak in the power
spectrum around the USR scales, not captured by the SR approximation (3.22), as shown in
figure 2. If the peak is high enough, it can lead to production of primordial black holes after
inflation when the scales re-enter the Hubble radius.

4 Primordial black holes

4.1 PBH mass

When modes with large amplitude re-enter the Hubble radius after inflation, a particularly
dense Hubble patch may collapse into a black hole. Mass of inflationary PBHs formed from
perturbations on scale k is

MPBH = γ
4π

3
R3ρ , (4.1)
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log k

|gk∞ |

USRSR SR

Exact

k ≲ a(t1 )H

a(t1 )H ≪ k≪ (t2 )H

k≫ a(t2 )H

Figure 2. The final frozen amplitude of the mode function gk∞ in the critical point model of section
3.4.5. We show the exact solution (solid line) and the USR approximation (3.35) for different k-values
(dashed lines). Modes on the left (small k) exit the Hubble radius during the initial SR period; modes
in the middle exit the Hubble radius during USR; and modes on the right (large k) exit the Hubble
radius during the final SR period. The oscillatory behaviour is an artefact due to the instant jumps
between SR and USR. It is absent in the numerical calculations where the transitions are smooth, see
figures 4 and 6.

where R = H−1 = a/k is the Hubble radius, ρ is the total energy density at the time of
Hubble entry of k, and γ is an efficiency factor. We use the value γ = 0.2 estimated to apply
during radiation domination [103]. Accretion and other effects could significantly change γ
up or down, but it is straightforward to scale the masses correspondingly, and our results are
robust to changes in γ of several orders of magnitude. In the radiation-dominated era, the
scale factor, energy density and Hubble parameter scale as

a(t) ∝ t1/2 , ρ(t) ∝ a(t)−4 , H(t) =
1

2t
∝ a(t)−2 . (4.2)

Thus, in terms of the wavenumber k = aH, we have

MPBH ∝ k−2 . (4.3)

We can also relate k to the number of e-folds during inflation. We must have k > k∗, where
k∗ = 0.05 Mpc−1 is the pivot scale, otherwise the PBHs will form too late and be too massive
to constitute dark matter. So the PBHs form before the pivot scale re-enters, and the number
of e-folds of inflation from the Hubble exit of scale k∗ to the Hubble exit of scale k is

∆N ≡ N∗ −N = log
a

a∗
≈ log

aH

a∗H∗
= log

k

k∗
> 0 ⇒ MPBH ∝ e−2∆N . (4.4)

We approximate that (4.2) holds all the way to matter-radiation equality and insert the values
Meq ≈ 6γ × 1050 g, keq ≈ 0.01 Mpc−1 (using ωm = 0.14 [3]) to normalise the mass of PBHs
formed on scale k as

MPBH =
Meq

25
e−2∆N . (4.5)

This equation gives PBH mass in a form that is easy to incorporate in inflationary analysis.
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4.2 PBH energy density fraction

We can also ask which fraction of the mass of the universe ends up in PBHs. Assuming
Gaussian statistics, the probability distribution of perturbations at scale k is [103, 132, 133]

P (ζk) =
1√

2πσk
e
− ζ2k

2σ2
k , (4.6)

where we approximate the width as σ2
k ≈ PR∞(k). A more accurate treatment with a window

function [134] can lead to an order-of magnitude change in the value of σ2
k. It is assumed

that a PBH forms out of every region where ζk exceeds a threshold value ζc, which has been
estimated as ζc = 0.07 . . . 1.3 [103, 108, 133, 135–138]. Assuming PBHs to instead form on
peaks of the density field may be more appropriate, and this may affect the PBH abundance
and mass [132, 133, 139, 140]. Neither this nor the change in σ2

k would change our conclusions
regarding Planck scale PBHs, as we discuss in section 6. The initial fraction of the energy
density of the universe which ends up in these PBHs is then

βk = 2

∫ ∞
ζc

P (ζk)dζk = erfc

(
ζc√

2PR∞(k)

)
≈
√

2PR∞(k)√
πζc

e
− ζ2c

2PR∞(k) , (4.7)

where erfc is the complementary error function, and the last approximation holds for ζc �√
PR∞(k).

After the PBHs have formed, their energy density scales like cold matter, ρPBH ∝ a−3,
whereas the energy density of radiation is diluted faster, ρrad ∝ a−4. Thus during radiation
domination, the PBH energy density fraction grows as ρPBH/ρrad ∝ a ∝ k−1. In addition,
if PR∞ is enhanced over a wide range of scales, PBHs form on different scales and with
different masses, and we have to sum over their contributions to get the total PBH energy
density fraction. However, we will find that in critical Higgs inflation PR∞ is peaked at a
single scale, so the PBH spectrum is monochromatic to a good approximation.

Taking these considerations into account, the fraction of energy density in PBHs at
matter-radiation equality is approximately

ΩPBH eq =
k

keq
βk = 5

k

k∗
erfc

(
ζc√

2PR∞(k)

)
≈ 5

√
2PR∞(k)√
πζc

e
− ζ2c

2PR∞
+∆N

. (4.8)

The exponent is the determining factor. The maximum value of the power spectrum PR∞
must be big enough so that the two terms in the exponent are of same magnitude, or ΩPBH eq

will be exponentially small. Even for the minimum value ζc = 0.07, we need PR∞ to be at
least of order 10−4 to compensate for a few dozen e-folds in ∆N . On the other hand, for
PR∞ & 1, black holes are overproduced: the universe becomes matter dominated too early,
and the fraction of matter in the dark sector is too large. The exact value of PR∞ needed
depends on ∆N and is sensitive to uncertainties in the above analysis.

