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Abstract. We study probabilistic team semantics which is a semantical framework allowing the study of log-

ical and probabilistic dependencies simultaneously. We examine and classify the expressive power of logical

formalisms arising by different probabilistic atoms such as conditional independence and different variants of

marginal distribution equivalences. We also relate the framework to the first-order theory of the reals and apply our

methods to the open question on the complexity of the implication problem of conditional independence.
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1 Introduction

Team semantics, introduced by Hodges [20] and popularised by Väänänen [25], shifts the focus

of logics away from assignments as the primitive notion connected to satisfaction. In team seman-

tics formulae are evaluated with respect to sets of assignments (i.e., teams) as opposed to single

assignments of Tarskian semantics. During the last decade the research on team semantics has

flourished, many logical formalisms have been defined, and surprising connections to other fields

identified. In particular, several promising application areas of team semantics have been identi-

fied recently. Krebs et al. [22] developed a team based approach to linear temporal logic for the

verification of information flow properties. In applications to database theory, a team corresponds

exactly to a database table (see, e.g., [16]). Hannula et al. [18] introduced a framework that ex-

tends the connection of team semantics and database theory to polyrelational databases and data

exchange.

The focus of this article is probabilistic team semantics which connects team based logics

to probabilistic dependency notions. Probabilistic team semantics is built compositionally upon

the notion of a probabilistic team, that is, a probability distribution over variable assignments.

While the first ideas of probabilistic teams trace back to the works of Galliani [11] and Hyttinen

et al. [21], the systematic study of the topic was initiated and further continued by Durand et al.

in [8,9]. It is worth noting that in [2] so-called causal teams have been introduced to logically

model causality and interventions. Probabilistic team semantics has also a close connection to the

area of metafinite model theory [14]. In metafinite model theory, finite structures are extended

with an another (infinite) domain sort such as the real numbers (often with arithmetic) and with

weight functions that work as a bridge between the two sorts. This approach provides an elegant

way to model weighted graphs and other structures that refer to infinite structures. The exact

relationship between probabilistic team semantics and logics over metafinite models as well as

with probabilistic databases of [6] will be a topic of future research.

The starting point of this work comes from [9] in which probabilistic team semantics was

defined following the lines of [11]. The main theme in [9] was to characterize logical formalisms

in this framework in terms of existential second-order logic. Two main probabilistic dependency

atoms were examined. The probabilistic conditional independence atom y⊥⊥x z states that the two
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variable tuples y and z are independent given the third tuple x. The marginal identity atom x ≈ y

states that the marginal distributions induced from the two tuples x and y (of the same length)

are identical. The extension of first-order logic with these atoms (FO(⊥⊥c,≈)) was then shown

to correspond to a two-sorted variant of existential second-order logic that allows a restricted

access to arithmetical operations for numerical function terms. What was left unexamined were

the relationships between different logical formalisms in probabilistic team semantics. In fact, it

was unknown whether there are any meaningful probabilistic dependency notions such that the

properties definable with one notion are comparable to those definable with another.

In this article we study the relative expressivity of first-order logic with probabilistic con-

ditional independence atoms (FO(⊥⊥c)) and with marginal identity atoms (FO(≈)). The logic

FO(≈) is a probabilistic variant of inclusion logic that is strictly less expressive than indepen-

dence logic, after which FO(⊥⊥c) is modelled [12,15]. In addition, we examine FO(≈∗) which is

another extension defined in terms of so-called marginal distribution equivalence. The marginal

distribution equivalence atom x ≈∗ y for two variable tuples x and y (not necessarily of the

same length) relaxes the truth condition of the marginal identity atom in that the two distributions

induced from x and y are required to determine the same multisets of probabilities. The afore-

mentioned open question is now answered in the positive. The logics mentioned above are not

only comparable, but they form a linear expressivity hierarchy: FO(≈) < FO(≈∗) ≤ FO(⊥⊥c).
We also show that FO(≈) enjoys a union closure property that is a generalization of the union

closure property of inclusion logic, and that conditional independence atoms y ⊥⊥x z can be de-

fined with an access to only marginal independence atoms x ⊥⊥ y between two variable tuples.

Furthermore, we show that, surprisingly, FO(≈∗) corresponds to FO(≈,=(·)), where =(·) refers

to the dependence atom defined as a declaration of functional dependence over the support of the

probabilistic team. The question whether FO(≈,=(·)) is strictly less expressive than FO(⊥⊥c) is

left as an open question; in team semantics the corresponding logics are known to be equivalent.

The above findings look outwardly very similar to many results in team semantics. However, it is

important to note that, apart perhaps from the union closure property, the results of this paper base

on entirely new ideas and do not recycle old arguments from the team semantics context.

We also investigate (quantified) propositional logics with probabilistic team semantics. By

connecting these logics to the arithmetic of the reals we show upper bounds for their associated

computational problems. Our results suggest that the addition of probabilities to team seman-

tics entails an increase in the complexity. Satisfiability of propositional team logic (PL(∼)), i.e.,

propositional logic with classical negation is in team semantics known to be complete for alter-

nating exponential time with polynomially many alternations [19]. Shifting to probabilistic team

semantics analogous problems are here shown to enjoy double exponential space upper bound.

This is still lower than the complexity of satisfiability for modal team logic (ML(∼)) in team

semantics, known to be complete for the non-elementary complexity class TOWER(poly) which

consists of problems solvable in time restricted by some tower of exponentials of polynomial

height [23]. One intriguing consequence of our translation to real arithmetic is that the implication

problem of conditional independence statements over binary distributions is decidable in exponen-

tial space. The decidability of this problem is open relative to all discrete probability distributions

[24].

2 Preliminaries

First-order variables are denoted by x, y, z and tuples of first-order variables by x,y, z. By Var(x)
we denote the set of variables that appear in the variable sequence x. The length of the tuple x is

denoted by |x|. A vocabulary τ is a set of relation symbols and function symbols with prescribed

arities. We mostly denote relation symbols by R and function symbols by f , and the related arities
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by ar(R) and ar(f), respectively. The closed interval of real numbers between 0 and 1 is denoted

by [0, 1]. Given a finite set A, a function f : A → [0, 1] is called a (probability) distribution if
∑

s∈A f(s) = 1. In addition, the empty function is a distribution.

