
Proceedings of Machine Learning Research vol 72, 133-144, 2018 PGM 2018

Structure Learning for Bayesian Networks over Labeled DAGs

Antti Hyttinen ANTTI.HYTTINEN@HELSINKI.FI

Johan Pensar JOHAN.PENSAR@HELSINKI.FI

Juha Kontinen JUHA.KONTINEN@HELSINKI.FI

Jukka Corander JUKKA.CORANDER@HELSINKI.FI

HIIT, Dept. of Computer Science, Dept. of Mathematics and Statistics, University of Helsinki, Finland

Abstract
Graphical models based on labeled directed acyclic graphs (LDAGs) allow for representing context-
specific independence relations in addition to regular conditional independencies. Modeling such
constraints has been demonstrated to be important for expressiveness, interpretation and predictive
ability. In this paper, we build theoretical results that make constraint-based and exact score-based
structure discovery possible for this interesting model class. In detail, we present the first constraint-
based learning method for LDAGs. The orientation rules use context-specific independencies for
principled orientation of additional (causal) edges. We also present the first exact score-based
learning method for LDAGs, that employs a branch and bound for the especially computational
demanding task of local score calculation, after which exact DAG search can be used. Simulations
verify the good performance of our methods in different data analysis tasks.
Keywords: directed graphical models; Bayesian networks; structure learning; context-specific
independence; causal discovery.

1. Introduction

As evidenced by thousands of publications relating to their theory and applications, graphical
models offer a versatile set of tools for data analysis, expert systems, etc. (Pearl, 1988). Many
graphical models focus on statistical conditional independence, but context-specific independence
(CSI) relations: X ⊥⊥ Y |Z = 0, meaning that P (X|Y, Z = 0) = P (X|Z = 0) but (possi-
bly) P (X|Y, Z = 1) 6= P (X|Z = 1), forms another type of constraint worth investigating. For
Bayesian networks, CSIs rise for example from local structure in the local conditional probability
distributions (Koller and Friedman, 2009, chapter 5).

Labeled Directed Acyclic Graphs (LDAGs) of Pensar et al. (2015) are graphical models which
support in addition to regular conditional and marginal independencies also context-specific inde-
pendencies (Boutilier et al., 1996). This framework builds on Bayesian networks (Pearl, 1988) by
adding labels to the arcs, specifying situations (contexts) in which the edge does not manifest itself
in the child node distribution through statistical dependencies. There are several benefits arising
from this added flexibility: 1) weak dependencies between variables that are only significant in
some contexts are not overweighed by independencies in others and overlooked, 2) more theory
(e.g. for edge orientation beyond DAG equivalence class) and separation criteria can be developed
over the labels, 3) the increase in model complexity in terms of Bayesian scores due to adding edges
can be smaller than for unlabeled networks.

In this paper, we take on the challenging task of developing constraint-based and exact score-
based structure learning for LDAGs. In addition to the super-exponential number of DAGs, we need
to discover also labels for the edges, which means that the search space is an order of magnitude
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Figure 1: Example binary LDAGs and a CPT for Z in a) respecting label A = 0 on X → Z.

larger than for DAGs. Instead of the simple polynomial d-separation for DAGs, we need to deal
with more complex separation criteria (Corander et al., 2016). The previous algorithm presented
for learning LDAGs by Pensar et al. (2015) is a mixture of stochastic and greedy search procedures,
without guarantees on the edge orientation or global optimality.

First, we develop previous theory on LDAGs (Section 2) further in Section 3, and derive a
constraint-based learning algorithm in Section 4. In Section 5, we present an exact score-based
method for learning LDAGs, which is further improved in Section 6. Related work is discussed in
Section 7. Both of our methods are tested in Section 8. Conclusion is given in Section 9.

2. Bayesian Networks over Labeled DAGs

A labeled directed acyclic graph G (e.g. Fig. 1 a)) is a triple (V, E ,L), where (V, E) forms a
DAG (Pensar et al., 2015). Importantly, the list L associates a label to each edge in E . The CPTs
of an LDAG can be parametrized similarly as for a DAG to form a graphical model (a Bayesian
Network), the labels encode internal structure in these CPTs. The nodes correspond to categorical
random variables with n(X) values indexed as 0, . . . , n(X)− 1 (for node X).