4.3 Planck mass relics

The above analysis applies for classical black holes. When quantum physics is taken into
account, primordial black holes evaporate due to Hawking radiation. There are stringent
constraints on evaporating PBHs since the evaporation could, for example, spoil BBN or
produce too many gamma ray bursts [111–113]. However, there are no constraints for black
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holes that evaporate before the EW crossover. If the evaporation is not complete, but Planck
mass relics are left behind, they could constitute dark matter [141–149].

For PBHs to evaporate early enough and not spoil baryogenesis, their mass has to be
less than 106 g (see appendix A). Using (4.5), this corresponds to ∆N & 49, that is, the
perturbations that seed the PBHs must exit the Hubble radius near the end of inflation (in
Higgs inflation typically N ≈ 50, as (3.7) shows).

If the relics have mass Mrel, their fraction of the energy density at matter-radiation
equality is approximately

Ωrel eq =
Mrel

MPBH

k

keq
βk ≈

Mrel

MPl
βke

3∆N−123 , (4.9)

where MPl = 1/
√

8πGN is the Planck mass, and we used (4.5) for MPBH. For Mrel = MPl,
∆N = 50, this is of order unity for βk ∼ e−30, which according to (4.7) corresponds to
PR∞ ≈ 10−2ζ2

c ∼ 10−4 . . . 10−2. If PR∞ can be enhanced to this magnitude near the end of
inflation, the relics can constitute part or all of dark matter.

5 Numerical analysis

5.1 Scan method

To study PBH production in Higgs inflation, we construct the Higgs potential with quantum
corrections and renormalization group equation running as discussed is section 2, scan over
possible critical point and near-critical point Higgs potentials, and calculate the power spectra
PR∞(k) by solving the mode equations (3.26) numerically.

We have four parameters: the non-minimal coupling ξ, the location of the feature given
by δ0 defined in (2.6) (the subscript 0 denotes quantities evaluated at the feature) and the
jumps ∆λ and ∆yt in the Higgs quartic coupling and top Yukawa coupling, respectively. In
practice, we swap ∆λ and ∆yt for the slow roll parameters εV 0 and ηV 0. Choosing these four
numbers fixes the potential and its quantum corrections. An exact critical point corresponds
to εV 0 = ηV 0 = 0, but we allow for small deviations around this. The allowed values of δ0

vary around unity. The initial values for couplings λ and yt, as well as the constant κ in
(2.11), are determined from the conditions that the feature is formed at the given scale and
the one-loop correction (2.7) vanishes there. The potential is then determined as described in
section 2. Afterwards, the values of λ and yt run down from the feature are compared to their
SM counterparts run up from the EW scale to determine the jumps ∆λ and ∆yt needed at
the threshold scale (2.11). We use the mean values (2.12) for the values of the SM parameters
at the EW scale. We discuss the dependence on these EW scale values in section 5.3.3.

After fixing the potential, we solve the background equations (3.1) numerically. Then
we calculate the frozen super-Hubble values PR∞ by using the approximation (3.22) during
SR and solving the mode equations (3.26) numerically outside SR. We find the maximum
of PR∞ near the feature scale and compare it to the threshold value 10−4 needed for PBH
production.

An example of this procedure is sketched in figures 3 and 4, where we use the potential
shown in figure 1. For these parameter values, there is a USR period around N ≈ 18. The
SR approximation for PR∞ is clearly inadequate to describe PR∞ at the USR scales.

In addition to probing the PBH scales, the model has to match CMB observations. We
demand that the amplitude PR∞(k∗), spectral index ns, and the tensor-to-scalar ratio r at
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Figure 3. The SR parameter ηH as a function of the e-folds N for the potential of figure 1. The
parameter ηH briefly goes up to 3 during a USR period around N = 18.

10 15 20
N0

2

4

6

8

107 PR∞

Numerical

H 2

8π 2 ϵH

V

24π 2 ϵV

Figure 4. The power spectrum PR∞ as a function of N at the Hubble exit of the corresponding
mode (solid line) and SR approximations from (3.22) (dashed lines) for the case of figures 1 and 3.
The power spectrum has a peak at the USR scale, and the SR approximations fail, although the peak
in the εH approximation has the right order of magnitude.

the pivot scale match the observed values (3.4)–(3.6). Scanning over the free parameters with
these restrictions and εV 0 = ηV 0 = 0 doesn’t produce high enough peaks in PR∞ for PBH
formation. We then relax the exact critical point condition and let εV 0 and ηV 0 vary. There
are two distinct possibilities, corresponding to cases 1 and 2 in section 3.3.3. First, if the
field is in SR all the way through the feature, we have to choose εV 0 > 0 so that the field
rolls over the feature in a finite time. This case is relevant for features at δ0 . 1. Second, if
there is a USR period near the feature, we can choose ηV 0 > 0 to enhance the peak in the
power spectrum. In the metric formulation, this happens for δ0 & 1, while in the Palatini
formulation we still have δ0 < 1. Let us consider these cases separately.

