
ar
X

iv
:1

70
4.

02
15

8v
2

 [
cs

.L
O

]
 8

 S
ep

 2
01

7

Polyteam Semantics ⋆

Miika Hannula1, Juha Kontinen2, and Jonni Virtema2,3

1 University of Auckland, New Zealand, m.hannula@auckland.ac.nz
2 University of Helsinki, Finland, juha.kontinen@helsinki.fi

3 Hasselt University, Belgium, jonni.virtema@uhasselt.be

Abstract. Team semantics is the mathematical framework of modern logics of dependence and inde-
pendence in which formulae are interpreted by sets of assignments (teams) instead of single assignments
as in first-order logic. In order to deepen the fruitful interplay between team semantics and database de-
pendency theory, we define Polyteam Semantics in which formulae are evaluated over a family of teams.
We begin by defining a novel polyteam variant of dependence atoms and give a finite axiomatisation
for the associated implication problem. We also characterise the expressive power of poly-dependence
logic by properties of polyteams that are downward closed and definable in existential second-order
logic (ESO). The analogous result is shown to hold for poly-independence logic and all ESO definable
properties.

1 Introduction

Team semantics is the mathematical framework of modern logics of dependence and inde-
pendence. The origin of team semantics goes back to [15] but its development to its current
form began with the publication of the monograph [22]. In team semantics formulae are
interpreted by sets of assignments (teams) instead of single assignments as in first-order
logic. The reason for this change is that statements such as the value of variable x depends
on the value of y do not really make sense for single assignments. Team semantics has
interesting connections with database theory and database dependencies [11,12,13,18]. In
order to facilitate the exchange between team semantics and database theory, we introduce
a generalisation of team semantics in which formulae are evaluated over a family of teams.
We identify a natural notion of poly-dependence that generalises dependence atoms to poly-
teams and give a finite axiomatisation for its implication problem. We also define polyteam
versions of independence, inclusion and exclusion atoms, and characterise the expressive
power of poly-dependence and poly-independence logic.

A team X is a set of assignments with a common finite domain x1, . . . , xn of variables.
Such a team can be viewed as a database table with x1, . . . , xn as its attributes. Dependence
logic extends the language of first-order logic with atomic formulae =(x, y) called dependence
atoms expressing that value of the variable y is functionally determined by the values of
the variables in x. On the other hand, independence atoms y ⊥x z [9] express that, for
any fixed value of x, knowing the value of z does not tell us anything new about the value
of y. By viewing a team as a database, the atoms = (x, y) and y ⊥x z correspond to the
widely studied functional and embedded multivalued dependencies. Furthermore, inclusion
atoms x ⊆ y and exclusion atoms x|y of [6] inherit their semantics from the corresponding
database dependencies.

Independence, inclusion, and exclusion atoms have very interesting properties in the
team semantics setting. For example, inclusion atoms give rise to a variant of dependence
logic that corresponds to the complexity class PTIME over finite ordered structures [7]
whereas all the other atoms above (and their combinations) give rise to logics that are equi-
expressive with existential second-order logic and the complexity class NP. The complexity

⋆ This research was supported by a Marsden grant from Government funding, administered by the Royal Society
of New Zealand, and grants 292767 and 308712 of the Academy of Finland.

http://arxiv.org/abs/1704.02158v2

theoretic aspects of logics in team semantics have been studied extensively during the past
few years (see [4] for a survey).

A multiset version of team semantics was recently defined in [3]. Multiteam semantics is
motivated by the fact that multisets are widely assumed in database theory and occur in ap-
plications. Multiteam semantics can be also used to model and study database, probabilistic,
and approximate dependencies in a unified framework (see [3,23]).

The aim of this work is similar to that of [3], i.e., we want to extend the applicability of
team semantics. In database theory dependencies are often expressed by so-called embedded
dependencies. An embedded dependency is a sentence of first-order logic with equality of the
form

∀x1 . . .∀xn
(

φ(x1, . . . , xn) → ∃y1 . . .∃ykψ(x1, . . . , xn, y1, . . . , yk)
)

,

where φ and ψ are conjunctions of relational atoms R(x1, . . . , xn) and equalities x = y.
In the literature embedded dependencies have been thoroughly classified stemming from
real life applications. Examples of well-known subclasses include full, uni-relational, 1-head,
tuple-generating, and equality-generating. For example, an embedded dependency is called
tuple-generating if it is equality free (for further details see, e.g., [16, Section 3]). The uni-
relational dependencies can be studied also in the context of team semantics as generalised
dependencies [21]. However in many applications, especially in the are of data exchange
and data integration, it is essential to be able to express dependencies between different
relations.

In the context of data exchange (see e.g. [5]) the relational database is divided into a
set of source relations S and a set of target relations T . Dependencies are used to describe
what kind of properties should hold when data is transferred from the source schema to
the target schema. In this setting a new taxonomy of embedded dependencies rises: An
embedded dependency ∀x

(

φ(x) → ∃yψ(x, y)
)

is source-to-target if the relation symbols
occurring in φ and ψ are from S and T , respectively. The embedded dependency is target if
the relation symbols occurring in it are from T . There is no direct way to study these classes
of dependencies in the uni-relational setting of team semantics. In this paper we propose a
general framework in which these inherently poly-relational dependencies can be studied.

In Section 2 we lay the foundations of polyteam semantics. The shift to polyteams is
exemplified in Section 2.2, by the definition of poly-dependence atoms and an Armstrong
type axiomatisation for the associated implication problem. In Section 3 polyteam seman-
tics is extended from atoms to complex formulae. Section 4 studies the expressive power
of the new logics over polyteams. The main technical results of the section characterises
poly-independence (poly-dependence) logic as the maximal logic capable of defining all
(downward closed) properties of polyteams definable in existential second-order logic.

2 From uni-dependencies to poly-dependencies

We start by defining the familiar dependency notions from the team semantics literature.
In Section 2.2 we introduce a novel poly-relational version of dependence atoms and estab-
lish a finite axiomatisation of its implication problem. We then continue to present poly-
relational versions of inclusion, exclusion, and independence atoms, and a general notion
of a poly-relational dependency atom. We conclude this section by relating the embedded
dependencies studied in database theory to our new setting.

2.1 Dependencies in team semantics

Vocabularies τ are sets of relation symbols with prescribed arities. For each R ∈ τ , let
ar(R) ∈ Z+ denote the arity of R. A τ -structure is a tuple A =

(

A, (RA

i)Ri∈τ

)

, where A is

2

a set and each RA

i is an ar(Ri)-ary relation on A (i.e., RA

i ⊆ Aar(Ri)). We use A, B, etc. to
denote τ -structures and A, B, etc. to denote the corresponding domains.

Let D be a finite set of first-order variables and A be a nonempty set. A function s : D →
A is called an assignment. For a variable x and a ∈ A, the assignment s(a/x) : D∪{x} → A
is obtained from s as follows:

s(a/x)(y) :=

{

a if y = x,

s(y) otherwise.

For an assignment s and a tuple of variables x = (x1, . . . , xn), we write s(x) to denote
the sequence

(

s(x1), . . . , s(xn)
)

. A team is a set of assignments with a common domain D
and codomain A. Let A be a τ -structure and X a team with codomain A, then we say that
X is a team of A.