For each edge X → Y ∈ E there is a label L ∈ L, which is a set of assignments1 to pa(Y ) \X .
Each assignment in the label encodes a local CSI: if l ∈ L, then Y ⊥⊥ X|pa(Y ) \ X = l. This
means that when pa(Y ) \X = l, the particular value of X does not affect Y : this is enforced in the
CPT of Y by setting identical probabilities to all rows which have pa(Y ) \X = l. For example, the
label A = 0 on X → Z in Fig. 1 a) implies that X ⊥⊥ Z|A = 0. The local CPT in Fig. 1 b) respects
this label and the local independence: it has two first rows identical.

In addition to local CSIs, CSI-separation (Boutilier et al., 1996) gives a sufficient global criterion
for verifying non-local CSIs. It is defined for LDAGs as follows.

Consider the context2 S = s and a label L on edge X → Y . Let A = (pa(Y ) \ {X}) ∩ S i.e.
the nodes that appear both on the label and in the set S. Let B = (pa(Y ) \ {X}) \ S, i.e. the nodes
that appear on the label L but not in S. Let a be an assignment of A consistent with S = s. A label
L is satisfied by a context S = s iff (a, b) ∈ L for all possible assignments b. Now, an LDAG can
be turned into a context S = s specific DAG by removing edges whose labels are satisfied by S = s.
For example, the context A = 0 specific DAG of Fig. 1 d) is identical to the underlying DAG except
for edge X → Y being absent due to its satisfied label.

The CSI-separation criterion gives a sufficient condition for an independence to be implied by
an LDAG structure: If nodes X,Y are d-separated given C, S in the context S = s specific DAG
of G, then X ⊥⊥ Y |C, S = s is implied by G. Note that regular d-separation is a special case when

1. That only pa(Y ) \X appear in the label for X → Y encodes a causally sensible restriction: only pa(Y ) take part in
the local process of generating a value for Y , thus the other nodes should not dictate the role of X in this process.

2. Context is formally a particular assignment to random variables corresponding to nodes of the LDAG, e.g. A = 0,
S = s or V = v. The assignments given by some context V = v to set S ⊂ V is marked by v[S].
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S = ∅, and thus obviously valid for LDAGs. For example, the labeling in Figure 1 a) implies by
this criterion that X ⊥⊥ Y |A = 1, as Z → Y does not appear in the context A = 1 specific DAG.

Finally, throughout the paper, we restrict our attention to regular maximal LDAGs. Maximality
requires that all labels that follow from other labels are recorded in the edges. Regularity means that
edges absent in every context are not included in the graph. See Pensar et al. (2015) for details.

3. A Necessary Separation Criterion for Labeled DAGs

CSI-separation gives only a sufficient condition for independence, for example the LDAG in Figure
1 a) actually impliesX ⊥⊥ Y (Corander et al., 2016), although CSI-separation does not indicate this.
The axiomatic approach in Corander et al. (2016) can infer that the independence is implied (conjec-
tured to be complete) in this case, but their approach does not give any indication on how to proceed
with structure discovery. The following gives a novel necessary criterion for an independence to be
implied by an LDAG structure: d-separation at least in some context is needed.

Theorem 1 If there is a d-connecting path btw. X,Y given S,C in any context V = v specific DAG
of an LDAG G, then independence X ⊥⊥ Y |S = v[S], C is not implied by G.

Proof Appendix A specifies parameters such that X 6⊥⊥ Y |S = v[S], C in the gen. distribution.

Nodes d-connected in the underlying DAG but not d-connected in any context V = v specific DAG
are still an issue: the variables may be implied independent or dependent. For example, in Figure 1
a) X ⊥⊥ Y is implied, and the d-connecting path disappears in all contexts. Figure 1 c) shows an
example where X,Y may be dependent, but the d-connections disappear in all contexts.