The probabilistic logics investigated in this paper are extensions of first-order logic FO over a

vocabulary τ given by the grammar rules:

φ ::= x = y | x 6= y | R(x) | ¬R(x) | (φ ∧ φ) | (φ ∨ φ) | ∃xφ | ∀xφ,

where x is a tuple of first-order variables and R a relation symbol from τ .

Let D be a finite set of first-order variables and A be a nonempty set. A function s : D → A
is called an assignment. For a variable x and a ∈ A, the assignment s(a/x) : D ∪ {x} → A is

equal to s with the exception that s(a/x)(x) = a. A team X is a finite set of assignments from

D to A. The set D is called the domain of X (written Dom(X)) and the set A the range of X
(written Ran(X)). Let X be a team with range A, and let F : X → P(A) \ {∅} be a function.

We denote by X [A/x] the modified team {s(a/x) | s ∈ X, a ∈ A}, and by X [F/x] the team

{s(a/x) | s ∈ X, a ∈ F (s)}. A probabilistic team X is a distribution X : X → [0, 1]. Let A be

a τ -structure and X : X → [0, 1] a probabilistic team such that the domain of A is the range of

X . Then we say that X is a probabilistic team of A. In the following, we will define two notations

X[A/x] and X[F/x]. Let X : X → [0, 1] be a probabilistic team, A a finite non-empty set, pA
the set of all probability distributions d : A → [0, 1], and F : X → pA a function. We denote by

X[A/x] the probabilistic team X [A/x] → [0, 1] such that

X[A/x](s(a/x)) =
∑

t∈X
t(a/x)=s(a/x)

X(t) ·
1

|A|
,

for each a ∈ A and s ∈ X . Note that if x does not belong to the domain of X then the righthand

side of the above equation is simply X(s) · 1
|A|

. By X[F/x] we denote the probabilistic team

X [A/x] → [0, 1] defined such that

X[F/x](s(a/x)) =
∑

t∈X
t(a/x)=s(a/x)

X(t) · F (t)(a),

for each a ∈ A and s ∈ X . Again if x does not belong to the domain of X ,
∑

can be dropped

from the above equation.

If Y : X → [0, 1] and Z : X → [0, 1] are probabilistic teams and k ∈ [0, 1], then we write

Y ⊔k Z for the k-scaled union of Y and Z, that is, the probabilistic team Y ⊔k Z : X → [0, 1]
defined such that (Y ⊔k Z)(s) = k · Y(s) + (1− k) · Z(s) for each s ∈ X .

We may now define probabilistic team semantics for first-order formulae. The definition is the

same as in [9]. The only exception is that it is here applied to probabilistic teams that have real

probabilities, whereas in [9] rational probabilities were used.

Definition 1. Let A be a probabilistic τ -structure over a finite domain A, and X : X → [0, 1] a

probabilistic team of A. The satisfaction relation |=X for first-order logic is defined as follows:

A |=X x = y ⇔ for all s ∈ X : if X(s) > 0, then s(x) = s(y)
A |=X x 6= y ⇔ for all s ∈ X : if X(s) > 0, then s(x) 6= s(y)
A |=X R(x) ⇔ for all s ∈ X : if X(s) > 0, then s(x) ∈ RA

A |=X ¬R(x) ⇔ for all s ∈ X : if X(s) > 0, then s(x) 6∈ RA

A |=X (ψ ∧ θ) ⇔ A |=X ψ and A |=X θ
A |=X (ψ ∨ θ) ⇔ A |=Y ψ and A |=Z θ for some Y,Z, k s.t. Y ⊔k Z = X

A |=X ∀xψ ⇔ A |=X[A/x] ψ
A |=X ∃xψ ⇔ A |=X[F/x] ψ holds for some F : X → pA.
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X

x y z P

a b c 1/2
b c b 1/2

Fig. 1. A representation of a probabilistic team X, for Example 2, with domain {x, y, z} that consists of two assignments whose

probabilities are 1/2.

Probabilistic team semantics is in line with Tarskian semantics for first-order formulae (|=s):

A |=X ψ ⇔ ∀s ∈ X such that X(s) > 0 : A |=s ψ.

In particular the non-classical semantics for negation is required for the above equivalence to hold.

In this paper we consider three probabilistic atoms: marginal identity, probabilistic indepen-

dence, and marginal distribution equivalence atom. The first two were first introduced in the con-

text of multiteam semantics in [8], and they extend the notions of inclusion and independence

atoms from team semantics [12].

We define |Xx=a| where x is a tuple of variables and a a tuple of values, as

|Xx=a| :=
∑

s(x)=a
s∈X

X(s).

If φ is some first-order formula, then |Xφ| is defined analogously as the total sum of weights of

those assignments in X that satisfy φ.

If x,y are variable sequences of length k, then x ≈ y is a marginal identity atom with the

following semantics:

A |=X x ≈ y ⇔ |Xx=a| = |Xy=a| for each a ∈ Ak. (1)

Note that the equality |Xx=a| = |Xy=a| in (4) can be equivalently replaced with |Xx=a| ≤ |Xy=a|
since the tuples a range over Ak for a finite A (see [8, Definition 7] for details). Due to this

alternative formulation, marginal identity atoms were in [8] called probabilistic inclusion atoms.

Intuitively, the atom x ≈ y states that the distributions induced from x and y are identical.

The marginal distribution equivalence atom is defined in terms of multisets of assignment

weights. We distinguish multisets from sets by using double wave brackets, e.g., {{a, a, b}} de-

notes the multiset ({a, b}, m) where a and b are given multiplicities m(a) = 2 and m(b) = 1. If

x,y are variable sequences, then x ≈∗ y is a marginal distribution equivalence atom with the

following semantics:

A |=X x ≈∗ y ⇔ {{|Xx=a| > 0 | a ∈ A|x|}} = {{|Xy=b| > 0 | b ∈ A|y|}}. (2)

The next example illustrates the relationships between marginal distribution equivalence atoms

and marginal identity atoms; the latter implies the former, but not vice versa.

Example 2. Let X be the probabilistic team depicted in Figure 1. The team X satisfies the atoms

xy ≈∗ y, x ≈∗ y, y ≈∗ z, and y ≈ z. The team X falsies the atom x ≈ y, whereas xy ≈ y is not a

well formed formula.

If x,y, z are variable sequences, then y ⊥⊥x z is a probabilistic conditional independence

atom with the satisfaction relation defined as

A |=X y⊥⊥x z (3)
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if for all s : Var(xyz) → A it holds that

|Xxy=s(xy)| · |Xxz=s(xz)| = |Xxyz=s(xyz)| · |Xx=s(x)|.