The following dependency atoms were introduced in [22,6,9].

Definition 1 (Dependency atoms). Let A be a model and X a team with codomain A.
If x, y are variable sequences, then =(x, y) is a dependence atom with the truth condition:

A |=X=(x, y) if for all s, s′ ∈ X s.t. s(x) = s′(x), it holds that s(y) = s′(y).

If x, y are variable sequences of the same length, then x ⊆ y is an inclusion atom and
x | y an exclusion atom with satisfaction defined as follows:

A |=X x ⊆ y if for all s ∈ X there exists s′ ∈ X such that s(x) = s′(y).

A |=X x | y if for all s, s′ ∈ X : s(x) 6= s′(y).

If x, y, z are variable sequences, then y ⊥x z is a conditional independence atom with satis-
faction defined by

A |=X y ⊥x z if for all s, s′ ∈ X such that s(x) = s′(x) there exists s′′ ∈ X

such that s′′(x) = s(x), s′′(y) = s(y), and s′′(z) = s′(z).

Note that in the previous definitions it is allowed that some or all of the vectors of
variables have length 0. For example, A |=X=(x) holds iff ∀s ∈ X : s(x) = c holds for some
fixed tuple c, and A |=X y ⊥x z holds always if either of the vectors y or z is of length 0.

All the aforementioned dependency atoms have corresponding variants in relational
databases. One effect of this relationship is that the axiomatic properties of these depen-
dency atoms trace back to well-known results in database theory. Armstrong’s axioms for
functional dependencies constitute a finite axiomatisation for dependence atoms [1,9], and
inclusion atoms can be finitely axiomatised using the axiomatisation for inclusion depen-
dencies [2]. Furthermore, by the undecidability of the (finite and unrestricted) implication
problem for embedded multivalued dependencies the same limitation applies to conditional
independence atoms as well [14]. Restricting attention to the so-called pure independence
atoms, i.e., atoms of the form x ⊥∅ y, a finite axiomatisation is obtained by relating to
marginal independence in statistics [8,18].

2.2 The notion of poly-dependence

For each i ∈ N, let Var(i) denote a distinct countable set of first-order variable symbols.
We say that these variables are of sort i. Relating to databases, sorts correspond to table
names. Usually we set Var(i) = {xij | j ∈ N}. We write xi, yi, xij to denote variables form

3

Var(i), and xi to denote tuples of variables from Var(i). Sometimes we drop the index i
and write simply x and x instead of xi and xi, respectively. Note that x is always a tuple
of variables of a single sort. In order to simplify notation, we sometimes write xi and xj to
denote arbitrary tuples of variables of sort i and j, respectively. We emphasise that xi and
xj might be of different length and may consist of distinct variables. Let A be a τ -model
and let Di ⊆ Var(i) for all i ∈ N. A tuple X = (Xi)i∈N is a polyteam of A with domain
D = (Di)i∈N, if Xi is a team with domain Di and co-domain A for each i ∈ N. We identify
X with (X0, . . . , Xn) if Xi is the singleton team consisting with the empty assignment for
all i greater than n. Let X = (Xi)i∈N and Y = (Yi)i∈N be two polyteams. We say that X is
a subteam of Y if Xi ⊆ Yi for all i ∈ N. By the union (resp. intersection) of X and Y we
denote the polyteam (Xi∪Yi)i∈N (resp. (Xi∩Yi)i∈N). By a slight abuse of notation we write
X ∪ Y (resp. X ∩ Y) for the union (resp. intersection) of X and Y , and X ⊆ Y to denote
that X is a subteam of Y . For a tuple V = (Vi)i∈N where Vi ⊆ Var(i), the restriction of X
to V , written X ↾ V , is defined as (Xi ↾ Vi)i∈N where Xi ↾ Vi denotes the restriction of Xi

to Vi.
Next we generalise dependence atoms to the polyteam setting. In contrast to the standard

dependence atoms, poly-dependence atoms declare functional dependence of variables over
two teams.
Poly-dependence. Let xiyi and ujvj be sequences of variables such that xi and uj , and yi

and uj have the same length, respectively. Then =
(

xi, yi/uj , vj
)

is a poly-dependence atom
whose satisfaction relation |=X is defined as follows:

A |=X=
(

xi, yi/uj, vj
)

⇔ ∀s ∈ Xi∀s
′ ∈ Xj : s(x

i) = s′(uj) implies s(yi) = s′(vj).

Note that the atom = (x, y/x, y) corresponds to the dependence atom = (x, y). For empty
tuples xi and uj the poly-dependence atom reduces to a“poly-constancy atom” =

(

yi/vj
)

.
We will later show (Remark 13) that poly-dependence atoms of the form =

(

xi, yi/ui, vi
)

can
be expressed with formulae using only ordinary dependence atoms. Thus poly-dependence
atoms of this form are considered as primitive notions only when xiyi = uivi; otherwise =
(

xi, yi/ui, vi
)

is considered as a shorthand for the equivalent formula obtained from Remark
13.

The ability to reason about database dependencies can be employed to facilitate many
critical data management tasks such as schema design, query optimisation, and integrity
maintenance. Keys, inclusion dependencies, and functional dependencies in particular have
a crucial role in all of these processes. A traditional way to approach the interaction between
dependencies has been the utilisation of proof systems similar to natural deduction systems
in logic. The most significant of all these systems is the Armstrong’s axiomatisation for
functional dependencies. This inference system consists of only three rules which we depict
below using the standard notation for functional dependencies, i.e., X → Y denotes that
an attribute set X functionally determines another attribute set Y .

Definition 2 (Armstrong’s axiomatisation [1]).

– Reflexivity: If Y ⊆ X, then X → Y
– Augmentation: if X → Y , then XZ → Y Z
– Transitivity: if X → Y and Y → Z, then X → Z

Our first development is the generalisation of Armstrong’s axiomatisation to the poly-
dependence setting. To this end, we assemble the three rules of Armstrong and introduce
three auxiliary rules: Union, Symmetry, and Weak Transitivity. Contrary to the Armstrong’s
proof system, here Union is not reducible to Transitivity and Augmentation because we oper-
ate with sequences instead of sets of variables or attributes. Symmetry in turn is imposed by

4

the sequential notation employed by the poly-dependence atom. Weak Transitivity exhibits
transitivity of equalities on the right-hand side of a poly-dependence atom, a phenomenon
that arises only in the polyteam setting.

Definition 3 (Axiomatisation for poly-dependence atoms).

– Reflexivity: =
(

xi, prk(x
i)/yj , prk(y

j)
)

, where k = 1, . . . , |xi| and prk takes the kth projec-
tion of a sequence.