Motivated by Theorem 1, we continue by defining LDAG-colliders, which correspond to (un-
shielded) colliders in Bayesian networks. We also define LDAG-non-colliders.

Definition 2 (LDAG-(non-)collider) A triple (X,Y, Z) is an LDAG-collider in an LDAG iff there
is a context V = v, s.t. the context V = v specific DAG has X → Y ← Z, and X,Z non-adjacent.
A triple (X,Y, Z) is an LDAG-non-collider in an LDAG iff there is a context V = v, s.t. the context
V = v specific DAG has X ← Y ← Z, X → Y → Z or X ← Y → Z, and X,Z non-adjacent.

For example, the triple (X,Z, Y ) in Figure 1 d) is not an LDAG-collider: for contexts whereA = 0,
the edge X → Z is missing and for contexts where A = 1 the edge Y → Z is missing. In Figure 1
a) the triple (X,Z,A) is an LDAG-collider: it appears as a collider in contexts where A = 1.

Pensar et al. (2015) have shown that LDAGs are Markov equivalent if and only if they have
the same Markov equivalent (applied to DAGs) context-specific DAGs. This implies that Markov
equivalent LDAGs have the same skeleton, the same set of LDAG-colliders and the same set of
LDAG-non-colliders. Although Fig. 1 a) and d) do not have Markov equivalent (applied to DAGs)
underlying DAGs, they are in fact Markov equivalent LDAGs: the triple (X,Z, Y ) is neither an
LDAG-collider nor an LDAG-non-collider in either LDAG.

4. Constraint-based learning with the LPC Algorithm

In this section, we present a new constraint-based causal discovery algorithm that is able to correctly
discover LDAGs. Throughout, we assume that we have the true distribution available, i.e. we do
not concern ourselves with finite sample data producing erroneous test results (we prefer to use the
score-based approach introduced later in those cases for better accuracy). Algorithm 1 (left) shows
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1: procedure LPC
2: Run LPC-SKELETON.
3: Detect LDAG-colliders.
4: Run orientation rule R0.
5: Detect LDAG-non-colliders.
6: Run orientation rules R1-R4
7: until no edges can be oriented.
8: Add labels to edges.
9: Return the repr. of the Markov eq.

class.

1: procedure LPC-SKELETON
2: Initialize G as full undirected graph.
3: Initialize all sepcon(·, ·) as empty.
4: for set size k in 0 . . . do
5: for node X , node Y ∈ nbG(X) do
6: for set S ∈ nbG(X) \ Y , |S| = k do
7: for assignment s for S do
8: if X ⊥⊥ Y |S = s then
9: Add S = s to sepcon(X,Y ).

10: if ∀s : X ⊥⊥ Y |S = s then
11: Delete edge X − Y from G.
12: Return G, sepcon(·, ·).

Algorithm 1: Left: The LPC algorithm. Right: The LPC skeleton search.

the steps of the LPC algorithm, which build on the PC algorithm of Spirtes et al. (2000). Each step
is explained in the subsections.

We cannot assume the regular faithfulness (Spirtes et al., 2000) here, since labels can imply ad-
ditional independencies beyond those that can be discovered using d-separation (remember X ⊥⊥ Y
for Fig. 1 a) ). We need to make the following faithfulness assumption, directly based on Theorem 1.

Assumption 1 (LDAG-faithfulness) If there is a d-connecting path btw. X,Y given S,C in any
context V = v specific DAG of an LDAG G, then X 6⊥⊥ Y |S = v[S], C.
In our simulations, where parameters were sampled randomly from Dirichlet distributions, we did
not encounter violations of this condition.

4.1 LPC Skeleton Search

Algorithm 1 (right) shows the steps of the skeleton search. This modifies the skeleton search of PC
(Spirtes et al., 2000) by testing independencies in contexts, i.e. X ⊥⊥ Y |S = s instead of X ⊥⊥
Y |S. It saves all found separating contexts as sepcon(·, ·). Since LDAG implies independencies
corresponding to d-separations in its underlying DAG, any absent X → Y will be detected as we
have that ∃S : ∀s : X ⊥⊥ Y |S = s (S can be the parents of Y ). For any present X → Y , because of
regularity and faithfulness, there is a context V = v s.t. for every S we have that X 6⊥⊥ Y |S = v[S]
and thus X → Y will not be deleted. Thus this step will return the correct skeleton.