5.2 SR near the feature

If the feature is formed at a field value that at tree-level corresponds to the exponentially
flat plateau, the SR parameters are small and the field is in SR all the way through the
feature. We can then use the SR result (3.22) to calculate PR∞. To get over the feature in a
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Figure 5. Sketch of a potential with a shallow local minimum. Dashed line marks δ0, where εV = 0,
ηV > 0. This potential was formed with parameter values ξ = 80, δ0 = 1.53, εV 0 = 0, and ηV 0 =
15.037 in the metric formulation.

finite number of e-folds, we consider a near-critical point with ηV 0 = 0 but εV 0 > 0. We have
scanned over parameters δ0 and ξ, and fixed εV 0 so that the amplitude of scalar perturbations
agrees with the CMB observations (3.4) at the pivot scale, restricting the scan to cases where
the SR approximation holds until the end of inflation. The peak amplitude of PR∞ turns
out to be below 10−4 everywhere. Varying also ηV 0 around zero does not change order of
magnitude of the peak values of PR∞. It is thus impossible to produce a large amount of
PBHs from SR while also matching the CMB observations. Similar conclusions apply in the
Palatini formulation.

5.3 USR near the feature

5.3.1 Critical point or a local minimum

If the feature is formed just below the plateau scales, the field is in USR near the feature.
In this case the SR parameters, in particular ηV , become large before the feature is reached
and the SR approximation fails. We solve the mode equations (3.26) numerically to calculate
PR∞, and scan again over δ0 and ξ, now demanding that SR is broken before the end of
inflation. With a pure critical point, εV 0 = ηV 0 = 0, not many PBHs are formed: for all such
potentials compatible with CMB observations, we get PR∞ . 10−6. We thus let ηV 0 take
positive values while fixing εV 0 = 0. As a result, the potential has a shallow local minimum
instead of an exact critical point, see figure 5. If the minimum is too deep, the inflaton will
get stuck, but by fine-tuning ηV 0 we can make the inflaton roll through the feature in just
the right amount of e-folds.

As pointed out in [86, 106, 110], a shallow minimum can further enhance PR∞. The
inflaton decelerates rapidly when climbing up a hill, which increases the parameter ηH (3.8)
— even beyond the usual USR value of 3 — and amplifies the power spectrum, as discussed
in section 3.4. An example of PR∞ in such a situation is plotted in figure 6. The SR
approximation (3.22) is even less valid here than in the critical point case shown in figure 4;
the value of PR∞ can be orders of magnitude above the SR approximation. In particular,
PR∞ can be above one even when the SR approximation (3.22) is below the threshold 10−4.
Hence a numerical calculation of PR∞ is crucial.
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Figure 6. The power spectrum PR∞ for the potential of figure 5 with a local minimum. Inflation
stops briefly as the inflaton passes the feature, so it is more convenient to use log k instead of N
on the x-axis, normalized so that log k = 0 for the scale whose Hubble exit happens at the end of
inflation. The SR expression for PR∞ with εH (3.22) is a poor approximation for this potential: it
has a maximum magnitude of 10−6. In this particular case, the peak in PR∞ is formed near the end
of inflation and is narrower than in figure 4, since there is no subsequent SR period after USR.

It turns out that for some values of δ0 and ξ there are two possible values of ηV 0 that
give a pivot scale spectrum in agreement with observations. To understand why, let’s denote
the number of e-folds of inflation corresponding to the scale with the right amplitude of scalar
perturbations by N , and check how N changes as ηV 0 is changed. When ηV 0 increases, so
does the value of ηV near the pivot scale. This makes the breaking of the SR approximation
stronger and makes the field ‘overshoot’ the feature more: the inflaton field reaches a higher
velocity before the feature and rolls over it in a shorter time. This effect decreasesN . However,
increasing ηV 0 also makes the local minimum deeper, so it takes more time for the inflaton
to climb up to the other side. This increases N . These two effects compete, and in practice
N depends on ηV 0 as shown in figure 7: as ηV 0 increases from zero, N first decreases and
then increases, approaching infinity at some ηV 0 when the minimum becomes so deep that
the inflaton gets stuck. However, the requirement that the potential stays positive sets a
maximum depth for the minimum: if a deeper minimum would be needed to get a big enough
N , then the correct N can’t be achieved. The right N can then be reached for either two
values of ηV 0 (‘high’ and ‘low’ ηV 0), one value of ηV 0 (corresponding to the ‘high’ case), or
no values of ηV 0 at all; see figure 7.

Note that in a potential with a local minimum, we always have εV 0 = 0 and ηV 0 > 0
at the minimum. As the peak in PR∞ would not be high enough without the minimum, our
scan with εV 0 = 0 and ηV 0 > 0 covers all potentials that are interesting for PBH formation
from USR.