– Augmentation: if =
(

xi, yi/uj, vj
)

, then =
(

xizi, yizi/ujwj, vjwj
)

– Transitivity: if =
(

xi, yi/uj, vj
)

and =
(

yi, zi/vj , wj
)

, then =
(

xi, zi/uj, wj
)

– Union: if =
(

xi, yi/uj , vj
)

and =
(

xi, zi/uj, wj
)

then =
(

xi, yizi/uj , vjwj
)

– Symmetry: if =
(

xi, yi/uj, vj
)

, then =
(

uj , vj/xi, yi
)

– Weak Transitivity: if =
(

xi, yizizi/uj , vjvjwj
)

, then =
(

xi, yi/uj, wj
)

This proof system forms a complete characterisation of logical implication for poly-
dependence atoms. We use |= to refer to logical implication, i.e., we write Σ |= σ if A |=X Σ
implies A |=X σ for all models A and polyteams X . Given an axiomatisation R, that is, a
set of axioms and inference rules, we write Σ ⊢R σ if R yields a proof of σ from Σ. Given
a class of dependency atoms C, we then say that R is sound (complete, resp.) for C if for
all finite sets of dependency atoms Σ ∪ {σ} from C, Σ ⊢R σ implies (is implied by, resp.)
Σ |= σ.

Theorem 4. The axiomatisation of Def. 3 is sound and complete for poly-dependence
atoms.

Proof. The proof of soundness is straightforward and omitted. We show that the axiomatisa-
tion is complete, i.e., that Σ |= σ implies Σ ⊢ σ for a set Σ∪{σ} of poly-dependence atoms.
Assume σ is =

(

xi, yi/xj , yj
)

. First we consider the case where i = j in which case σ is a
standard dependence atom. Let Σ∗ be the subset of Σ consisting of all standard dependence
atoms over Var(i). Since all teams satisfying Σ∗ can be extended to a polyteam satisfying
Σ by introducing new empty teams, we have that Σ∗ |= σ in the team semantics setting.
Since dependence atoms = (x, y) in team semantics correspond to functional dependencies
{x ∈ xi} → {y ∈ yi} in relational databases (see e.g. [9]), Armstrong’s complete axiomati-
sation from Definition 2 yields a deduction of σ0 from Σ∗

0 where Σ∗
0 and {σ0} are obtained

from Σ∗ and σ by replacing dependence atoms with their corresponding functional depen-
dencies. Since dependence atoms are provably order-independent (i.e. one derives =(x0, x1)
from =(y0, y1) by Reflexivity, Union, and Transitivity if xi and yi list the same variables),
the deduction in Armstrong’s system can be simulated with the rules in Definition 3. This
proves the case i = j.

Let us then consider the case i 6= j. We will show that Σ 6⊢ σ implies Σ 6|= σ. Assume
Σ 6⊢ σ. Define first a binary relation ∼ on Var(i) ∪ Var(j) such that ai ∼ aj if Σ ⊢=
(

xi, ai/xj, aj
)

, aj ∼ ai if Σ ⊢=
(

xj, aj/xi, ai
)

, and ai ∼ bi (aj ∼ bj , resp.) if ai = bi or
Σ ⊢=

(

xi, aibi/xj , ajaj
)

for some aj (aj = bj or Σ ⊢=
(

xj , ajbj/xi, aiai
)

for some ai, resp.).
We show that ∼ is an equivalence relation.

– Reflexivity: Holds by definition.
– Symmetry: First note that ai ∼ aj and aj ∼ ai are derivably equivalent by the symmetry

rule. Assume that ai ∼ bi in which case =
(

xi, aibi/xj , ajaj
)

is derivable for some aj . Then
derive first =(aibi, bi/ajaj , aj) and =(aibi, ai/ajaj , aj) by using the reflexivity rule, and
then =

(

xi, bi/xj, aj
)

and =
(

xi, ai/xj , aj
)

by using the transitivity rule. Finally derive
=
(

xi, biai/xj, ajaj
)

by using the union rule.

5

– Transitivity: Assume first that ai ∼ bi ∼ ci, where ai, bi, ci and are pairwise distinct. Then
=
(

xi, aibi/xj, ajaj
)

and =
(

xi, bici/xj , bjbj
)

are derivable for some aj and bj . Then analo-
gously to the previous case assemble =

(

xi, aibibi/xj, ajajbj
)

which admits =
(

xi, ai/xj , bj
)

by weak transitivity, and detach =
(

xi, ci/xj, bj
)

from =
(

xi, bici/xj, bjbj
)

. By the union
rule we then obtain =

(

xi, aici/xj, bjbj
)

and thus that ai ∼ ci. Since all the other cases
are analogous, we observe that ∼ is transitive.

Let s be a function that maps each x ∈ Var(i) ∪ Var(j) that appears in Σ ∪ {σ} to
the equivalence class x/ ∼. We define X = (Xi, Xj) where Xk = {s ↾ Var(k)} for k = i, j.
First notice that X 6|= σ for, by union, it cannot be the case that prk(y

i) ∼ prk(y
j) for all

k = 1, . . . , |yi|. It suffices to show that X satisfies each =(um, vm/un, vn) in Σ. If m = n or
{m,n} 6= {i, j}, the atom is trivially satisfied. Hence, and by symmetry, we may assume that
the atom is of the form =

(

ui, vi/uj, vj
)

. Assume that s(ui) = s(uj), that is, prk(u
i) ∼ prk(u

j)
for all k = 1, . . . , |ui|. We obtain by the union rule that =

(

xi, ui/xj, uj
)

is derivable, and
hence by the transitivity rule that =

(

xi, vi/xj , vj
)

is also derivable. Therefore, by using the
reflexivity and transitivity rules we conclude that s(vi) = s(vj). ⊓⊔

2.3 A general notion of a poly-dependency

Next we consider suitable polyteam generalisations for the dependencies discussed in Section
2.1 and also define a general notion of poly-dependency. This generalisation is immediate for
inclusion atoms which are inherently multi-relational; relational database management sys-
tems maintain referential integrity by enforcing inclusion dependencies specifically between
two distinct tables. With poly-inclusion atoms these multi-relational features can now be
captured.
Poly-inclusion. Let xi and yj be sequences of variables of the same length. Then xi ⊆ yj

is a poly-inclusion atom whose satisfaction relation |=X is defined as follows:

A |=X xi ⊆ yj ⇔ ∀s ∈ Xi∃s
′ ∈ Xj : s(x

i) = s′(yj).

If i = j, then the atom is the standard inclusion atom.
Poly-exclusion. Let xi and yj be sequences of variables of the same length. Then xi | yj

is a poly-exclusion atom whose satisfaction relation |=X is defined as follows:

A |=X xi | yj ⇔ ∀s ∈ Xi, s
′ ∈ Xj : s(x

i) 6= s′(yj).

If i = j, then the atom is the standard exclusion atom.

Poly-independence Let xi, yi, aj ,b
j
, uk, vk, and wk be tuples of variables such that |xi| =

|aj | = |uk|, |yi| = |vk|, |b
j
| = |wk|. Then yi/vk ⊥xi,aj/uk b

j
/wk is a poly-independence atom

whose satisfaction relation |=X is defined as follows:

A |=X yi/vk ⊥xi,aj/uk b
j
/wk ⇔ ∀s ∈ Xi, s

′ ∈ Xj : s(x
i) = s′(aj) implies

∃s′′ ∈ Xk : s
′′(ukvk) = s(xiyi) and s′′(wk) = s′(b

j
).