4.2 LDAG-(non-)collider Detection

The first orientation rule for regular PC is to orient X − Y − Z as X → Y ← Z if Y is not in the
separating set for X,Z. Unfortunately, this is not correct when considering LDAGs. E.g. it would
incorrectly orientX → Z ← Y for the LDAG in Fig. 1 a) sinceX ⊥⊥ Y . Thus, the orientation rules
of PC (Meek, 1995) must be revised in order for them to also be valid for LDAGs. The following
theorems are needed for detecting LDAG-(non-)colliders in the LPC skeleton search result.

Theorem 3 (LDAG-(non-)collider detection) A triple (X,Y, Z) is an LDAG-collider (LDAG-non-
collider) iff there is a context V = v and a set S that satisfy the requirements in the LPC skele-
ton result: 1) S = v[S] ∈ sepcon(X,Z), 2) ∀(S′ = s′) ∈ sepcon(X,Y ) : v[S′] 6= s′, 3)
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Rule R0 R1 R2 R3 R4
(X,Y, Z) LDAG-collider LDAG-non-collider LDAG-non-collider LDAG-non-collider
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Table 1: Orientation rules of LPC. In the patterns, all regularly drawn edges must be present, dashed
edges may be present or absent. Undirected edges in the patterns may be also directed. Additional
edges may be present to nodes not drawn.

(S′′ = s′′) ∈ sepcon(Z, Y ) : v[S′′] 6= s′′, and either 4a) Y /∈ S for an LDAG-collider or 4b)
Y ∈ S for an LDAG-non-collider.

The detected LDAG-colliders can be oriented when found, this is R0 in Table 1. The detected
LDAG-non-colliders are used in the more intricate orientation rules of the next section.

4.3 Orientation Rules

Table 1 shows the orientation rules for LPC. They are modified from Meek (1995), but there are
several differences. First, in most rules we require triple (X,Y, Z) to be detected as a collider or
non-collider by the theorems; the corresponding requirement regarding (regular) colliders is built
into PC implicitly. Second, the rules allow for X and Z to be adjacent, as long as the joining edge
disappears in contexts such that the LDAG-collider-non-collider requirement is fulfilled. Third, PC
requires rule R4 only in the presence of background knowledge of some orientations (Meek, 1995),
in LPC we get extra orientations due to CSIs and the rule is very important and used regularly also
without background knowledge. Meek (1995) showed that his orientation rules are complete also
under background knowledge. Given that detected LDAG-colliders and LDAG-non-colliders can
be seen as background knowledge, we conjecture that LPC algorithm is also orientation complete.

4.4 Labeling

We are left with the task of adding labels to edges, only some of which are oriented. This is achieved
by recording the contexts in which X,Y were found independent to the label associated with the
edge X − Y . Given any fully determined orientation, we can find the labels corresponding to local
CSIs (see Section 2) for that particular member (LDAG) of the equivalence class.

4.5 Examples

Figure 2 shows two results of the LPC algorithm. Fig. 2 a) is the result when the data generating
model has the LDAG structure given in Fig. 1 a). Note that this result includes the (LDAG) Markov
equivalent structure Fig. 1 d). As described earlier regular PC would orient X → Z ← Y incor-
rectly to the true structure Fig. 1 a). When the generating LDAG structure is Fig. 2 b) the result
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Figure 2: Example results of the LPC algorithm.

of the LPC algorithm is Fig. 2 c). Here PC would leave all edges unoriented, whereas LPC uses
X ⊥⊥ Y |Q = 0 to correctly orient the edges from X and Y into W .