Furthermore, we define probabilistic marginal independence atom x ⊥⊥ y as x ⊥⊥∅ y, i.e.,

probabilistic independence conditioned by the empty tuple.

In addition to atoms based on counting or arithmetic operations, we may also include all de-

pendency atoms from the team semantics literature. Let α be an atom that is interpreted in team

semantics, let A be a finite structure, and X : X → [0, 1] a probabilistic team. We define A |=X α
if A |=X+ α, where X+ consists of those assignments ofX that are given positive weight by X. In

this paper we will discuss dependence atoms also in the context of probabilistic team semantics.

If x,y are two variable sequences, then =(x,y) is a dependence atom with team semantics:

A |=X=(x,y) ⇔ s(x) = s′(x) implies s(y) = s′(y) for all s, s′ ∈ X. (4)

A dependence atom of the form =(∅,x) is called a constancy atom, written =(x) in shorthand

notation. Dependence atoms can be expressed by using probabilistic independence atoms. This

has been shown for multiteams in [8], and the proof applies to probabilistic teams.

Proposition 3 ([8]). Let A be a structure, X : X → [0, 1] a probabilistic team of A, and x and y

two sequences of variables. Then A |=X=(x,y) ⇔ A |=X y⊥⊥x y.

Given a collection C of atoms from {⊥⊥c,⊥⊥,≈,≈
∗,=(·)}, we write FO(C) for the logic that

extends FO with the atoms in C.

Example 4. Let f1, . . . , fn, g be univariate distributions. Then g is a finite mixture of f1, . . . , fn
if it can be expressed as a convex combination of f1, . . . , fn, i.e., if there are non-negative real

numbers r1, . . . , rn such that r1 + . . . + rn = 1 and g(a) =
∑n

i=1 rifi(a). A probabilistic team

X : X → [0, 1] gives rise to a univariate distribution fx(a) := |Xx=a| for each variable x from

the domain of X . The next formula expresses that the distribution fy is a finite mixture of the

distributions fx1 , . . . , fxn:

∃qr
[

x1 . . . xn ⊥⊥ r ∧
n
∨

i=1

r = i ∧
n
∧

i=1

∃x′r′
(

xir ≈ x′r′ ∧ [(q = i ∨ r′ = i) → yq = x′r′]
)]

,

where the indices 1, . . . , n are also thought of as distinct constants, and (q = i ∨ r′ = i) → yq =
x′r′ stands for ¬(q 6= i ∧ r′ 6= i) ∨ yq = x′r′. The non-negative real numbers ri are represented

by the weights of r = i where r is distributed independently of each xi. The summand rifxi
(a)

is then represented by the weight of xir = ai and fy(a) by the weight of y = a. The quantified

subformula expresses that the former weight matches the weight of yq = ai, which implies that

fy(a) is r1fx1(a) + . . .+ rnfxn(a).

Example 5. Probabilistic team semantics can be also used to model properties of data obtained

from a quantum experiment (adapting the approach of [1]). Consider a probabilistic team X over

variables m1, . . . , mn, o1, . . . , on. The intended interpretation of X(s) = r is that the joint prob-

ability that s(mi) was measured with outcome s(oi), for 1 ≤ i ≤ m, is r. In this setting many

important properties of the experiment can be expressed using our formalism. For example the

formula

oi ⊥⊥m (o1, . . . , oi−1, oi+1, . . . , om)

expresses a property called Outcome-Independence; given the measurements m, the outcome at

i is independent of the outcomes at other positions. The dependence atom =(m,o) on the other

hand corresponds to a property called Weak-Determinism. Moreover, if φ describes some property

of hidden-variable models (Outcome-Independence, etc.), then the formula ∃λφ expresses that the

experiment can be explained by a hidden-variable model satisfying that property.
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thief cat

guard alarm

thief

T F

0.1 0.9

cat

thief T F

T 0.1 0.9
F 0.6 0.4

guard

thief,cat T F

TT 0.8 0.2
TF 0.7 0.3
FT 0 1
FF 0 1

alarm

thief,cat T F

TT 0.9 0.1
TF 0.8 0.2
FT 0.1 0.9
FF 0 1

Fig. 2. Bayesian network G and its related conditional distributions

The next example relates probabilistic team semantics to Bayesian networks. The example is

an adaptation of an example discussed also in [8].

Example 6. Consider the Bayesian network G in Fig. 2 that models beliefs about house safety us-

ing four Boolean random variables thief, cat, guard and alarm. We refer to these variables

by t, c, g, a. The dependence structure of a Bayesian network is characterized by the so-called

local directed Markov property stating that each variable is conditionally independent of its non-

descendants given its parents. For our network G the only non-trivial independence given by this

property is g ⊥⊥tc a. Hence a joint distribution P over t, c, g, a factorizes according to G if X

satisfies g⊥⊥tc a. In this case P can be factorized by

P (t, c, g, a) = P (t) · P (c | t) · P (g | t, c) · P (a | t, c) (5)

where, for instance, t abbreviates either thief = T or thief = F , and P (c | t) is the probabil-

ity of c given t. The joint probability distribution (i.e., the team X) can hence be stored as in Fig.

2. Note that while G expresses the independence statement g ⊥⊥tc a, FO(⊥⊥c,≈)-formulas can be

used to further refine the joint probability distribution as follows. Assume we have information

suggesting that we may safely assume an FO(⊥⊥c,≈) formula φ on X:

– φ := t = F → g = F indicates that guard never raises alarm in absence of thief. In

this case the two bottom rows of the conditional probability distribution for guard become

superfluous.
– the assumption that φ is satisfied also exemplifies an interesting form of contex-specific in-

dependence (CSI) that cannot be formalized by the usual Bayesian networks (see, e.g., [7]).

Namely, φ implies that guard is independent of cat in the context thief = F . Interestingly

such CSI statements can be formalized utilizing the disjunction of FO(⊥⊥c,≈):

t = T ∨ (t = F ∧ g ⊥⊥ c).

– satisfaction of φ := tca ≈ tcg would imply that alarm and guard have the same reliability

for any given value of thief and cat. Consequently, the conditional distributions for alarm

and guard are equal and one of the them could be removed.

The following locality property dictates that satisfaction of a formula φ in probabilistic team

semantics depends only on the free variables of φ. For this, we define the restriction of a team X
to V as X ↾ V = {s ↾ V | s ∈ X} where s ↾ V denotes the restriction of the assignment s to V .