The atom y/y ⊥x,x/x z/z, where all variables are of the same sort, corresponds to the
standard independence atom y ⊥x z. Furthermore, a pure poly-independence atom is an

atom of the form yi/vk ⊥∅,∅/∅ b
j
/wk, written using a shorthand yi/vk ⊥ b

j
/wk.

Poly-independence atoms are closely related to equi-join operators of relational databases
as the next example exemplifies.

6

Example 5. A relational database schema

P(rojects) ={project,team}, T(eams) = {team,employee},

E(mployees) ={employee,team,project},

stores information about distribution of employees for teams and projects in a workplace.
The poly-independence atom

P[project]/E[project] ⊥P[team],T[team]/E[team] T[employee]/E[employee] (1)

expresses that the relationEmployees includes as a subrelation the natural join of Projects
andTeams. If furthermoreE[project,team] ⊆ P[project,team] andE[team,employee] ⊆
T[team,employee] hold, then Employees is exactly this natural join.

In addition to the poly-atoms described above we define a notion of a generalised poly-
atom, similarly to the notion of generalised atom of [21].
Generalised poly-atoms. Let (j1, . . . , jn) be a sequence of positive integers. A generalised
quantifier of type (j1, . . . , jn) is a collection Q of relational structures (A,R1, . . . , Rn) (where
each Ri is ji-ary) that is closed under isomorphisms. Then, for any sequence (x1, . . . , xn)
where xi is a length ji tuple of variables from some Var(li), AQ(x1, . . . , xn) is a generalised
poly-atom of type (j1, . . . , jn). For a model A and polyteam X where xi ⊆ Dom(Xli), the
satisfaction relation with respect to AQ is defined as follows:

A |=X AQ(x1, . . . , xn) ⇔
(

Dom(A), R1 := rel(Xl1 , (x1)) . . . , Rn := rel(Xln , (xn))
)

∈ Q.

Note that by rel(X, (x)) for x = (x1, . . . , xm) we denote the relation {(s(x1), . . . , s(xm)) |
s ∈ X}. A poly-atom AQ(x1, . . . , xn) is a uni-atom if the variables sequences x1, . . . , xn are
of a single sort. Uni-atoms correspond exactly to generalised atoms of [21]. We say that the
atom AQ(x1, . . . , xn) is definable in a logic L if the class Q is definable in L. For instance,
we notice that a poly-inclusion atom (x1, y1) ⊆ (u2, v2) is a first-order definable generalised
poly-atom of type (2, 2).

2.4 Database dependencies as poly-atoms

Embedded dependencies in a multi-relational context can now be studied with the help of
generalised poly-atoms and polyteam semantics. Conversely, strong results obtained in the
study of database dependencies can be transferred and generalised for stronger results in
the polyteam setting. In particular, each embedded dependency can be seen as a defining
formula for a generalised poly-atom, and hence the classification of embedded dependencies
naturally yield a corresponding classification of generalised poly-atoms. For example, the
class

C := {AQ(x1, . . . , xn) |Q is definable by an FO(R1, . . . , Rn)-sentence in the class of

equality-generating dependencies}

is the class of equality-generating poly-atoms. The defining formula of the generalised atom
of type (2,2) that captures the poly-dependence atom of type =(xi, yi/uj, vj) is

∀x1∀x2∀y1∀y2
(

(R1(x1, x2) ∧ R2(y1, y2) ∧ x1 = y1) → x2 = y2
)

.

Thus poly-dependence atoms are included in the class of equality-generating poly-atoms.
In order to study data exchange in the polyteam setting, we first need to define the

notions of source-to-target and target poly-atoms. This classification of poly-atoms requires
some more care as it is not enough to consider the defining formulae of the corresponding
atoms, but also the variables that the atom is instantiated with. We will return to this topic
briefly after we have given semantics for logics that work on polyteams.

7

3 Polyteam semantics for complex formulae

We next delineate a version of team semantics suitable for the polyteam context. We note
here that it is not a priori clear what sort of modifications for connectives and quantifiers
one should entertain when shifting from teams to the polyteam setting.

3.1 Syntax and semantics

Definition 6. Let τ be a set of relation symbols. The syntax of poly first-order logic PFO(τ)
is given by the following grammar rules:

φ ::= x = y | x 6= y | R(x) | ¬R(x) | (φ ∧ φ) | (φ ∨ φ) | (φ ∨j φ) | ∃xφ | ∀xφ,

where R ∈ τ is a k-ary relation symbol, j ∈ N, x ⊆ Var(i)k and x, y ∈ Var(i) for some
i, k ∈ N.

We say that ∨ is a global disjunction whereas ∨i is a local disjunction. Note that in the
definition the scope of negation is restricted to atomic formulae. Note also that the restriction
of PFO(τ) to formulae without the connective ∨j and using only variables of a single fixed
sort is FO(τ).

For the definition of the polyteam semantics of PFO, recall the definitions of teams and
polyteams from Sections 2.1 and 2.2, respectively. Let X be a team, A a finite set, and
F : X → P(A) \ {∅} a function. We denote by X [A/x] the modified team {s(a/x) | s ∈
X, a ∈ A}, and by X [F/x] the team {s(a/x) | s ∈ X, a ∈ F (s)}. Again note that if restricted
to the above fragment of PFO(τ) the polyteam semantics below coincides with traditional
team semantics, see e.g. [4] for a definition. Thus for FO(τ) formulae we may write A |=Xi

φ
instead of A |=(Xi) φ.

Definition 7 (Lax polyteam semantics). Let A be a τ -structure and X a polyteam of
A. The satisfaction relation |=X for poly first-order logic is defined as follows:

A |=X x = y ⇔ if x, y ∈ Var(i) then ∀s ∈ Xi : s(x) = s(y)
A |=X x 6= y ⇔ if x, y ∈ Var(i) then ∀s ∈ Xi : s(x) 6= s(y)
A |=X R(x) ⇔ if x ∈ Var(i)k then ∀s ∈ Xi : s(x) ∈ RA

A |=X ¬R(x) ⇔ if x ∈ Var(i)k then ∀s ∈ Xi : s(x) 6∈ RA

A |=X (ψ ∧ θ) ⇔ A |=X ψ and A |=X θ
A |=X (ψ ∨ θ) ⇔ A |=Y ψ and A |=Z θ for some Y , Z ⊆ X s.t. Y ∪ Z = X
A |=X (ψ ∨j θ)⇔ A |=X[Yj/Xj]

ψ and A |=X[Zj/Xj]
θ for some Yj, Zj ⊆ Xj s.t. Yj ∪ Zj = Xj

A |=X ∀xψ ⇔ A |=X[Xi[A/x]/Xi]
ψ, when x ∈ Var(i)

A |=X ∃xψ ⇔ A |=X[Xi[F/x]/Xi
ψ holds for some F : Xi → P(A) \ {∅}, when x ∈ Var(i).

The truth of a sentence φ (i.e., a formula with no free variables) in a model A is defined
as: A |= φ if A |=({∅}) φ, where ({∅}) denotes the polyteam consisting only singleton teams
of the empty assignment. We write Fr(φ) for the set of free variables in φ, and Fri(φ) for
Fr(φ) ∩Var(i).

Polyteam semantics is a conservative extension of team semantics in the same fashion
as teams semantics is a conservative extension of Tarski semantics [22].