5. Exact Score-based Learning for Labeled DAGs

Although the LPC algorithm is valuable in that it outputs a characterization of an equivalence class,
its results can be far from accurate when run on finite sample data. Instead, because the labels
can produce local minima, we find the globally optimal LDAG by exact score-based learning3.
Finding the LDAG maximizing the global BIC score can be cast as (similarly as in the derivation
by Chickering et al. (1997)):

maxG
∑
X∈V

s(X,paG(X)), where s(X,paG(X)) = maxLs(X,paG(X), L)

Here s(X,paG(X), L) is the local BIC score of the CPT of X , with rows partitioned according
to labels L. Naturally for a network without labels the score is exactly equal to DAG-based BIC
of the DAG. This learning problem was also considered by Pensar et al. (2015), however, whereas
they used a stochastic greedy approach, we present here an exact approach. The above formulation
divides this computationally hard task into two tasks: DAG structure learning and the search for
optimal label structure for a local CPT. We first concentrate on the latter task of calculating local
scores. This is only currently possible for maximum parent set size 4, depending on the number of
categories for the variables. At worst case we need to search through a vast number of CPTs: for a
node with 4 binary parents, we have 27 202 841 CPTs possible for a regular maximal LDAG.

5.1 Local Score Calculation

Our procedure for calculating local scores is given in Algorithm 2. Instead of a naive search over
labels, we search over partitions P of rows in a local CPT similarly as Pensar et al. (2017). To cut
down calculation times for unfavorable partitions, we use a branch and bound search (applied also
to similar tasks by Suzuki (1996); Tian (2000); Malone and Yuan (2014); van Beek and Hoffmann
(2015); Suzuki and Kawahara (2017)). We start from the case where all parts are single rows, and
combine rows further in the branches. On lines 9 and 10 in BB, we first search the branches where
pf+1 is combined to some preceding part and then when pf+1 is not combined to a preceding part.

Upper bound for a branch The BIC score we use is the sum of likelihood L and a penalization
term for the number of parameters. Since we are combining more and more rows (and forming a

3. This produces a single representative of the equivalence class, similarly as score-based learning for Bayesian net-
works. The properties of this optimal equivalence class can be examined in several ways, e.g. with LPC of Sect. 4.
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1: procedure LSCORE(Y, S)
2: Set initial bound B (Sect. 5.1).
3: Initialize partition P as singleton rows.
4: BB(Y, S, P, 1, B).
1: procedure BB(Y, S, P, f,B)
2: Calculate likelihood L according to P .
3: if (L− |P |(n(Y )− 1) logN/2 > B)
4: ∧ IsLDAG(Y, S, P ) then
5: B := L− |P |(n(Y )− 1) logN/2.
6: if L− f · (n(Y )− 1) logN/2 < B then
7: Return.
8: for i=1. . . f do
9: BB(Y, S, [· · · , pi ∪ pf+1, · · · ], f, B).

10: BB(Y, S, P, f + 1, B).

1: procedure ISLDAG(Y, S, P )
2: for part p ∈ P do
3: Set K = {p[1]}.
4: for p′ ∈ K do
5: for X ∈ S do
6: if ∀x : (p′[S\X], x) ∈ p then
7: add them to K.
8: if K 6= p then return FALSE.
9: Return TRUE.

Algorithm 2: Local score calculation for node Y and parent set S.

simpler model) when going deeper in the search branch, we know that the current likelihood term
is equal or higher than for any partition further down in the branch. The number of parameters used
can go as low as n(Y )− 1 deeper in the branch. We keep an index f on how many elements of the
partition are fixed, i.e. they are not going to be combined further (although parts can be merged to
them). The idea is to have a lower bound on the number of parameters. Initially we set f = 1, as
the first element can be considered to be fixed. Since f parts are kept fixed we get a tighter bound:
L− f · (n(Y )− 1) logN/2. If this is less than the current best score B, the branch can be closed.

Initial lower bound Since different rows in the local CPT can be combined, the search for the
optimal labels for node Y from parents S will (essentially) search through the best solutions for all
subsets of S as well. To prevent this we will perform local score calculation from smaller parent
sets to larger ones. Then we can give the initial lower bound B for node Y and set S as the best
score from previously calculated local scores for proper subsets of S.