The restriction of a probabilistic team X : X → [0, 1] to V is then defined as the probabilistic team

Y : X ↾ V → [0, 1] where Y(s) =
∑

s′↾V=sX(s
′). The set of free variables Fr(φ) of a formula

over probabilistic team semantics is defined recursively as in first-order logic; note that for any

atom φ, Fr(φ) consists of all variables that appear in φ.
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Proposition 7 (Locality, [9]). Let φ(x) ∈ FO(⊥⊥c,≈,≈
∗,=(·)) be a formula with free variables

from x = (x1, . . . , xn). Then for all structures A and probabilistic teams X : X → [0, 1] where

{x1, . . . , xn} ⊆ V ⊆ Dom(X), A |=X φ ⇐⇒ A |=X↾V φ.

Given two logics L and L′ over probabilistic team semantics, we write L ≤ L′ if for all open

formulae φ(x) ∈ L there is a formula ψ(x) ∈ L′ such that A |=X φ ⇔ A |=X ψ, for all structures

A and probabilistic teams X. The equality ”≡” and strict inequality ”<” relations between L and

L′ are defined from ”≤” in the standard way.

Alternative Definition. Probabilistic teams can also be defined as mappings X : X → R≥0 that

have no restriction for the total sum of assignment weights, R≥0 being the set of all non-negative

reals. Probabilistic team semantics with respect to such real weighted teams is then given exactly

as in Definition 1, except that we define disjunction without scaling:

A |=X (ψ ∨ θ) ⇔ A |=Y ψ and A |=Z θ for some Y,Z s.t. Y ⊔ Z = X,

where the union Y ⊔ Z is defined such that (Y ⊔ Z)(s) = Y(s) + Z(s) for each s. Whether

interpreting probabilistic teams as probability distributions or just mappings from assignments to

non-negative reals does not make any difference in our framework. Hence we write X : X → [0, 1]
for a probabilistic team that is a distribution such that

∑

s∈X X(s) = 1, and X : X → R≥0 for

a probabilistic team that is any mapping from assignments to non-negative reals. A probabilistic

team of the former type is then a special case of that of the latter. We will use both notions and

their associated semantics interchangeably. If we need to distinguish between the two semantics,

we write |=[0,1] and |=≥0 respectively for the scaled (i.e., Definition 1) and non-scaled variants.

Given X : X → R≥0 and r ∈ R≥0, we write |X| for the total weight
∑

s∈X X(s) of X, and r · X
for the probabilistic team Y : X → R≥0 such that Y(s) = r · X(s) for all s ∈ X . The proposition

below follows from a straightforward induction (see Appendix A).

Proposition 8. Let A be a structure, X : X → R≥0 a probabilistic team of A, and φ ∈ FO(⊥⊥c

,≈,≈∗,=(·)). Then A |=≥0
X
φ⇔ A |=

[0,1]
1
|X|

·X
φ.

3 Expressiveness of FO(⊥⊥)

Let X : X → [0, 1] be a probabilistic team where X is a finite set of assignements from a finite set

D of variables. A variable x ∈ D is uniformly distributed in X over a set of values S, if

Xx=a =
1

|S|
for all a ∈ S and Xx=a = 0 otherwise.

The following lemma says essentially that if we can express constancy and independence for

a uniform distribution, then we can express ≈. Note that it may happen that we can express “x

uniformly distributed and independent of y” even when we cannot express “x is independent of y”

in general. For a proof of the lemma, see Appendix B.

Lemma 9. Let A be structure with at least two elements and z an n-tuple of variables. Let

φ(z, d, c1, c2) be a formula such that for all probabilistic teams X, whose variable domain in-

cludes z, d, c1, c2 and for which A |=X c1 6= c2 and A |=X=(c1)∧ =(c2), it holds that

M |=X φ ⇔ d is uniformly distributed over the two values of c1, c2 (6)

and d is independent of z.

Then x ≈ y can be expressed for n-tuples x and y using φ and the constancy atom.

7



Theorem 10. FO(≈) ≤ FO(⊥⊥).

Proof. Proposition 3 established that the constancy atom =(x) can be equivalently expressed by

the independence atom x ⊥⊥ x. Hence it is enough to show that we can define the formula φ of

Lemma 9 by using ⊥⊥.

Let A and X be as assumed in Lemma 9. We use below ∃b ∈ {c1, c2} θ as an abbreviation for

∃b(b = c1 ∨ b = c2) ∧ θ, and ∀b ∈ {c1, c2} θ for ∀b(b 6= c1 ∧ b 6= c2) ∨
(

(b = c1 ∨ b = c2) ∧ θ
)

.

Define φ(z, d, c1, c2) as

(z ⊥⊥ d) ∧ ∀a ∈ {c1, c2}∃b ∈ {c1, c2}
[

(a ⊥⊥ b) ∧
(

(a = b ∧ d = c1) ∨ (a 6= b ∧ d = c2)
)]

.

It suffices to prove (5). The formula φ clearly states that z and d are independent. The formula also

states that the values of d range over the values of c1 and c2. It remains to be shown, conditioned

on that z and d are independent, that

A |=X φ if and only if d is uniformly distributed over c1 and c2.

Note that, by assumption of Lemma 9, c1 and c2 are distinct constants. Let X1 be a team obtained

from X by the quantification of a and b. By the definition of universal quantification, in X1 a is

uniformly distributed and independent of everything else except maybe b. Note that d is uniformly

distributed over the values of c1 and c2 in X if and only if it is in X1.

If d is uniformly distributed over the values of c1 and c2, then picking values of b with a

uniform probability such that the right conjunct in

[

(a ⊥⊥ b) ∧
(

(a = b ∧ d = c1) ∨ (a 6= b ∧ d = c2)
)]

(7)

holds clearly yields a team in which the left conjunct also holds. However, if d is not uniformly

distributed over c1 and c2, then picking values for b such that the right conjunct of (7) holds will

yield b that is not independent on a. ⊓⊔

We also note that conditional independence is definable using marginal independence. The

proof applies ideas from [9] and can be found in Appendix C.

Theorem 11. FO(⊥⊥) ≡ FO(⊥⊥c).

4 Expressiveness of FO(≈∗) and FO(≈)

Initially it may seem that first-order logic with marginal distribution equivalence atoms is less

expressive than that with marginal identity atoms, as the former atoms are given a strictly weaker

truth condition. Contrary to this intuition, however, we will in this section show that FO(≈∗) is

actually strictly more expressive than FO(≈). The result is proven in two phases. First, in Sect.