Proposition 8. Let φ ∈ FO(τ) whose variables are all of sort i ∈ N. Let A be a τ -structure
and X a polyteam of A. Then A |=X φ ⇔ A |=Xi

φ ⇔ ∀s ∈ Xi : A |=s φ, where |=s denotes
the ordinary satisfaction relation of first-order logic.

8

Example 9. A relational database schema

Patient ={patient id,patient name},

Case ={case id,patient id,diagnosis id,confirmation},

Test ={diagnosis id,test id}, Results = {patient id,test id,result}

stores information about patient cases and their related laboratory tests. In order to main-
tain consistency of the stored data, database management systems support the use of in-
tegrity constraints that are based on functional and inclusion dependencies. For instance, on
relation schema Patient the key patient id (i.e. the dependence atom =(patient id,patient name))
ensures that no patient id can refer to two different patient names. On Case the foreign key
patient id referring to patient id onPatient (i.e. the inclusion atomCase[patient id] ⊆
Patient[patient id]) enforces that patient ids on Case refer to real patients. The intro-
duction of poly-dependence logics opens up possibilities for more expressive data constraints.
The poly-inclusion formula

φ0 =confirmation 6= positive ∨Case ∃x1x2
(

x1 6= x2∧
∧

i=1,2

(Case[diagnosis id, xi] ⊆ Test[diagnosis id,test id]∧

Case[patient id, xi, positive] ⊆ Results[patient id,test id,result])
)

ensures that a diagnosis may be confirmed only if it has been affirmed by two different
appropriate tests. The poly-exclusion formula

φ1 =confirmation 6= negative ∨Case

∀x
(

Case[diagnosis id, x] | Test[diagnosis id,test id]∨Case

Case[patient id, xi, positive] | Results[patient id,test id,result]
)

makes sure that a diagnosis may obtain a negative confirmation only if it has no posi-
tive indication by any suitable test. Note that both formulae employ local disjunction and
quantified variables that refer to Case. Interestingly, the illustrated expressive gain is still
computationally feasible as both φ0 and φ1 can be enforced in polynomial time. For φ0 note
that the data complexity of inclusion logic is in PTIME [7]; for φ1 observe that satisfaction
of a formula of the form x1 | y2 ∨1 x

1 | z3 can be decided in PTIME as well.

Poly-dependence logics. Poly-dependence, poly-independence, poly-inclusion, and poly-
exclusion logics (PFO(pdep), PFO(pind), PFO(pinc), and PFO(pexc), resp.) are obtained by
extending PFO with poly-dependence, poly-independence, poly-inclusion, and poly-exclusion
atoms, respectively. In general, given a set of atoms C we denote by PFO(C) the logic
obtained by extending PFO with the atoms of C. We also consider poly-atoms in the team
semantics setting; by FO(C) we denote the extension of first-order logic by the poly-atoms
in C. Similarly, it is also possible to consider atoms of Section 2.1 in the polyteam setting
by requiring that the variables used with each atom are of a single sort.

3.2 Basic properties

We say that a formula φ is local in polyteam semantics if for all V = (Vi)i∈N where Fri(φ) ⊆ Vi
for i ∈ N, and all models A and polyteams X , we have

A |=X φ ⇔ A |=X↾V φ.

In other words, the truth value of a local formula depends only on its free variables. Fur-
thermore, a logic L is called local if all its formulae are local.

9

Proposition 10 (Locality). For any set C of generalised poly-atoms PFO(C) is local.

Furthermore, the downward closure of dependence logic as well as the union closure of
inclusion logic generalise to polyteams.

Proposition 11 (Downward Closure and Union Closure). Let φ be a formula of
PFO(pdep), ψ a formula of PFO(pinc), A a model, and X, Y two polyteams. Then A |=X φ
and Y ⊆ X implies that A |=Y φ, and A |=X ψ and A |=Y ψ implies that A |=X∪Y ψ.

The following proposition shows that the substitution of independence (dependence)
atoms for any (downwards closed) class of atoms definable in existential second-order logic
(ESO) results in no expressive gain.

Proposition 12. Let C (D, resp.) be the class of all (all downward closed, resp.) ESO-
definable poly-atoms. The following equivalences of logics hold: FO(C) ≡ FO(ind), FO(D) ≡
FO(dep), and FO(pinc) ≡ FO(inc).

Proof. The claim FO(pinc) ≡ FO(inc) follows directly from the observation that in the
team semantics setting poly-inclusion atoms are exactly inclusion atoms. Note that FO(ind)
(FO(dep), resp.) captures all (all downward closed, resp.) ESO-definable properties of teams
(see Theorem 18). It is easy to show (cf. [17, Theorem 6]) that every property of teams
definable in FO(C) (FO(D), resp.) is ESO-definable (ESO-definable and downward closed,
resp.). Thus since ind ∈ C and dep ∈ D, we obtain that FO(C) ≡ FO(ind) and FO(D) ≡
FO(dep). ⊓⊔

Remark 13. In particular it follows from the previous proposition that, in the polyteam
setting, each occurrence of any (any downward closed, resp.) ESO-definable poly-atom that
takes variables of a single sort as parameters may be equivalently expressed by a formula of
PFO(ind) (PFO(dep), resp.) that only uses variables of the same single sort.

We end this section by considering the relationship of global and local disjunctions. In
particular, we observe that by the introduction of local disjunction its global variant becomes
redundant. To facilitate our construction we here allow the use of ∨I , where I is a set on
indices, with obvious semantics. We then show that ∨ can be replaced by ∨I and ∨I by ∨i.

Proposition 14. For every formula of PFO there exists an equivalent formula of PFO that
only uses disjunctions of type ∨i.

Proof. Let φ be a formula of PFO and let I list the sorts of all the variables that occur in
φ. Let φ∗ denote the formula obtained from φ by substituting all occurrences of ∨ by ∨I . It
is a direct consequence of the locality property that φ and φ∗ are equivalent.

We will next show how to eliminate disjunctions of type ∨I from φ∗. Let φ0 ∨
I φ1 be a

formula of PFO and let I = {i1, . . . , in}. Define

ψ := ∃zi10 ∃z
i1
1 . . .∃z

in
0 ∃zin1 (θ0 ∧ θ1),

where zi10 , z
i1
1 , . . . , z

in
0 , zin1 are fresh and distinct variables, and

θ0 := (zi10 = zi11 ∨i1 (zi10 6= zi11 ∧(zi20 = zi21 ∨i2 (zi20 6= zi21 ∧(. . .∧(zin0 = zin1 ∨in (zin0 6= zin1 ∧φ0) . . .),

θ1 := (zi10 6= zi11 ∨i1 (zi10 = zi11 ∧(zi20 6= zi21 ∨i2 (zi20 = zi21 ∧(. . .∧(zin0 6= zin1 ∨in (zin0 = zin1 ∧φ1) . . .).

