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1. Introduction

Defect detection can be defined as the process of finding imperfections or weaknesses in
a given material. Such materials can vary from being metals, photographs, a crack in
a pipe or a flaw in a textile product. This thesis focus on digital image analysis, where
images are produced by infrared measurements and aim of this work is to detect defects
on these images. Doing defect detection manually is a time consuming process and not
an efficient way. So, with the emergence of computer powered systems the process of
automating this process has became a field of computational science. For the rest of
this thesis, defect detection will be referred as automated way of doing it. Automated
defect detection has also became an important application area of Machine Learning
and Neural Networks recently. Old conventional computer vision techniques are being
replaced by the emergence of the more data dependant machine learning methods [1].
One of the industrial domains of these techniques is defect detection. Automated defect
detection is commonly used in sectors like textile, automotive, industrial imaging,
material imaging, manufacturing and many others [2] [3]. In this thesis, a problem
will be tackled in infrared imaging domain where the aim is to detect defects occurring
on a material called Cadmium Zinc Telluride Cd(Zn)Te †, which is used in radiation
detectors. Scientific aim of this research is to detect defects in the radiation detectors by
using Neural Networks and improve the performance of the pre-trained architectures by
applying Inverse Mathematics methods for the pre-processing step, also to investigate
what kind of Neural Networks are suitable for this task. In addition, investigating
why some networks working well or not in this problem setting. The motivation of
Detection Technology Oy (DT) to support this thesis is to improve the quality and
efficiency of future radiation detectors. In order to make this advancement, highly
effective semiconductor materials should be used. One of which is called Cadmium
(Zinc) Telluride, which is being researched since the 1970’s for radiation detectors,
but still shows quality and stability issues [4] [5]. One way to iteratively improve the
material quality is to examine it for microscopic defects. These defects effect the quality
of the charge propagation process inside the detector material and effect the efficiency of

†Within the scope of this thesis both CdTe and CdZnTe are considered to be the same material,
despite being minor different materials. Cd(Zn)Te is used to depict either, or both materials.
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2 Chapter 1. Introduction

the detection process [6] [7]. The author’s motivation is to tackle this problem by using
Neural Network models supported by Inverse Mathematics methods and investigate
which algorithm would work best for this task. The benchmark model will be Keras
implementation of Retina-Net [8] which is one of the most recent Convolutional Neural
Network architectures for object detection. Justification of model selection will be
discussed. Retina-Net architecture will be trained with our own data first to see how
well it fits to our problem. Data used in this research is exclusively measured by
Detection Technology and research questions are considered in conjunction with them.

Before stepping into the implementation of the architecture, looking more closer
to the problem and proposed solutions are beneficial. Detection and identification
of manufacturing defects and defects on texture surfaces can be considered as in the
similar category with our task. Finding a flaw on a textile surface is similar to finding
a defect in a material in terms of the spatial pixels corresponding to the artifact or
non artifact areas, and they have been an interesting research field since in most of the
manufacturing lines it is important to produce products as fast as it can be, but with
a minimal defect rate [9]. Due to the fact that manual inspection of all the products
would take a lot of time and resources, using automated intelligent systems are mostly
considered as more efficient solutions. Defect detection can be considered as a branch
of object detection/classification. In this thesis, different solutions to defect detection
would be first examined and experimented. Then, novel solutions by combining Inverse
Mathematics techniques with Neural Networks will be implemented to see if they help
to increase the accuracy of the Neural Networks.

In this thesis, defect detection using Neural Networks will be analyzed in different
aspects including the effects of the hyperparameters. These are the parameters in a
machine learning setting which can be inputted by the humans to change the way how
a machine learns. E.g. learning rate, early stopping, regularization parameters etc and
determining the number of epochs. An epoch is one pass of a neural network where
it sees every training sample at least once and updates the weights -which are the
parameters of a Neural Network where the ultimate goal is to find best weights which
has the highest generalization power-. It is important to know how many epochs are
sufficient to train a network and for comparison of several architectures, thus it will
be one of the first investigation points of this thesis. In chapter 2; the background
information will be described to closer formulate the research questions formulated
in chapter 1.1. In chapter Materials and Methods, the actual implementation details
will be shared. In the Results and Discussions section, there will be the display and
interpretation of the results.