LDAG consistency check Not all partitions are consequences of adding labels to the edges. For
example, for two binary parents, partition {{00, 11}, {01}, {10}} cannot be explained by adding
labels: configurations 00 and 11 can only belong to the same part if either 01 or 10 belongs to it
as well. IsLDAG in Algorithm 2 performs an LDAG consistency check by checking each part of
a partition individually. We start with one row, and consider any label on X → Y that would set
rows equal and always add all other rows if they are present in the part. If in the end some rows in a
part are left outside the set K, we know the partition is not consistent with an LDAG. We check for
LDAG consistency only when we find a solution whose score is higher than the current best score.

5.2 Finding the DAG structure

Given a set of LDAG local scores, we can simply run Bayesian network structure learning. We use
Gobnilp (Bartlett and Cussens, 2017): it does not use DAG-based symmetries that may be invalid
for LDAGs and it benefits from a limit on the number of parents, which is essential also for the
LDAG-based local score calculation.
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6. Enforcing Strong Regularity

Remember that regularity implies that there are no edges absent in every context. After standard
score pruning: deleting local score s(X,S) if ∃S′ ⊂ S : s(X,S′) ≥ s(X,S) (Campos and Ji,
2011), the optimal LDAG structures will be regular4. However, score-based learning can still pro-
duce structures that are almost irregular: they have edges with a lot of labels such that the edges are
only present in few, very low probability contexts. This overfitting phenomenon, also observed by
Pensar et al. (2015), is visible in our simulations (Sect. 8). We suggest three remedies for this issue.

Strong Score Pruning Since standard score pruning takes irregular models out of consideration,
we can take out almost irregular models by performing strong score pruning. We delete local score
s(Y, S) if ∃S′ ⊂ S : s(Y, S′) + γ ≥ s(Y, S). That is, we delete also local scores that are only
slightly better than the score for some subset. With increasing parent set size, the required score
improvement should get higher. Thus, we use γ = t · (nS −nS′) logN/2 where nS , nS′ refer to the
number of parameters for a DAG (without labels) for Y with parent sets S and S′. Note that after
strong score pruning, the found LDAG structures are optimal only over the pruned scores.

Mixed BIC Penalty Instead of LDAG-based BIC score, we also test s′(X,S, P ) = L − a ·
|P |(n(X)− 1) · logN/2− b · nS · logN/2 where nS is the number of parameters in the BN local
CPT without labels. We retain the equal score for a DAG without labels to DAG-based BIC by
setting a+ b = 1.

LDAG over Optimal DAG Skeleton As a final option, we first find the optimal DAG structure
with the DAG-based BIC score, and then find the optimal LDAG structure over the skeleton. Thus,
only orientation is done with the LDAG-based BIC score.

7. Related Work

Over the last decades, there has been a lot of research pertaining to lift the often unnecessarily strict
conditional independence based restrictions implied by standard DAG based models (Boutilier et al.,
1996; Geiger and Heckerman, 1996; Chickering et al., 1997; Friedman and Goldszmidt, 1998; Poole
and Zhang, 2003; DesJardins et al., 2008; Smith and Anderson, 2008; Barclay et al., 2013; Pensar
et al., 2015, 2016, 2017). The benefit from allowing more flexible model structures is the possibility
of more accurately modelling the underlying data generating process. In terms of structure learning,
the added flexibility has been shown to improve the predictive properties of the inferred models
(Friedman and Goldszmidt, 1998; DesJardins et al., 2008; Pensar et al., 2015, 2016), however, it
also puts higher demands on the learning algorithms to retain scalability and avoid overfitting. For
Bayesian networks in particular, structured CPTs in which collections of local conditional distribu-
tions are assumed identical have become increasingly popular (Koller and Friedman, 2009, Chapter
5). One reason for this is that standard scores can still be evaluated in closed form (Chickering et al.,
1997; Friedman and Goldszmidt, 1998). The perhaps most well-known type of structured CPTs are
those explained by CSI (Boutilier et al., 1996). CSIs have also been used to improve the efficiency
of inference algorithms (Boutilier et al., 1996; Poole and Zhang, 2003).