The idea above is that the variables z
ij
0 , z

ij
1 are used to encode a split of the team Xj . Using

locality it is easy to see that (φ0 ∨
I φ1) and ψ are equivalent over structures of cardinality

at least two. From this the claim follows in a straightforward manner. ⊓⊔

10

3.3 Data exchange in the polyteam setting

As promised, we now return to the topic of modelling data exchange in our new setting. In
this section we restrict our attention to poly-atoms that are embedded dependencies. Our
first goal is to define the notions of source-to-target and target poly-atoms. For this purpose
we define a normal form for embedded dependencies. We call an embedded dependency
∀x

(

φ(x) → ∃yψ(x, y)
)

separated if the relation symbols that occur in φ and ψ are distinct.
A poly-atom is called separated, if the defining formula is a separated embedded dependency.
In the polyteam setting this is just a technical restriction as non-separated poly-atoms can
be always simulated by separated ones. Below we use the syntax A(x1, . . . , xl, y1, . . . , yk)
for separated poly-atoms. The idea is that xis project extensions for relations used in the
antecedent and yjs in the consequent of the defining formula.

Let S and T be a set of source relations and target relations from some data exchange in-
stance, respectively. Let X = (S1, . . . Sn, T1, . . . , Tm) be a polyteam that encodes S and T in
the obvious manner. We say that an instance of a separated atom A(x1, . . . , xl, y1, . . . , yk) is
source-to-target if each xi is a tuple of variables of the sort of Sj , for some j, and each yi is a tu-
ple of variables of the sort of Tj , for some j. Analogously the instance A(x1, . . . , xl, y1, . . . , yk)
is target if each xi and yj is a tuple of variables of the sort of Tp for some p.

Data exchange problems can now be directly studied in the polyteam setting. For ex-
ample the existence-of-solution problem can be reduced to a model checking problem by
using first-order quantifiers to guess a solution for the problem while the rest of the formula
describes the dependences required to be fulfilled in the data exchange problem.

Example 15. A relational database schemas

S : P(rojects) = {name, employee, employee position},

T : E(mployees) = {name, project 1, project 2}

are used to store information about employees positions in different projects. We wish to
check whether for a given instance of the schema S there exists an instance of the schema T
that does not lose any information about for which projects employees are tasked to work
and that uses the attribute name as a key. The PFO(pinc, dep)-formula

φ := ∃x1∃x2∃x3
(

(

P[employee, name] ⊆ E[x1, x2] ∨P P[employee, name] ⊆ E[x1, x3]
)

∧

=(x1, (x2, x3))
)

,

when evaluated on a polyteam that encodes an instance of the schema S, expresses that
a solution for the data exchange problem exists. The variables x1, x2 and x3 above are
of the sort E and are used to encode attribute names name, project 1 and project 2,
respectively. The dependence atom above enforces that the attribute name is a key.

4 Expressiveness

The expressiveness properties of dependence, independence, inclusion, and exclusion logic
and their fragments enjoy already comprehensive classifications. Dependence logic and ex-
clusion logic are equi-expressive and capture all downward closed ESO properties of teams
[6,19]. Independence logic, whose independence atoms violate downward closure, in turn
captures all ESO team properties [6]. On the other hand, the expressivity of inclusion logic
has been characterised by the so-called greatest fixed point logic [7]. In this section we turn
attention to polyteams and consider the expressivity of the poly-dependence logics intro-
duced in this paper. Section 4.1 deals with logics with only uni-dependencies whereas in
Section 4.2 poly-dependencies are considered.

11

4.1 Uni-dependencies in polyteam semantics

The following theorem displays how polyteam semantics over logics with only uni-atoms
collapses to standard team semantics.

Theorem 16. Let C be a set of uni-atoms. Each formula φ(x1, . . . , xn) ∈ PFO(C) can be
associated with a sequence of formulae ψ1(x

1), . . . , ψn(x
n) ∈ FO(C) such that for all X =

(X1, . . . , Xn), where Xi is a team with domain xi,

M |=X φ(x1, . . . , xn) ⇔ ∀i = 1, . . . , n : M |=Xi
ψi(x

i).

Similarly, the statement holds vice versa.

Proof. The latter statement is clear as it suffices to set φ(x1, . . . , xn) := ψ1(x
1)∧ . . .∧ψn(x

n).
For the other direction, we define recursively functions fi that map formulae φ(x1, . . . , xn) ∈
PFO(C) to formulae ψi(x

i) ∈ FO(C). By Proposition 14 we may assume that only disjunctions
of type ∨i, for some i ∈ N, may occur in φ. The functions fi are defined as follows:

– If φ(xj) is an atom, then fi(φ) =

{

φ if i = j,

⊤ otherwise.

– fi(ψ ∨j θ) =

{

fi(ψ) ∨ fi(θ) if i = j,

fi(ψ) ∧ fi(θ) otherwise.

– fi(ψ ∧ θ) = fi(ψ) ∧ fi(θ).

– For Q ∈ {∃, ∀}, if fi(Qx
jψ) =

{

Qxfi(ψ) if i = j,

fi(ψ) otherwise.

We set ψi := fi(φ) and show the claim by induction on the structure of the formula. The
cases for atoms and conjunctions are trivial. We show the case for ∨i.

Let φ = ψ ∨j θ and assume that the claim holds for ψ and θ. Now

A |=X φ iff A |=X[Yj/Xj]
ψ and A |=X [Zj/Xj]

θ, for some Yj, Zj ⊆ Xj s.t. Yj ∪ Zj = Xj .

By the induction hypothesis, A |=X[Yj/Xj]
ψ and A |=X [Zj/Xj]

θ iff A |=Yj
fj(ψ), A |=Zj

fj(θ),

and A |=Xi
fi(ψ),A |=Xi

fi(θ) for each i 6= j. Thus we obtain that A |=X φ holds iff

A |=Xj
fj(ψ) ∨ fj(θ), and A |=Xi

fi(ψ) and A |=Xi
fi(θ) for each i 6= j.

The above can be rewritten as

A |=Xj
fj(ψ) ∨ fj(θ), and A |=Xi

fi(ψ) ∧ fi(θ) for each i 6= j.

The claim now follows, since fj(ψ) ∨ fj(θ) = fj(ψ ∨j θ) and fi(ψ) ∧ fi(θ) = fi(ψ ∨j θ), for
i 6= j.

The cases for the quantifiers are similar.

This theorem implies that poly-atoms which describe relations between two teams are be-
yond the scope of uni-logics. The following proposition illustrates this for PFO(dep).

Proposition 17. The poly-constancy atom =(x1/x2) cannot be expressed in PFO(dep).

12

Proof. Assume that = (x1/x2) can be defined by some φ(x1, x2) ∈ PFO(dep). By Theorem
16 there are FO(dep)-formulae ψ1(x

1) and ψ2(x
2) such that for all X = (X1, X2), where Xi

is a team with domain xi, it holds that

M |=X=
(

x1/x2
)

⇔ ∀i = 1, 2 : M |=Xi
ψi(x

i). (2)

Define teams X1 := {x1 7→ 0}, X2 := {x2 7→ 0}, Y1 := {x1 7→ 1}, and Y2 := {x2 7→ 1}.
Now clearly M |=(X1,X2)=(x1/x2), and M |=(Y1,Y2)=(x1/x2). Hence by (2), we obtain first
that M |=X1

ψi(x
1) and M |=Y2

ψi(x
2), and then that M |=(X1,Y2)= (x1/x2), which is a

contradiction. ⊓⊔

Using Theorem 16 we may now compare and characterise the expressivity of PFO(dep)
and PFO(ind) in terms of existential second-order logic. To this end, let us first recall
the ESO characterisations of open dependence and independence logic formulae. Note that
rel(X) refers to a relation {s(x1, . . . , xn) | s ∈ X} where x1, . . . , xn is some enumeration of
Dom(X).