4.1 we show that dependence and marginal identity can be defined in FO(≈∗), the former by a

single marginal distribution equivalence atom and the latter by a more complex formula. Second,

in Sect. 4.2 we show that the expressiveness of FO(≈) is restricted by a union closure property

which is similar to that of inclusion logic in team semantics. Since dependence atoms lack this

property, the strict inequality between FO(≈) and FO(≈∗) follows.

4.1 Translations of Dependence and Marginal Identity to FO(≈∗)

We observe first that dependence atoms can be expressed in terms of marginal distribution equiv-

alence atoms, which in turn are definable using marginal identity and dependence atoms.

8



Proposition 12. The following equivalences hold:

1. =(x, y) ≡ xy ≈∗ x,

2. x ≈∗ y ≡ ∃z(=(y, z)∧ =(z,y) ∧ x ≈ z).

Defining marginal identity atoms in FO(≈∗) is more cumbersome. Let X : X → R≥0 be a

probabilistic team, and φ a quantifier-free first-order formula over the empty vocabulary (i.e., such

that its satisfaction depends only on the variable assignment). We define Xφ : X → R≥0 as the

probabilistic team such that Xφ(s) = X(s) if s satisfies φ, and Xφ(s) = 0 otherwise. Given two

sequences of variables x = (x1, . . . , xn) and y = (y1, . . . , yn), we write x 6= y as a shorthand for
∨n

i=1 ¬xi = yi.

Theorem 13. x ≈ y is equivalent to φ ∈ FO(≈∗) where

φ := ∀z
(

(z 6= x ∧ z 6= y) ∨ ((z = x ∨ z = y) ∧ z ≈∗ x ∧ z ≈∗ y)
)

.

Proof. Assume that x,y, z are all m-ary. Let A be a structure with domain A = {1, . . . , n}, and

let X : X → R≥0 a probabilistic team. Assume first that A |=X x ≈ y, that is, for all i ∈ Am, the

weights |Xx=i| and |Xy=i| coincide. It suffices to show that A |=Y z ≈∗ x ∧ z ≈∗ y for Y := X′
θ

where θ is z = x ∨ z = y and X′ = X[Am/z] is the probabilistic team obtained from X by

distributing Am to z uniformly. For each i ∈ Am we consider three weight measures, obtained by

dividing assignments associated with i into three parts, li := |Xx=i∧x6=y|, ri := |Xy=i∧x6=y|, and

ci := |Xx=i∧y=i|. Then

|Yx=i| = |X′
θ∧x=i| = |X′

θ∧x=i∧x 6=y|+ |X′
θ∧x=i∧y=i| =

2li + ci
nm

.

Observe that for X′
θ∧x=i∧x6=y we first partition each assignment in Xx=i∧x6=y uniformly to nm parts

in terms of the value of z and then keep only those parts where θ holds. Since x and y disagree for

every assignment in X′
x=i∧x 6=y, the total weight of X′

θ∧x=i∧x6=y is obtained by multiplying li with
2
nm . For X′

θ∧x=i∧y=i we have identical x and y, and hence its weight is obtained by multiplying ci
with 1

nm . By analogous reasoning we obtain that

|Yy=i| =
2ri + ci
nm

and |Yz=i| =
ri + li + ci

nm
.

Since our assumption implies li = ri for all i, the claim now follows from the observation that

{{|Yu=i| | i ∈ Am}} are identical multisets for u ∈ {x,y, z}.

Vice versa, assuming A |=X φ we show A |=X x ≈ y. Let the weights li, ri, ci and the

probabilistic team Y be as above. By assumption we have A |=Y z ≈∗ x ∧ z ≈∗ y, and thus the

following multisets are identical:

Wx := {{2l1 + c1, . . . , 2ln + cn}},

Wy := {{2r1 + c1, . . . , 2rn + cn}},

Wz := {{l1 + r1 + c1, . . . , ln + rn + cn}},

where 1 = (1, . . . , 1) and n = (n, . . . , n). Assume to the contrary that A 6|=X x ≈ y, that is,

li 6= ri for some i. Observe that whenever lj = rj agree, then j contributes the same weight

to all Wx, Wy, and Wz. Therefore, we may assume without loss of generality that li 6= ri for

all i. Assume that 2lj + cj is the smallest element from Wx. Since Wx = Wz, it follows that

2lj + cj = lk + rk + ck for some k. If lk < rk, then 2lk + ck < lk + rk + ck which contradicts the

assumption that 2lj + cj is smallest. Since Wx = Wy, similar contradiction follows from rk < lk,

too. Hence, A |=X x ≈ y which concludes the proof. ⊓⊔

The following theorem now combines the results of this section. Note that the translations to

both directions are of linear size.

Theorem 14. FO(≈∗) ≡ FO(≈,=(·)).
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4.2 Scaled Union Closure of FO(≈)

Inclusion logic is known to be union closed over teams. This means that for all structures A,

teams X , and inclusion logic formulae φ: if A |=X φ and A |=Y φ, then A |=X∪Y φ. The follow-

ing proposition, proven in Appendix D, demonstrates that FO(≈) is endowed with an analogous

closure property, namely, that all formulae of FO(≈) are closed under all k-scaled unions of prob-

abilistic teams.

Proposition 15. Let A be a model, φ ∈ FO(≈) a formula, and X : X → [0, 1] and Y : X → [0, 1]
two probabilistic teams. Then for all k ∈ [0, 1]:

if A |=X φ and A |=Y φ, then A |=X⊔kY
φ.

As a corollary we observe that FO(≈) is strictly weaker than FO(≈∗). Recall from Proposi-

tion 12 that the constancy atom =(x) is definable in FO(≈∗). However, constancy is clearly not

preserved under k-scaled unions, therefore falling outside the scope of FO(≈). Furthremore, by

Theorem 13 FO(≈∗) is at least as expressive as FO(≈).

Corollary 16. FO(≈) < FO(≈∗).