4. If the optimal LDAG is irregular, for a node X that has parents pa(X), different values for some Y ∈ pa(X) do not
alter p(X|pa(X)). This implies that pa(X) would be pruned as pa(X)/Y will get the same (or better) BIC score.
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algo models av. degree label prob. edges found corr. oriented oriented % reversed reversed %
LPC 300 2.99 0 % 4481 3498 78 % 0 0 %
PC 300 2.99 0 % 4481 3498 78 % 0 0 %
cPC 300 2.99 0 % 4481 3498 78 % 0 0 %
LPC 300 2.9 25 % 4343 3387 78 % 0 0 %
PC 300 2.9 25 % 4343 3340 77 % 27 1 %
cPC 300 2.9 25 % 4343 3345 77 % 0 0 %
LPC 300 2.18 50 % 3276 2319 71 % 0 0 %
PC 300 2.18 50 % 3276 2243 68 % 103 4 %
cPC 300 2.18 50 % 3276 2285 70 % 0 0 %

Table 2: LPC, PC and cPC orientation results. 10-node binary LDAGs.
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Figure 3: KL-divergence to the true distribution. 10-node binary LDAGs.

8. Simulations

We implemented the LDAG theory and the LPC algorithm in R. The computationally demanding
task of local score calculation was implemented in C++. For the first two tests we used simulated
LDAGs with 10 nodes. Edges were drawn at random such that the mean degree of a node in under-
lying DAG was 3. The labels were also drawn randomly with probability 0.5 if not stated otherwise.
Parameters for each row of the CPTs were drawn from Dirichlet (ESS=1), redrawing if probabil-
ities were not in [0.05, 0.95]. The true networks were maximal and regular (after a regularization
procedure, this slightly lowered the mean degree).

Table 2 shows the result comparing the orientation produced by the LPC algorithm to PC and
cPC as implemented in PCALG-package (Kalisch et al., 2012), run on the true distribution produced
by the generating model. When no labels are present in the generating model, all algorithms behave
similarly. When the probability of labels increases, PC starts producing incorrect orientations. In-
terestingly, cPC (Ramsey et al., 2006) does well at noticing these problems, it does not orient the
edges where PC is at fault. However, compared to LPC, cPC orients fewer edges. LPC orients more
edges due to found CSIs and all of its orientations are correct.

Then we examined the accuracy of LDAGs as predictive graphical models, when only few sam-
ples are available. We sampled data from the BNs over LDAGs. We learned LDAG or DAG structure
by different exact5 methods and then estimated the parameters (with regularization). We evaluated
the quality of the probabilistic models by comparing the KL-divergence between the distribution of
the (optimal) graphical model and the true distribution. Figure 3 shows the result. First, the optimal

5. Due the stochastic and greedy nature of the non-exact method by Pensar et al. (2015), the results of that algorithm
would depend very highly on the sensitive tuning parameters and the time it is allowed to run.
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LDAG identified under a mere LDAG-based BIC penalty (’LDAG’) severely overfits the data, the
KL-divergence is high even with 200 samples. The suggested mixed penalty term (’mixed’) corrects
this overfitting to some extent. Strong score pruning (’strong’) does even better especially for 100
samples. Here the parameter t has no strong effect. Optimal DAGs (’DAG’) are not as good with
100 data points, even if we introduce a coefficient in front of the BIC penalty term (’DAG 0.8’). Al-
though the label accuracy of LDAGs gets better with increasing sample size, DAG-based prediction
catches up in accuracy when using this measure.
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Figure 4: The learning result for the
Alarm data set.

Finally, we demonstrate the scalability of exact
LDAG learning on 1000 samples from the well studied
37-node Alarm network (Beinlich et al., 1989). This real-
life data set is especially interesting since the available
CPTs include many local CSIs that correspond to labels
e.g. HREKG ⊥⊥ CRRCAUTER | HR = LOW (in-
dexes 10, 11, 35 respectively). Note that the variables
have up to 4 categories, resulting in additional compu-
tational cost over binary LDAGs. We used 100s time-
out for calculating individual local scores, maximum par-
ent set size 4 and employed strong score pruning with
t = 1.0. The task of calculating the around 2.5 million
local scores took 7 hours on a modern desktop computer6.
Fortunately a majority of the scores were pruned out by
the applied strong score pruning. The subsequent run of
Gobnilp took only less than 10 seconds. Figure 4 shows
the result. Some edges are missed, e.g. the learned net-
work is unable to find node 13 as parent of node 34, but
most adjacencies are found correctly for this sample size.