5.3.2 Results

For the low ηV 0 branch we always have PR∞ < 10−4, so the number of PBHs is too small.
However, the high ηV 0 branch can produce PBHs in agreement with observations. Results
of the numerical scan are shown in figure 8 for the metric case. We see that by tuning the
values of ξ and δ0 we can produce as many PBHs as desired, and with any desired mass up
to at least M ∼ 1035 g. In particular, after fixing all other parameters from observations, by
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Figure 7. Sketch of the relation between N and ηV 0. Usually N approaches infinity for a finite
positive ηV 0; however, when the potential at the bottom of the local minimum approaches zero, N
becomes bounded from above. There may be zero, one or two ηV 0-values corresponding to the wanted
N = N∗, depending on the height of the minimum of the curve.

changing δ0 by a few percent we can change the amplitude of the power spectrum by more
than 200 orders of magnitude. Recall that the PBH abundance is exponentially sensitive to
PR∞. The results are the same in the Palatini case, except for the maximum value of ξ, which
is 22 000 instead of 90, and the range of δ0, which is 0.03 . . . 0.35 instead of 1.48 . . . 1.55.

The allowed parameter space is bounded as follows: at smaller δ0 values and bigger ξ
values, N corresponding to the correct As is always too large; at bigger δ0 values, N is always
too small; and at lower ξ values, ns is always too small (the values shown in figure 8 are cut
at ns = 0.9). The maximum amplitude of PR∞ rapidly varies from < 10−4 to � 1.

We also have to get the perturbations right in the range probed by CMB observations.
As we see from figure 8, the PBH mass and the spectral index are tightly correlated. We show
this more clearly in figure 9. As the PBH mass increases, the spectral index ns at the pivot
scale decreases, moving away from the observed value 0.9653 ± 0.0041. We have indicated
the observational mass windows where PBHs can form a significant fraction of dark matter
[112]. The LIGO scale mass window M ≈ 1034 . . . 1035 g ≈ 25 . . . 100 M� of solar mass black
holes is excluded, as ns < 0.85. The lower mass windows M ≈ 1018 g and M ≈ 4 × 1019 g
give ns ≈ 0.93 . . . 0.94, over 6σ from the observed value. While different datasets give slightly
different values for the spectral index, all are in strong tension with such a low ns [3].

The scenario with Planck mass relics as dark matter requires, according to (A.11),
M < 106 g. Figure 9 shows that the spectral index agrees with the observations precisely
for this mass range. Since the peak in the power spectrum is formed at scales that exit the
Hubble radius near the end of inflation, there is no SR plateau after the USR region, and the
peak in the power spectrum is very sharp, see figure (6). There is no room for a long tail in
the power spectrum after the feature, since inflation ends soon after the Hubble exit of the
peak scale, and after inflation, the power spectrum is suppressed. By tuning the parameters,
any amount of relics can be produced without violating the observational limits, so they can
constitute all of dark matter. This corresponds to ξ = 70 . . . 90 in the metric formulation
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Figure 8. Results of the USR scan on the high ηV 0 branch: peak value of PR∞ (top left), PBH
mass in grams (top right), spectral index ns (bottom left) and tensor-to-scalar ratio r (bottom right)
in the metric formulation. These figures come from the metric case. The corresponding figures in the
Palatini case are similar, but the exact numbers are different, in particular the ranges of δ0 and ξ —
see the text.

and ξ = (5 . . . 22) × 103 in the Palatini formulation, much smaller than in tree-level plateau
inflation, where ξ ∼ 104 (metric) and ξ ∼ 109 (Palatini) (nelecting the running of λ from
the EW scale to the inflationary scale). This may alleviate possible problems with unitarity
[30, 40, 46, 51, 54, 63, 67–73] and sensitivity to initial conditions [88, 150].

With Planck mass relics, the spectrum in the CMB region is the same as in tree-level
plateau inflation, with ns = 0.96, r = 5 × 10−3 (metric) and r = 4 × 10−8 . . . 2 × 10−7

(Palatini).1 The running and running of the running of the spectral index are also identical,
as the inflationary plateau has the same shape as in the tree-level case. The predictions agree
with the tree-level case for dozens of e-folds around the pivot scale. This is different from
the case when the critical point is in the inflationary region, when r can be much larger

1In the tree-level Palatini case, r = 5× 10−3/(6ξ), so r can take various values depending on the value of
the ξ, which is determined by the value of λ at the pivot scale. Our value for r is the same as in the tree-level
case for the corresponding value of ξ.
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Figure 9. PBH massM plotted against the CMB spectral index ns with the data of figure 8. Dashed
lines show the observationally allowed PBH mass windows (1018 g, 4 × 1019 g, and 1034 . . . 1035 g ≈
25 . . . 100 M�), and the corresponding values for ns. The green shaded area corresponds to the Planck
95% confidence limits (3.5) on ns. This figure is for the metric case; the behaviour is similar in the
Palatini case.

[32, 48, 57, 79–81, 84, 86–89]. However, quantum corrections do have a large impact on the
Higgs quartic coupling λ. At the EW scale, λ = 0.13, but on the inflationary plateau λ is
actually negative. However, the effective quartic coupling defined as U/(1

4F
4) (where F is

defined in (2.4) and (2.5)) is positive, as the quantum corrections are significant. At the pivot
scale, the effective coupling is λ = (2 . . . 5)×10−6 (metric) or λ = (0.5 . . . 3)×10−6 (Palatini),
corresponding to the amplitude of perturbations (3.4) being proportional to λ/ξ2 (metric) or
λ/ξ (Palatini).