5 Binary Probabilistic Teams

In this section we restrict attention to binary probabilistic teams and propositional logic extended

with quantifiers (see [17] for related work). We define the syntax of quantified propositional logic

QPL by the following grammar

φ ::= p | ¬p | φ ∨ φ | φ ∧ φ | ∃pφ | ∀pφ, (8)

where p is a proposition variable. The probabilistic team semantics of QPL is defined analogously

to that of first-order formulae. We say that a probabilistic team X : X → [0, 1] is binary if X
assigns variables into {0, 1}. For a QPL formula φ and a binary probabilistic team X : X → [0, 1],
we write X |= φ iff A |=X φ

∗, where φ∗ is the first-order formula obtained from φ by substituting

P (p) for p and ¬P (p) for ¬p, and letting A := ({0, 1}, PA := {1}). Furthermore, we denote

classical negation by ”∼”. That is, we write X |=∼ φ if X 6|= φ. We let QPL(∼) denote the

logic obtained by the grammar (8) extended with ∼φ, and denote by QPL(∼, C) the extension of

QPL(∼) by any collection of dependencies C.

We observe that QPL(∼,⊥⊥c,≈) can be interpreted as statements of real arithmetic. As truth

in real arithmetic is decidable, this gives us some fairly conservative upper bounds with respect to

the complexity of satisfiability and validity of QPL(∼,⊥⊥c,≈). We say that φ ∈ QPL(∼,⊥⊥c,≈)
is satisfiable if φ is satisfied by some non-empty binary probabilistic team.4 Also, φ is valid is φ
is satisfied by all binary probabilistic teams. Note that the free variables of a QPL(∼, C) formula

are defined analogously to the first-order case.

Theorem 17. For each φ ∈ QPL(∼,⊥⊥c) (φ ∈ QPL(∼,≈), resp.) there exists a first-order sen-

tence ψ over vocabulary {+,×,≤, 0, 1} ({+,≤, 0}, resp.) such that φ is satisfiable iff (R,+,×,≤
, 0, 1) |= ψ ((R,+,≤, 0) |= ψ, resp.).

Proof. We show that satisfiability of a formula φ ∈ QPL(∼,⊥⊥c) is definable in real arith-

metic in terms of the non-scaled variant of probabililistic team semantics. For a given tuple

p = (p1, . . . , pn) of proposition variables, we introduce fresh first-order variables sp=i for each

4 Empty team satisfies every formula without ∼; with ∼ it is a non-interesting special case [19].
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propositional assignment s(p) = i, where i is a binary string of length n. We write s to denote

the complete tuple of these variables. For a p listing the free variables of φ, we define

ψ := ∃sp=0 . . . sp=1

(

∧

i

0 ≤ sp=i ∧ ¬0 =
∑

i

sp=i ∧ φ
∗(s)

)

where the mapping φ(p) 7→ φ∗(s) is defined recursively as follows:

– If φ(p) is a propositional literal, then φ∗(s) :=
∧

s 6|=φ s = 0.

– If φ(p) is b⊥⊥a c, where p = abcd for some d, then φ∗(s) is defined as

∧

ijk

(
∑

l′

sabcd=ijkl′ ×
∑

j′k′l′

sabcd=ij′k′l′ =
∑

k′l′

sabcd=ijk′l′ ×
∑

j′l′

sabcd=ij′kl′).

– If φ(p) is a ≈ b, where p = abc for some c, then

φ∗(s) :=
∧

i

∑

j′k′

sabc=ij′k′ =
∑

j′k′

sabc=j′ik′ .

– If φ(p) is ∼η(p), then φ∗(s) := ¬η∗(s).
– If φ(p) is η(p) ∧ χ(p), then φ∗(s) := η∗(s) ∧ χ∗(s).
– If φ(p) is η(p) ∨ χ(p), then

φ∗(s) := ∃tp=0rp=0 . . . tp=1rp=1

(

∧

i

(0 ≤ tp=i ∧ 0 ≤ rp=i∧

sp=i = tp=i + rp=i) ∧ η
∗(t) ∧ χ∗(r)

)

.

– If φ(p) is ∃qη(p, q), then

φ∗(s) := ∃tpq=00 . . . tpq=11

(

∧

ij

(0 ≤ tpq=ij ∧ sp=i = tp=i0 + tp=i1) ∧ η(t)
)

.

– If φ(p) is ∀yη(p, q), then

φ∗(s) := ∃tpq=00 . . . tpq=11

(

∧

ij

(0 ≤ tpq=ij ∧ sp=i = tp=i0 + tp=i1∧

tp=i0 = tp=i1) ∧ η(t)
)

.

It is straightforward to check that the claim follows. ⊓⊔

From the translation above we immediately obtain some complexity bounds for the satisfiabil-

ity and validity problems of quantified propositional logics over probabilistic team semantics. We

write 2-EXPSPACE for the class of problems solvable in space O(22
p(n)

), and AEXPTIME(f(n))
(2-AEXPTIME(f(n)), resp.) for the class of problems solvable by alternating Turing machine in

time O(2p(n)) (O(22
p(n)

), resp.) with f(n) many alternations, where p is a polynomial.

Theorem 18. The satisfiability/validity problems of the logics QPL(⊥⊥c,∼) and QPL(≈,∼) are

in 2-EXPSPACE and 2-AEXPTIME(2O(n)), respectively.

Proof. By the proof of Theorem 17, satisfiability and validity of quantified propositional formulae

can be reduced to truth of a real arithmetic sentence of size 2O(n). The stated upper bounds for

QPL(∼,⊥⊥c) and QPL(∼,≈) then follow because the theory of real-closed fields, Th(R,+,×,≤
, 0, 1), is in EXPSPACE [3], and the theory of real addition, Th(R,+,≤, 0), is in AEXPTIME(n)
[4,10]. ⊓⊔
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PTS: FO(≈) < FO(≈,=(·)) ≡ FO(≈∗) ≤ FO(⊥⊥) ≡ FO(⊥⊥c)
TS: FO(⊆) < FO(⊆,=(·)) ≡ FO(⊥) ≡ FO(⊥c) [12,13]

Table 1. Relative expressivity in probabilistic team semantics (PTS) and team semantics (TS)

We also obtain an upper bound for the implication problem of conditional independence over

binary probability distributions. The implication problem for conditional independence is given as

a finite set Σ ∪{σ} of conditional independence statements, and the problem is to decide whether

all probability distributions that satisfy Σ satisfy also σ. It is a famous open problem to determine

whether implication of conditional independence is decidable over discrete distributions. Since

binary probabilistic teams can be interpreted as discrete distributions of binary random variables,

we obtain that the implication problem for conditional independence statements is decidable in

exponential space over binary distributions. The result follows since any instance of such an im-

plication problem can be expressed as an existential formula of exponential size (Theorem 17),

and since the existential theory of real-closed fields is in PSPACE [5].