Theorem 18 ([6,19]). Let φ(x) be an independence logic (dependence logic, resp.) formula,
and let R be an |x|-ary relation. Then there is an (downward closed with respect to R, resp.)
ESO-sentence ψ(R) such that for all teams X 6= ∅ where Dom(X) = x,

M |=X φ(x) ⇔ (M, R := rel(X)) |= ψ(R)

The same statement holds also vice versa.

It is now easy to see that Theorems 16 and 18 together imply that PFO(dep) captures
all conjunctions of downward closed ESO properties of teams whereas PFO(ind) captures all
such properties.

Theorem 19. Let φ(x1, . . . , xn) be a PFO(ind) (PFO(dep), resp.) formula where xi is a
sequence of variables from Var(i). Let Ri be an |xi|-ary relation symbol for i = 1, . . . , n. Then
there are (downward closed with respect to Ri, resp.) ESO-sentences ψ1(R1), . . . , ψn(Rn) such
that for all polyteams X = (X1, . . . , Xn) where Dom(Xi) = xi and Xi 6= ∅

M |=X φ(x1, . . . , xn) ⇔ (M, R1 := rel(X1), . . . , Rn := rel(Xn)) |= ψ1(R1) ∧ . . . ∧ ψn(Rn).

The same statement holds also vice versa.

4.2 Poly-dependencies in polyteam semantics

Next we consider poly-dependencies in polyteam semantics.

Lemma 20. The following equivalences hold:

=
(

x1, y1/u2, v2
)

≡ y1/y1 ⊥x1,u2/x1 v2/y1, (3)

=
(

x1, y1/u2, v2
)

≡ ∀z1(y1 = z1 ∨1 x1z1 | u2v2), (4)

x1 ⊆ u2 ≡ x1/u2 ⊥ ∅/∅, (5)

x1 ⊆ u2 ≡ ∀v2(x1 | v2 ∨2 v2 ⊆ u2), (6)

x1 | u2 ≡ ∃y1z1v2w2(=
(

x1, y1z1/u2, v2w2
)

∧ y1 = z1 ∧ v2 6= w2), (7)

x1 | u2 ≡ ∃y1(u2 ⊆ y1 ∧ x1 | y1), (8)

y2/y1 ⊥x2,x3/x1 z3/z1 ≡ ∀p2q2∃u2v2∀p3q3r3∃u3v3
(

=
(

p2q2, u2v2/p3q3, u3v3
)

∧ (9)
(

u2 = v2 ∨1 (u2 6= v2 ∧ x2y2 | p2q2)
)

∧
(

u3 6= v3 ∨2 x3z3 | p3r3 ∨2 p3q3r3 ⊆ x1y1z1
)

)

.

13

Proof. The equivalences (3)–(8) are straightforward and (9) is analogous to the correspond-
ing translation in the team semantics setting (see [6]). ⊓⊔

The following theorem compares the expressive powers of different polyteam-based logics.
Observe that the expressivity of the logics with two poly-dependency atoms remains the
same even if either one of the atoms has the standard team semantics interpretation.

Theorem 21. The following equivalences of logic hold:

(1) PFO(pdep) ≡ PFO(pexc),
(2) PFO(pind) ≡ PFO(pexc, inc) ≡ PFO(pinc, exc) ≡ PFO(pdep, inc) ≡ PFO(pinc, dep) ≡

PFO(pdep, ind) ≡ PFO(pexc, ind) ≡ PFO(pinc, ind).

Proof. Item (1) follows by equations (4) and (7). Item (2) follows from the below list of
relationships:

– PFO(pind) ⊆ PFO(pexc, inc) by (4), (6), and (9).
– PFO(pexc, inc) ≡ PFO(pinc, exc) by (6) and (8).
– PFO(pexc, inc) ≡ PFO(pdep, inc) by (4) and (7).
– PFO(pinc, exc) ≡ PFO(pinc, dep), since exclusion (dependence, resp.) atoms can be de-

scribed in FO(dep) (FO(exc), resp.) [6].
– PFO(pdep, inc) ⊆ PFO(pdep, ind), PFO(pexc, inc) ⊆ PFO(pexc, ind), and PFO(pinc, dep) ⊆

PFO(pinc, ind) since inclusion atoms can be described in FO(ind) [6] and dependence
atoms by independence atoms [9].

– PFO(pdep, ind) ⊆ PFO(ind), PFO(pexc, ind) ⊆ PFO(ind), and PFO(pinc, ind) ⊆ PFO(pind)
by (3), (5), and (7).

⊓⊔

Next we show the analogue of Theorem 18 for polyteams.

Theorem 22. Let φ(R1, . . . , Rn) be an ESO sentence. Then there is a PFO(pdep, inc) for-
mula φ(x1, . . . , xn), where |xi| = ar(Ri), such that for all polyteams X = (X1, . . . , Xn) with
Dom(Xi) = xi and Xi 6= ∅,

M |=X φ(x1, . . . , xn) ⇔ (M, R1 := rel(X1), . . . , Rn := rel(Xn)) |= ψ(R1, . . . , Rn).

The statement holds also vice versa.

Proof. The direction from PFO(pdep, inc) to ESO is proven by a translation similar to the
one from dependence logic to ESO in [22]. We show only the opposite direction. Analogously
to [6], we can rewrite φ(R1, . . . , Rn) as

∃f∀u
(

n
∧

i=1

(Ri(ui) ↔ f2i−1(ui) = f2i(ui)) ∧ ψ(u, f)
)

where f = f1, . . . , f2n, . . . , fm is a list of function variables, ψ is a quantifier-free formula in
which no Ri appears, each ui is a subsequence of u, and each fi occurs only as fi(uji) for
some fixed tuple uji of variables. For instance, ji = i/2 for even i ≤ 2n.

Let b
i
be sequences of variables of sort i such that |b

i
| = |ui|, and let u1y1 be a sequence

of variables of sort 1 such that u1 is a copy of u and y1 = y11, . . . , y
1
m. We define φ∗(x1, . . . , xn)

as the formula
∀b

1
∃z10z

1
1 . . .∀b

n
∃zn0 z

n
1∀u

1∃y1
(

θ0 ∧ θ1 ∧ ψ
′(u1, y1))

14

where

θ0 :=

n
∧

i=1

=
(

b
i
, zi0

)

∧ =
(

b
i
, zi1

)

∧ ((b
i
⊆ xi ∧ zi0 = zi1) ∨

i (xi | b
i
∧ zi0 6= zi1)),

θ1 :=
n
∧

i=1

=
(

u1i , y
1
2i−1/b

i
, zi0

)

∧ =
(

u1i , y
1
2i/b

i
, zi1

)

∧
m
∧

i=n+1

=
(

u1ji, y
1
i

)

,

and ψ′(u1, y1) is obtained from ψ(u, f) by replacing u pointwise with u1 and each fi(uji)
with y1i . Above, θ0 amounts to the description of the characteristic functions f2i−1 and f2i.