5.3.3 Jumps in λ and yt

In the parameter region of figure 8 in the metric case, the jumps in λ and yt are ∆λ ≈
0.008, ∆yt ≈ −0.02 for the mean EW mass values mH and mt given in (2.12)2. Since the
jumps decouple EW and inflationary scale physics, the EW scale masses can be changed
with practically no effect on the inflationary observables, as the difference is absorbed by
the jumps. However, to make the jumps zero in the region of parameters where Planck-
scale relics constitute all of the dark matter, we need mH = 119 . . . 121 GeV and mt =
168 . . . 169 GeV in the metric case, depending on the precise parameter values. Compared
to the experimental values (2.12), mH is more than 16σ below the mean, and mt is 3 to 7σ
below the mean, depending on the uncertainty in connecting the experimental Monte Carlo
mass to the theoretical pole mass [77, 117]. Thus the jumps are required to form a critical
or near-critical point, at least in the interesting parameter region considered here. This is
also true when the critical point is in the CMB region [79–81, 84, 86], in contrast to hilltop
inflation, where successful hilltop inflation can happen in the CMB region with zero jumps
[33].

2The SM value of λ is actually negative at the threshold (2.11) for the mean values of the masses, but this
is not necessarily a problem since finite temperature corrections can make the potential positive [80, 81, 84],
and the results are anyway not sensitive to changing the EW scale parameters, as explained in the text.
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In the Palatini case, to make the jumps zero with Planck relics constituting all dark
matter, we would need mH = 114 . . . 117 GeV and mt = 165 . . . 167 GeV, both far from the
mean values (2.12).

6 Discussion

6.1 Comparison to previous work

PBH production in Higgs inflation was first studied in [105] in a simple approximation where
the running of the quartic Higgs coupling and of the non-minimal coupling are fit phenomeno-
logically. The authors concluded that Higgs inflation could produce all of dark matter as PBHs
in the mass range 1017 . . . 1021 g. Their analysis used the SR approximation, and involved
significant running of ξ, which was criticized in [86, 107]. We have shown that the SR approx-
imation can fail near the critical point (although it may give the correct order of magnitude
for the power spectrum if there is no local minimum in the potential, see figure 4), and have
checked that the running of ξ is negligible. When this is properly taken into account, we find
that generating a significant amount of PBHs in this mass window leads to ns < 0.94 at the
CMB pivot scale, incompatible with the CMB results, as shown in figure 9. Our conclusion
agrees with those of [86, 107, 108].

Our results are similar to those of [110]. The authors studied a critical point model with
non-minimal coupling to gravity and quantum corrections similar to Higgs inflation. The main
difference is that we have considered a set of realistic quantum corrections for the Higgs field
(2.7) with a connection to EW scale collider physics and a carefully chosen renormalization
scale (2.10) instead of generic correction terms, and we have scanned over the whole space of
allowed critical point potentials. The studies share a strong correlation between PBH massM
and the pivot scale spectral index ns, with ns decreasing with increasing M . Using a shallow
minimum instead of an exact critical point during USR to enhance the power spectrum was
also suggested in [86, 106, 110]. We found that this is a required feature for Higgs inflation
to produce a significant amount of PBHs.

In paper [89], it was concluded that critical Higgs inflation is not a viable scenario.
However, the unknown physics at scales 1/ξ < h < 1/

√
ξ, which we encode in the jumps of

the couplings λ and yt, was neglected. In agreement with [89], we also found in section 5.3.3
that near-critical point inflation is not viable with zero jumps, as has also been noted earlier
in the case when the near-critical point is in the CMB region [79–81, 84, 86].

6.2 Quantum diffusion

In the above analysis, we have neglected the effect of quantum diffusion, where quantum
fluctuations are large enough to affect the evolution of the local effective background field.
Naively, the importance of diffusion can be estimated by comparing the change in the inflaton
field χ in one Hubble time induced by the classical rate of change χ̇cl and the growth rate of
its quantum fluctuations,

〈
δχ2
〉
≈ H3t/(4π2) [151]:√

d〈δχ2〉
dt /H

χ̇cl/H
≈

√
H4

4π2χ̇2
cl

, (6.1)

which is equal to the SR approximation (3.21) for the power spectrum. We noted earlier that
the true power spectrum is always larger than this in the USR phase, and it cannot exceed
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unity so as not to overproduce PBHs, so the ratio (6.1) is always small in the parameter
region we are interested in. This suggests that quantum diffusion is not important in the
scenario we consider, and that we also do not need to worry about the ambiguities of eternal
inflation.

However, see [152] for criticism of this naive criterion for stochastic effects to be impor-
tant, and [128, 129, 153–155] for further discussion of quantum diffusion at a critical point
and beyond SR and its effects on PBH formation. In particular, it was argued in [153] that
quantum diffusion can greatly enhance the power spectrum at the feature scale; however, this
was questioned in [154]. Details of the effect of quantum diffusion on PBH formation are still
under debate. Because in our case tuning the parameters (in particular, δ0) can change PR∞
by many orders of magnitude while leaving the CMB observables unaffected, it seems that
quantum diffusion would not affect our conclusions regarding Planck scale relics in critical
point Higgs inflation.

6.3 Non-Gaussianities

PBHs are formed from extreme perturbations in the tail of the probability distribution (4.6),
so their production can be sensitive to non-Gaussianities [153, 156]. It is therefore not clear
how reliable our results for PBH abundance based on a Gaussian treatment, such as (4.8)
are. Also, if we take PBHs to form on peaks of the density distribution, their distribution is
not Gaussian, and this may change the PBH abundance [132, 133, 139, 140]. Simply calcu-
lating the width of the distribution more accurately with a window function for a Gaussian
distribution can also have a significant effect on the abundance [134].