Corollary 19. The implication problem for conditional independence over binary probability dis-

tributions is in EXPSPACE.

It may be conjectured that the obtained complexity bounds are not optimal. The first-order

translations provide only access to a very restricted type of arithmetic expressions. For instance,

real multiplication is only available between sums of reals from the unit interval. We leave it as an

open problem to determine whether the results of this section can be optimized using more refined

arguments.

6 Conclusions and further directions

We have studied probabilistic team semantics in association with three notions of dependency

atoms: probabilistic independence, marginal identity, and marginal distribution equivalence atoms.

Our investigations give rise to an overall classification that is already familiar from the team se-

mantics context (see Table 1). Similar to inclusion logic (FO(⊆)) in team semantics, we ob-

served that FO(≈) enjoys a union closure property which renders it strictly less expressive than

FO(≈,=(·)). A further analogous fact is that both dependence and marginal identity are definable

with conditional independence, which in turn is definable using only marginal independence. An

interesting open question is to determine the relationship between FO(≈,=(·)) (or equivalently

FO(≈∗)) and FO(⊥⊥c). Contrary to the picture arising from team semantics, we conjecture that

the latter is strictly more expressive.

One motivation behind our marginal distribution equivalence atom was that it seemed to be

weaker than marginal identity but still enough to guarantee the same entropy of two distribu-

tions. A natural next step would be to consider some form of entropy atom/atoms and study the

expressive power of the resulting logics. The exact formulation of such atoms will make all the

difference, as one can detect both functional dependencies and marginal independence if one has

full access to the conditional entropy as a function.

We also studied (quantified) propositional logics with probabilistic team semantics. By con-

necting real-valued probabilistic teams to real arithmetic we showed upper bounds for computa-

tional problems associated with these logics. As a consequence of our translation to real arithmetic

we also obtained an EXPSPACE upper bound for the implication problem of conditional indepen-

dence statements over binary distributions.
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Proof. The cases for first-order literals, ≈, ≈∗, = (·) and the conjunction are immediate. The

claim for the independence atom y ⊥⊥x z follows from the equivalence below together with the

observation that the former is the definition of the atom in the unscaled team X whereas the latter

is equivalent to that of the scaled team 1
|X|

·X.

|Xxy=s(xy)| · |Xxz=s(xz)| = |Xxyz=s(xyz)| · |Xx=s(x)| if and only if

1

|X|
· |Xxy=s(xy)| ·

1

|X|
· |Xxz=s(xz)| =

1

|X|
· |Xxyz=s(xyz)| ·

1

|X|
· |Xx=s(x)|.

The case for disjuction follows from the following chain of equivalences

A |=≥0
X
φ ∨ ψ ⇔ A |=≥0

Y
φ and A |=≥0

Z
ψ for some Y and Z s.t. Y ⊔ Z = X

⇔ A |=
[0,1]
1
|Y|

·Y
φ and A |=

[0,1]
1
|Z|

·Z
ψ for some Y and Z s.t. Y ⊔ Z = X

⇔ A |=
[0,1]
1
|X|

·X
φ ∨ ψ,

where the last equivalence follows form the definition of the disjunction for k = |Y|
|X|

and 1− k =
|Z|
|X|

, since

|Y|

|X|
·
1

|Y|
· Y+

|Z|

|X|
·
1

|Z|
· Z =

1

|X|
· Y+

1

|X|
· Z =

1

|X|
· X.

The cases for the quantifiers are similar; we show the case for the universal quantifier

A |=≥0
X

∀xφ ⇔ A |=≥0
X[A/x] φ ⇔ A |=

[0,1]
1

|X[A/x]|
·X[A/x]

φ ⇔ A |=
[0,1]

( 1
|X|

·X)[A/x]
φ

⇔ A |=
[0,1]
1
|X|

·X
∀xφ,

where the second last equivalence follows, since |X[A/x]| = |X| and ( 1
|X|

·X)[A/x] = 1
|X|

·X[A/x].
⊓⊔

B Proof of Lemma 9

Lemma 9. Let A be structure with at least two elements and z an n-tuple of variables. Let

φ(z, d, c1, c2) be a formula such that for all probabilistic teams X, whose variable domain in-

cludes z, d, c1, c2 and for which A |=X c1 6= c2 and A |=X=(c1)∧ =(c2), it holds that

M |=X φ ⇔ d is uniformly distributed over the two values of c1, c2 (9)

and d is independent of z.

Then x ≈ y can be expressed for n-tuples x and y using φ and the constancy atom.

Proof. We will write a formula ψ(x,y) which is to be equivalent with x ≈ y. But first we need

to define an auxiliary formula θ. Define

θ := (d = c1 ∧ z = x) ∨ (d = c2 ∧ z = y).

This formula says that z always equals either x or y and d is a “detector” for which one it is. We

use the abbreviation ∃cc1c2 below to denote ∃c1∃c2(=(c1)∧ =(c2) ∧ c1 6= c2). Now define

ψ(x,y) := ∃cc1c2

[

∀z∃d
(

(x = y) ∨
[

(x 6= y) ∧
(

(z 6= x ∧ z 6= y) ∨ [θ ∧ φ]
)]

)

]

.
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Suppose x ≈ y holds in a team X over variables x and y. We want to show that ψ(x,y) is

satisfied by X. Let X1 be the expansion of X obtained by the quantification of c1, c2, and z. We

may assume that c1, c2 were picked such that they attain constant but distinct values. Also note

that z is independent of all other variables and uniformly distributed over the domain of A. Now

let d be a variable that takes its values from the values of c1 and c2 such that it “detects” whether

z equals x or not (value of d is the value of c1 iff z and x have the same value). Let X2 be the

expansion of X1 by this d. We need to check that X2 satisfies

(x = y) ∨
[

(x 6= y) ∧
(

(z 6= x ∧ z 6= y) ∨ [θ ∧ φ]
)]

.