We refer the reader to [6] to check that M |=X θ0 iff for all i the functions s(b
i
) 7→ s(zi0)

and s(b
i
) 7→ s(zi1) determined by the assignments s ∈ Xi agree on s(b

i
) exactly when

s(b
i
) ∈ rel(Xi). The poly-dependence atoms in θ1 then transfer these functions over to the

first team, and the dependence atoms in ψ1 describe the remaining functions. As in [6], it
can now be seen that φ∗ correctly simulates φ. Since exclusion atoms can be expressed in
dependence logic, the claim then follows. ⊓⊔

By item (2) of Theorem 21 the result of Theorem 22 extends to a number of other logics
as well. For instance, we obtain that poly-independence logic captures all ESO properties of
polyteams. The proof of Theorem 22 can be now easily adapted to show that poly-exclusion
and poly-dependence logic capture all downward closed ESO properties of polyteams.

Theorem 23. Let φ(R1, . . . , Rn) be an ESO sentence that is downward closed with respect
to Ri. Then there is a PFO(pdep) formula φ(x1, . . . , xn), where |xi| = #Ri, such that for all
polyteams X = (X1, . . . , Xn) with Dom(Xi) = xi and Xi 6= ∅,

M |=X φ(x1, . . . , xn) ⇔ (M, R1 := rel(X1), . . . , Rn := rel(Xn)) |= ψ(R1, . . . , Rn).

The statement holds also vice versa.

Proof. The direction from PFO(pdep) to ESO is again similar to the standard translation
of [22]. For the other direction, let φ(R1, . . . , Rn) be an ESO-sentence in which the relations
Ri appear only negatively. As in the proof of Theorem 22 and by downward closure we may
transform it to an equivalent form (see [19] for details)

∃f∀u
(

n
∧

i=1

(¬Ri(ui) ∨ f2i−1(ui) = f2i(ui)) ∧ ψ(u, f)
)

Now the translation φ(x1, . . . , xn) is defined analogously to the proof of Theorem 22 except
for θ0 which is redefined as

θ0 :=

n
∧

i=1

=
(

b
i
, zi0

)

∧ =
(

b
i
, zi1

)

∧ (xi | b
i
∨i zi0 = zi1).

Finally the claim follows by eliminating the exclusion atoms from θ0.

5 Conclusion

In this article we have laid the foundations of polyteam semantics in order to facilitate
the fruitful exchange of ideas and results between team semantics and database theory.
Our results show that many of the familiar properties and results from team semantics

15

carry over to the polyteam setting. In particular, we identified a natural polyteam analogue
of dependence atoms and gave a complete axiomatisation for the associated implication
problem. It is an interesting task to develop axiomatic characterisations for these new logics
(cf. [20,10]). Another interesting issue is to study the expressive power of various syntactic
fragments of logics over polyteams.

References

1. William W. Armstrong. Dependency Structures of Data Base Relationships. In Proc. of IFIP World Computer
Congress, pages 580–583, 1974.

2. Marco A. Casanova, Ronald Fagin, and Christos H. Papadimitriou. Inclusion dependencies and their interaction
with functional dependencies. J. Comput. Syst. Sci., 28(1):29–59, 1984.

3. Arnaud Durand, Miika Hannula, Juha Kontinen, Arne Meier, and Jonni Virtema. Approximation and depen-
dence via multiteam semantics. In Proceedings of FoIKS 2016, pages 271–291, 2016.

4. Arnaud Durand, Juha Kontinen, and Heribert Vollmer. Expressivity and complexity of dependence logic. In
Samson Abramsky, Juha Kontinen, Jouko Väänänen, and Heribert Vollmer, editors, Dependence Logic: Theory
and Applications, pages 5–32. Springer International Publishing, Cham, 2016.

5. Ronald Fagin, Phokion G. Kolaitis, Rene J. Miller, and Lucian Popa. Data exchange: semantics and query
answering. Theoretical Computer Science, 336(1):89 – 124, 2005.

6. Pietro Galliani. Inclusion and exclusion dependencies in team semantics: On some logics of imperfect information.
Annals of Pure and Applied Logic, 163(1):68 – 84, 2012.

7. Pietro Galliani and Lauri Hella. Inclusion logic and fixed point logic. In Proc. CSL, pages 281–295, 2013.
8. Dan Geiger, Azaria Paz, and Judea Pearl. Axioms and algorithms for inferences involving probabilistic indepen-

dence. Information and Computation, 91(1):128–141, 1991.
9. Erich Grädel and Jouko A. Väänänen. Dependence and independence. Studia Logica, 101(2):399–410, 2013.

10. Miika Hannula. Axiomatizing first-order consequences in independence logic. Ann. Pure Appl. Logic, 166(1):61–
91, 2015.

11. Miika Hannula. Reasoning about embedded dependencies using inclusion dependencies. In Proceedings of
LPAR-20, pages 16–30, 2015.

12. Miika Hannula and Juha Kontinen. A finite axiomatization of conditional independence and inclusion depen-
dencies. Inf. Comput., 249:121–137, 2016.

13. Miika Hannula, Juha Kontinen, and Sebastian Link. On the finite and general implication problems of indepen-
dence atoms and keys. J. Comput. Syst. Sci., 82(5):856–877, 2016.

14. Christian Herrmann. On the undecidability of implications between embedded multivalued database dependen-
cies. Information and Computation, 122(2):221 – 235, 1995.

15. Wilfrid Hodges. Compositional Semantics for a Language of Imperfect Information. Journal of the Interest
Group in Pure and Applied Logics, 5 (4):539–563, 1997.

16. Paris C. Kanellakis. Elements of relational database theory. In Handbook of Theoretical Computer Science,
Volume B: Formal Models and Sematics (B), pages 1073–1156. 1990.

17. Juha Kontinen, Antti Kuusisto, and Jonni Virtema. Decidability of Predicate Logics with Team Semantics. In
Proceedings of MFCS 2016, pages 60:1–60:14, 2016.

18. Juha Kontinen, Sebastian Link, and Jouko A. Väänänen. Independence in database relations. In Proc. 20th
WoLLIC, volume 8071 of LNCS, pages 179–193. Springer, 2013.

19. Juha Kontinen and Jouko Väänänen. On definability in dependence logic. Journal of Logic, Language and
Information, 3(18):317–332, 2009.

20. Juha Kontinen and Jouko A. Väänänen. Axiomatizing first-order consequences in dependence logic. Ann. Pure
Appl. Logic, 164(11):1101–1117, 2013.

21. Antti Kuusisto. A double team semantics for generalized quantifiers. Journal of Logic, Language and Information,
24(2):149–191, 2015.

22. Jouko Väänänen. Dependence Logic. Cambridge University Press, 2007.
23. Jouko Väänänen. The logic of approximate dependence. In Can Başkent, Lawrence S. Moss, and Ramaswamy

Ramanujam, editors, Rohit Parikh on Logic, Language and Society, pages 227–234. Springer International Pub-
lishing, Cham, 2017.

16

	Polyteam Semantics