However, as explained above, a small change in the input parameters can change the
abundance of Planck-scale relic PBHs by orders of magnitude, so some modifications to the
shape of the tail of the distribution can be countered by simply changing our input parameters.
We therefore expect our result for Planck-scale relics to be robust against a range of such
corrections. However, significant enhancement of the power spectrum could possibly change
our conclusion that it is not possible to form a sufficient amount of PBHs with only a critical
point and a shallow minimum is needed. Since we found that the maximum value of PR∞
from a critical point compatible with CMB observations is 10−6, an enhancement of at least
factor 100 would be needed to produce a significant amount of PBHs.

6.4 Critical point with USR on CMB scales

For PBHs to constitute the dark matter, the feature that produces them must be below the
CMB scale. However, PBH production aside, we can ask what kind of observational signatures
a critical point with USR in the CMB region could produce in the power spectrum.

Since in this case inflation has to last for 50 e-folds after the Hubble exit of the feature
scale, there must be a long SR period after the USR period. The power spectrum then
resembles that of figure 4: two SR plateaus with a step-like USR transition in between. It is
not possible to obtain a sharp peak as in figure 6. Features of this kind were considered in
[157]. In principle, if the height of the step could be adjusted freely while keeping the step
sharp, it might provide an interesting feature in the observed CMB spectrum.

Sharpness is key: a sharp step can’t be produced in SR, and may be hard to detect
directly with observational analyses that assume approximate scale-independence. However,
the height and the sharpness of the step are correlated. If the SR conditions are violated
strongly near the critical point, then the transition to USR is quick, and USR lasts long
before the field evolution returns to SR. This produces a high step in PR∞. If the SR
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conditions are violated less, then USR does not last as long and the step is lower, but PR∞
grows more already in the SR phase as εH → 0 (see (3.22)), and the step is not so sharp. To
produce a sharp and low step, the potential must have a very special form. In Higgs inflation,
the height of a sharp step is always many orders of magnitude, too large to agree with CMB
observations.

7 Conclusions

We have studied the possibility that primordial black holes (PBH) formed in critical point
Higgs inflation make up part or all of the dark matter. Near a critical point, where the
first and second derivatives of the potential vanish, the slow-roll approximation may break
down, and the inflaton may enter a period of ultra-slow-roll. In ultra-slow-roll the comoving
curvature perturbation can be significantly enhanced, even on super-Hubble scales.

We consider the Standard Model Higgs with a non-minimal coupling ξ to gravity. We
take into account three-loop quantum corrections to the potential in the small field limit,
and consider the chiral Standard Model with one-loop corrections in the large field limit.
We match them at an intermediate field value with arbitrary jumps in the Higgs quartic
coupling and the top Yukawa coupling, demanding that the quantum corrections generate a
near-critical point. In addition to the jumps, we have ξ and the location of the near-critical
point as free parameters.

We scan over all potentials with a near-critical point by adjusting these four parameters,
calculate the maximum value of the asymptotic power spectrum PR∞ by numerically solving
the mode equations and check if the right amount of PBHs are formed to constitute dark
matter, while satisfying the observational constraints for PBHs and the CMB power spectrum.
We consider both the metric and the Palatini formulation of general relativity.

We find that if the potential is monotonic, a near-critical point cannot produce noticeable
amounts of PBHs. We then consider potentials with a shallow local minimum instead. As
the field rolls up from the minimum, it slows down so much that the SR approximation fails
by orders of magnitude. We find that PR∞ is enhanced for scales that exit the Hubble radius
as the field rolls up. This mechanism was first introduced in [86, 106, 110].

The resulting PBH mass M and the spectral index ns on CMB scales are highly corre-
lated: as M increases, ns decreases and moves away from the observed value of 0.965. For ns
to be compatible with the CMB observations,M has to be so small that the PBHs would evap-
orate before BBN. This is contradiction with a previous study on PBH production in Higgs
inflation where the authors considered only the SR approximation and a phenomenological
form for the Higgs potential with a large running of the non-minimal coupling ξ [105].

However, if PBHs do not evaporate completely but leave behind Planck mass relics,
early evaporation is not a problem: apart from the relic density, there are no observational
constraints on PBHs that evaporate before the EW crossover and do not spoil baryogenesis.
Such PBHs have initial masses M < 106 g. It is intriguing that they correspond to scales
that exit 50 e-folds after the exit of the CMB pivot scale, so the feature is at the place in
the potential where inflation ends. The abundance of such relics can be adjusted freely by
tuning the parameters of the model. In particular, it can be matched to the observed amount
of dark matter. These conclusions hold both for the metric and the Palatini case.

In this mass range the spectral index is also exactly right for observations. The CMB
observables agree with the tree-level predictions of Higgs inflation [1, 29]: ns = 0.96 and
r = 5 × 10−3 (metric), r = 4 × 10−8 . . . 2 × 10−7 (Palatini). However, the non-minimal
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coupling is much smaller, ξ = 70 . . . 90 (metric) or ξ = (5 . . . 22)× 103 (Palatini) than in the
tree-level case where ξ = 104 (metric) or ξ = 109 (Palatini). (The effective Higgs quartic
coupling is also correspondingly smaller.) Therefore, perturbative unitarity is violated at a
higher scale than in the tree-level case, which may alleviate possible problems with unitarity
[30, 40, 46, 51, 54, 63, 67–73] and sensitivity to initial conditions [88, 150].