Let X3 be the maximal subteam of X2 where x 6= y. So now we have to check that

(z 6= x ∧ z 6= y) ∨ [θ ∧ φ] (10)

holds in X3. Recall that θ says in particular that z equals either x or y, so (10) holds in X3 if

and only if θ ∧ φ holds in the maximal subteam X4 of X3 in which this is the case. We also just

defined d to attain the value c1 if and only if z = x and the only other option is that z = y in

which case d = c2, so θ is satisfied. What about φ; note that X4 is such that (9) holds. Now fix any

value v of z in X4. Since x ≈ y holds, we have |Xx=v| = |Xy=v|. When we expand X to X1 and

further to X2 this property is (clearly) preserved. It is also preserved when we take the subteam

X3, because when we move from X2 to X3, we only remove assignments s where s(x) = s(y), so

if an assignment with x = v is deleted, then also an assignment with y = v is deleted (the same

assignment). When we move to X4 we still have |(X4)x=v| = |(X4)y=v| which follows from the

fact that z is independent of x,y, c1, c2. Therefore

|(X4)xz=vv)| = |(X4)yz)=vv|.

But this means that conditioned on z = v, d is uniformly distributed in X4. Since this holds for

any v, d is uniformly distributed and independent of z as desired and ψ(x,y) is satisfied by X.

Suppose now that a team X satisfies ψ(x,y). We want to show that x ≈ y. But the chain of

reasoning above also works “backwards”. Fix a value v of x. We want to show that |Xx=v| =
|Xy=v|. It is clear that it is sufficient to look at X3 as defined above. But because θ says that d is

a “detector” of whether z = x or not, it is in fact sufficient to check x ≈ y for the subteam X4

(also as defined above). But in X4, this follows from φ. ⊓⊔

C Proof of Theorem 11

Theorem 11 follows from Lemma 22 presented below. Lemma 22 can be proven following the

proof of Theorem 2 in [9]. We omit the details and instead delineate intuition behind the trans-

lation. The idea is to simulate the semantics of the probabilistic conditional independence atom

using only marginal independence and marginal identity atoms. First, the universally quantified

y in the translation represents all possible variable assignments s of x. Second, ψ0 and ψ1 indi-

cate that the marginal distributions of x0, x0x1, x0x2, and x0x1x2 are distributed respectively to

z0, z1, z2, z3 independently of y and of each other. Third, ψ2 encodes the product of the weights

of s(x0) and s(x0x1x2) by α = 0, and ψ3 similarly the product of the weights of s(x0x1) and

s(x0x2) by =
¯
0. Finally, conditional independence between x1 and x2 given x0 follows iff these

products are equal relative to all assignments of y. Theorem 11 then follows from this lemma

since the constant 0 and the marginal identity atom are both definable in FO(⊥⊥).

Lemma 22. Let x0,x1,x2 be three sequences of variables from x = (x1, . . . , xn), and let 0 be a

constant symbol. Then x1 ⊥⊥x0 x2 is equivalent to

φ := ∀y∃z0z1z2z3α(
¯
ψ0 ∧ ψ1 ∧ ψ2 ∧ ψ3 ∧ ψ4)
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where

ψ0 := y⊥⊥ z0 ∧ yz0 ⊥⊥ z1 ∧ yz0z1 ⊥⊥ z2 ∧ yz0z1z2 ⊥⊥ z3,

ψ1 := x0 ≈ z0 ∧ x0x1 ≈ z1 ∧ x0x2 ≈ z2 ∧ x0x1x2 ≈ z3,

ψ2 := α = 0 ↔ (z0 = y0 ∧ z3 = y0y1y2),

ψ3 := =
¯
0 ↔ (z1 = y0y1 ∧ z2 = y0y2),

ψ4 := yα ≈ y.
¯

D Proof of Proposition 15

Proposition 15. Let A be a model, φ ∈ FO(≈) a formula, and X : X → [0, 1] and Y : X → [0, 1]
two probabilistic teams. Then for all k ∈ [0, 1]:

if A |=X φ and A |=Y φ, then A |=X⊔kY
φ.

Proof. We may assume that X = (X, f) and Y = (X, g). We prove the claim by structural

induction on φ. We omit the cases for atomic formulae and conjunction which are straightforward.

– Assume that φ = φ0 ∨ φ1. By the semantics of the disjunction, we find p, q ∈ [0, 1] and

distributions f0, f1, g0, g1 over X such that A |=(X,f0) φ0, A |=(X,f1) φ1, A |=(X,g0) φ0,

A |=(X,g1) φ1, f = pf0 + (1 − p)f1, and g = qg0 + (1 − q)g1. Define h0 := kpf0+(1−k)qg0
kp+(1−k)q

and h1 := k(1−p)f1+(1−k)(1−q)g1
k(1−p)+(1−k)(1−q)

. By the induction hypothesis A |=(X,h0) φ0 and A |=(X,h1) φ1,

since (X, h0) = (X, f0) ⊔a (X, g0) for a := kp
kp+(1−k)q

, and (X, h1) = (X, f1) ⊔b (X, g1) for

b := k(1−p)
k(1−p)+(1−k)(1−q)

. Then (X, f) ⊔k (X, g) = (X, h0) ⊔c (X, h1) for c := kp + (1 − k)q
because

ch0 + (1− c)h1 = c
kpf0 + (1− k)qg0

c
+ (1− c)

k(1− p)f1 + (1− k)(1− q)g1
1− c

= k[pf0 + (1− p)f1] + (1− k)[qg0 + (1− q)g1]

= kf + (1− k)g.

Consequently, A |=(X,f)⊔k(X,g) φ0 ∨ φ1 follows from the semantics of the disjuction which

completes the disjunction step of the induction.

– Assume that φ = ∀xψ. Then A |=X[A/x] ψ and A |=Y[A/x] ψ, and by induction assumption

A |=X[A/x]⊔kY[A/x] ψ. The claim then follows since X[A/x] ⊔k Y[A/x] = (X ⊔k Y)[A/x].
– Assume that φ = ∃xψ. Then A |=X[F/x] ψ and A |=Y[G/x] ψ where F and G are functions that

map each s ∈ X to a probability distribution Fs over A = Dom(A). We let H be a function

that maps s ∈ X to a probability distribution Hs over A such that

Hs(a) :=
kf(s)Fs(a) + (1− k)g(s)Gs(a)

kf(s) + (1− k)g(s)
.

Note that
∑

a∈AHs(a) = 1 follows from
∑

a∈A Fs(a) =
∑

a∈AGs(a) = 1. By induction

assumption A |=X[F/x]⊔kY[F/x] ψ. The claim now follows from X[F/x] ⊔k Y[F/x] = (X ⊔k

Y)[H/x], which holds since for all a ∈ A:

kf(s)Fs(a) + (1− k)g(s)Gs(a) = [kf(s) + (1− k)g(s)]Hs(a).

This concludes the case of existential quantification and the proof. ⊓⊔
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