9. Conclusion

We presented new theory on labeled DAGs and developed both constraint-based and exact score-
based structure learning methods. Simulations showed improved edge orientation and accuracy of
probabilistic models. An attractive target for future research is to apply these findings to the dis-
covery of causal structures with latent variables, which poses further steep challenges. The boosted
ability of context-specific independencies to orient edges suggests they may be valuable for finding
additional orientation and improving the accuracy of learning and inference also for such models.

Appendix A. Proofs

Proof of Theorem 1 Suppose there is a shortest d-connecting path btw. X,Y given S,C in a context
V = v specific DAG of an LDAG G. We give here a parametrization for binary variables such that
in the generated distribution X 6⊥⊥ Y |S = v[S], C. The generalization to n-ary variables is straight-
forward. We can assume v is all zeros and also drop conditioning on C, since C = v[C] can be
added to S = v[S]. The path consist of sources, sinks and intermediate nodes such that only the
sinks are in S. Consider for example the graph X ← Q→W ← R→ Y,W → B, that d-connects

6. We are not yet employing advanced techniques such as AD-trees in the calculation, but only simple caching of counts.
Some speedups may be possible here.
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X and Y given B = v[B]. Fill in the directed paths from sources to sinks as follows. The chosen
letters directly refer to the example. 1) Set nodes not appearing on the path to have values according
to v with probability 1. This will isolate the path and make all edges in the path active. 2) Put all
sources on the path to have a uniform distribution. In the example P (Q = 1) = P (Q = 0) = 0.5
and P (R = 1) = P (R = 0) = 0.5. 3) For directed edges Q → X put X = Q. (In the example
such parametrization is given also for W → B and R → Y .) 4) For structures Q → W ← R, set
CPT of W s.t. P (W = 0|Q = 0, R = 0) = 0 and the remaining probabilities > 0 (exact values
may depend on whether possible labels Q = 1 on W ← R and R = 1 on Q → W exist). The
parametrization is such that along paths nodes get the same value and therefore form a dependence,
in the presence of a collider, such as in the example, we have P (W = 0) > 0, P (X = 0, Y =
0|B = 0) = P (Q = 0, R = 0|W = 0) = P (W = 0|Q = 0, R = 0) · 0.25/P (W = 0) = 0 and
P (X = 0|B = 0) = P (Q = 0, R = 1|W = 0) = P (W = 0|Q = 0, R = 1) · 0.25/P (W = 0) >
0, and similarly P (Y = 0|B = 0) > 0, hence X 6⊥⊥ Y |B.

Proof of Theorem 3 Suppose we have context V = v and a set S satisfying the conditions of The-
orem 3. In particular S = v[S] ∈ sepcon(X,Z) implies that we found X ⊥⊥ Z|S = v[S]. Suppose
X − Y − Z is oriented as X ← Y → Z in the true LDAG. This would mean by Theorem 1 that
X ⊥⊥ Z|S = s is not implied (due to X ← Y → Z), unless either X ← Y or Y → Z is absent
in the context V = v specific DAG of the true LDAG, for every context V = v (s.t. v[S] = s).
So suppose X ← Y is deleted in context V = v. This means the label is satisfied under context
pa(X)\Y = v[pa(X)\Y ] and hence we would have local CSIX ⊥⊥ Y |pa(X)\Y = v[pa(X)\Y ].
This would be detected by labeled skeleton search as pa(X) \Y = v[pa(X) \Y ] ∈ sepcon(X,Y ).
This cannot happen if all contexts in sepcon(X,Y ) disagree with V = v. Other orientations form-
ing a non-collider can be similarly ruled out. The proof for LDAG-non-colliders is analogous.
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