One caveat is that for the large field values we have used the chiral SM, which strictly
speaking only applies for δ � 1. This condition holds at the CMB scales, but on the scale
where the PBHs are produced we have δ ≈ 1.5 in the metric case, so our approximation for
the potential may not be valid. In the Palatini case we have δ = 0.03 . . . 0.35 instead, so
the approximation may be better under control. However, for finite δ the differences in the
renormalization group running between the metric and the Palatini case should also be taken
into account.

We also did not consider the effects of quantum diffusion and non-Gaussianities. Looking
at PBH formation in more detail with the peaks formalism and a proper window function
could also change the abundance of PBHs. However, small changes in our input parameters
can change the power spectrum PR∞ by orders of magnitude without effect on the CMB
observables. Therefore, while the conclusion that a critical point cannot produce enough
PBHs could be changed by such corrections, we expect our result that Planck scale PBHs
produced in Higgs inflation can be the dark matter to be robust against a range of such
corrections. This would mean that two phenomena —inflation and dark matter— that are
usually taken as evidence for physics beyond the Standard Model could be explained with no
new particle physics.
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A Upper mass limit for Planck scale relic PBHs

As discussed in section 4.3, when PBHs evaporate they may leave behind Planck mass relics
that could constitute dark matter. In this appendix, we find the maximum initial massM for
such PBHs, assuming they all have the same mass. The PBHs form in the early radiation-
dominated era. They form with negligible initial momentum, so they behave as cold dark
matter. Hence their energy density decreases slower than the energy density of radiation, so
their fractional contribution ΩPBH to the total energy density grows. However, evaporation
slowly turns their energy back into radiation, and as the evaporation nears completion, ΩPBH

plummets and only a small fraction is left as the relic energy density Ωrel, which then again
grows and eventually overtakes the radiation.

There are stringent limits for black hole evaporation and energy density fraction, and
these set an upper limit for the initial mass of PBHs if the relics are to constitute dark matter.
In particular, evaporation should be finished before BBN so as not to spoil its predictions
[111, 112]. Let us calculate the limit this gives on the mass.

The lifetime of a PBH with initial mass M is [158]

tev =
1.88

fL(M)

(
M

MPl

)3

M−1
Pl (A.1)
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where fL(M) depends on the number, charge and spin of the effectively massless degrees of
freedom into which the PBH evaporates during its lifetime. For the small masses we consider,
fL(M) ≈ 13.9.

During radiation domination, the Friedmann equation can be written in terms of the
temperature T as

3H2 =
π2

30
g∗(T )

T 4

M2
Pl

, (A.2)

where g∗(T ) is the effective number of degrees of freedom in the SM. Using H = 1/(2t), the
equations (A.1) and (A.2) give the temperature at the end of evaporation:

Tev =
0.896f

1/2
L

g
1/4
∗

(
MPl

M

)3/2

MPl . (A.3)

Using Tev > 4.7 MeV as the limit on the temperature at which extra radiation can be injected
without affecting BBN [159], for which g∗(T ) ≥ 10.75, we get

M < 4.1× 108 g for PBHs to evaporate before BBN. (A.4)

We will next derive an even stronger limit for M based on arguments regarding PBHs
dominating the energy density of the universe at some point in its history. We proceed in
three steps. First, we derive upper and lower limits for M in the scenario where PBHs are
assumed to dominate at some point. Second, we observe that these limits contradict each
other, so PBH domination can’t occur. Third, based on this observation, we derive an upper
limit on M .

We start with the constraint that PBHs must not dominate the energy density after the
EW crossover at TEW = 160 GeV [160], since this would wipe out any baryon asymmetry,
which presumably cannot be generated after the EW crossover [143]3. Thus, in the scenario
where PBHs dominate, they must evaporate before the crossover, that is, Tev > TEW (for
which g∗(T ) ≥ 96.25), which gives

M < 2.7× 105 g for PBHs to evaporate before TEW. (A.5)

This was calculated in a radiation-dominated background; if there is a period of PBH domi-
nation, the limiting mass in (A.5) will be lower, since during matter domination, temperature
decreases faster and only PBHs with even smaller masses have time to evaporate before TEW

is reached.
By demanding that PBHs are not overproduced, we can also derive an upper limit for

M in the scenario where PBHs dominate at some point before the EW crossover. The relic
energy density fraction at matter-radiation equality can be written as

Ωrel eq = Ω1
Mrel

M1

T1g∗S(T1)1/3

Teqg∗S(Teq)1/3
, (A.6)

where Ω1 is the energy density fraction of PBHs at some moment t1 after matter domination
but before the end of evaporation — let us take Ω1 = 1/2. The first ratio Mrel/M1 gives

3There are some mechanisms of baryogenesis which circumvent this requirement. For example, in some
extensions of the SM baryon asymmetry could be generated by black holes evaporating into heavy bosons
whose decay generates the asymmetry [161–163].
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the decrease from the mass M1 at t1 evaporating down to the relic mass Mrel. The second
ratio gives the increase of Ωrel due to PBH energy density rising like a relative to radiation.
Demanding that PBHs dominate before the EW transition, T1 > TEW, that Ωrel eq < 1/2 so
that dark matter is not overproduced and setting Mrel = MPl and using g∗S(TEW) = 96.25,
Teq = 0.79 eV, g∗S(Teq) = 3.909, (A.6) gives for the initial PBH mass:

M > M1 > 2.6× 106 g for PBHs to dominate without overproducing relics. (A.7)

This is in contradiction with the limit (A.5). We conclude that if PBHs leave behind Planck
mass relics, then PBHs can’t dominate at any time or they either spoil baryogenesis or produce
too much dark matter.

Finally, the requirement that PBHs are always subdominant can be translated into a
limit on their initial mass, if we also demand that they contribute considerably to dark matter.
From (A.1), mass of a black hole as a function of time is

M(t) = M

(
1− t

tev

)1/3

, (A.8)

so before the end of evaporation, in a radiation dominated universe, we have

Ωrel(t) ∝ a(t)M(t) ∝
(
t

tev

)1/2(
1− t

tev

)1/3

, (A.9)

which has a maximum at tm = 3
5 tev, with M(tm) = (2/5)1/3M . Using (A.6) with t1 = tm

gives, using Tg∗S(T )1/3 ∝ a−1 ∝ t−1/2, applying (A.1) and taking g∗(Tev) = g∗S(Tev) =
106.75 (using 96.25 would give the same result, as the dependence on g∗S(Tev) is weak,
M ∝ g∗S(Tev)1/30),

M = 8.5× 105

(
Ω(tm)

Ωrel eq

)2/5

g . (A.10)

For Ω(tm) < 1/2 (no PBH domination) and Ωrel eq > 0.1 (considerable dark matter fraction
in relics) this gives

M < 1.6× 106 g
for relics to significantly contribute to DM
without PBH domination. (A.11)

This result is not unique to Higgs inflation but applies to all cases where PBHs form at a single
mass scale and baryogenesis happens at T > TEW. It comes with the caveat that we have
assumed Mrel = MPl. If the relic mass is a few orders of magnitude smaller, the limits (A.5)
and (A.7) overlap and PBH domination could be possible, but a more detailed calculation in
a non-radiation dominated background is needed to determine this. PBH domination could
have specific observational signatures such as gravitational waves [164].

B Growth of PR after Hubble exit

According to the usual lore, the comoving curvature perturbation Rk and thus the power
spectrum PR(k, t) freeze to a constant value after Hubble exit (aH � k) if perturbations
are adiabatic. However, in USR inflation, this does not happen [125]. In this appendix, we
explain why.
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The general proof of the freezing of R goes as follows [165]. First, we write down the
local energy continuity equation in the gradient expansion

ρ̇(~x, t) = −3

[
ȧ(t)

a(t)
+ ψ̇(~x, t)

]
[ρ(~x, t) + p(~x, t)] +O(ε2) , (B.1)

where ψ is the curvature perturbation, and ε ≡ k/(aH). Equation (B.1) without the O(ε2)
terms supposedly applies on the largest, super-Hubble scales with ε� 1, where the universe
is ‘locally homogeneous and isotropic’ with a local Hubble parameter H̃ ≡ ȧ/a+ ψ.

Second, we go to the uniform-density gauge where ρ(~x, t) = ρ(t) is spatially constant.
If the equation of state is barotropic, that is, pressure p is a function of energy density ρ
only4, then p is also spatially constant, and so is ψ̇, up to corrections O(ε2). But since ψ is
a perturbation whose mean value should be zero, we have ψ̇(t) = 0 and ψ(~x, t) is constant in
time. (The perturbation ψ is usually denoted by ζ in the uniform-density gauge.)

Third, we notice that on super-Hubble scales, the comoving and uniform density gauges
coincide, so the curvature perturbation R in the comoving gauge is also constant.

A crucial assumption in the above analysis is that terms of order ε2 can be omitted as
a small quantity. However, in USR, we have for the inflaton field χ

χ̈+ 3Hχ̇ = 0 ⇒ χ̇ ∝ e−3H ∝ a−3 ⇒ p+ ρ = χ̇2 ∝ a−6 , (B.2)

that is, if ψ̇ = 0, H̃(p + ρ) decreases exponentially and much faster than ε2 ∝ a−2. Thus,
for any non-zero k, the O(ε2) terms become comparable to the leading terms in a finite time,
and the gradient expansion breaks down. The usual result that R freezes on super-Hubble
scales is therefore not applicable.

Indeed, if we write down the relation between ζk and Rk or the time evolution equation
of Rk at lowest order in perturbation theory [167], we encounter ratios such as k2/[a2H2(1 +
p/ρ)], which are usually assumed to be small on super-Hubble scales, but which in USR
grow exponentially in time. This is not the case in SR: there χ̇ is small but approximately
constant, as required by the SR condition |ηH | < 1. For H ≈ constant, ηH ≈ constant, we
have χ̇2 ∝ a−2ηH , which decreases slower than ε2. For further discussion on the super-Hubble
behaviour in such constant-roll inflation, see [168, 169]. (Note that USR is a singular limit of
constant-roll [128].)
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