The images will be used in experiments would be digital Infrared (IR) images. IR
imaging uses the density of materials to output a pixel wise image matrix of the scanned
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region. Since every material has a different attenuation, each material’s absorbance of
the IR’s will differ. Thus, these differing densities of materials can output an image,
which can be used to highlight the differences between the materials and their positions.
To mathematically define the Infrared (IR) attenuation along a line, the below formula
can be used. I corresponds to intensity. When an IR light hits the object it’s intensity
is denoted by I0 and when it’s out of the object I1.

I1 = I0e
−µs (1.1)

where µ is the attenuation coefficient, s is the distance traveled by the IR light
inside the material substance. Pixel detectors detect these output and each output
of an IR light corresponds to a pixel in the image matrix, in this experiment ending
up with 1280 x 1024 pixels for each image. This is how the digital images which will
be used in this experiment is formed. An example image containing defects is shown
below in Figure 1.1:

Figure 1.1: Example Image of a defect in the detectors that the research of this thesis aims to find

A general mathematical formulation and structure of a Neural Network’s single
node can be formulated in the following figure and equation consecutively. A network
has many of these connected to each other:
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Figure 1.2: Example node of a Neural Network where x1...xn corresponds to inputs to the node [10]

Figure 1.2 shows one example neuron in a feed forward Neural Network and
usually in a Neural Network there are multiple nodes and layers (number of layers
determine the depth of the neural network, each layer consists of certain number of
nodes. If number of layers are 5 this means 1 input layer, 1 output layer and 3 hidden
layers, each containing particular amount of nodes, nodes such that in Figure 1.2) .
Weight (w1, w2, ..wn) and bias (bn) matrices are used to represent each layer and node
mathematically. Mathematical formulation of a node can be seen in the formula below:

f (b +
n∑
i=1
xiwi), (1.2)

where b is the bias term, w denotes the weights, x denotes the inputs, n is the
number of inputs from the incoming layer and f is the activation function. Each
input of a node is multiplied by the corresponding weights (e.g. x1w1), which are
summed together. Then, bias term is added to this sum. Scalar output is then passed
through the activation function and activation function outputs a final scalar value.
An activation function maps the output value of a node to introduce non-linearity, it
will be examined in more detail in the upcoming sections.

Formulation of a neural network node is explained above. A neural network
usually consists of many layers and each layer consists of many nodes. One simple
example of it can be seen in figure below, more complex network architectures will be
discussed throughout the thesis.
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Figure 1.3: A simple Feed Forward Neural Network [11]

A network has an input layer, output layer and hidden layer(s) in a simple Neural
Network design. One example is shown in Figure 1.3 and that kind of networks are
referred as feed forward Neural Networks. Number of nodes and hidden layers can vary
in different NN architectures and based on the task of the network.

1.1 Problem Formulation

In this thesis, the main practical goal is to examine some different aspects of Neural
Networks in our problem setting and how different parameters effect the outcomes with
the ultimate goal to improve the defect detection performance.

1.2 Research Task and Questions

The main research questions that are focused on this work are summarized below.

• What network architecture and which features, if any, lead to the best defect
detection performance?

• How many epochs are enough for the given task on Keras Retina Net?

• Understand why longer epochs gives less accuracy on Keras Retina Net

• Train a model

– Architecture Selection and Justification

– Wavelet Transform Supported CNN

– Retina Net with different HyperParameters

– Other methods

• Can Inverse Mathematics help us to improve CNNs learning rate in this domain?
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• Do manually crafted features help CNNs to learn better in this setting?

In the upcoming sections it will be discussed, how answers for these questions
can be found systematically.

1.3 Improving Convolutional Neural Networks by
Inverse Mathematics

Inverse Problems research group led by Professor Samuli Siltanen at the University of
Helsinki [12] has a Deep Learning sub-group, which is using combinations of Neural
Networks and Inverse Mathematic techniques in a wide array of applications. Mostly
however, in the X-Ray imaging domain [13]. Their research inspired this thesis about
how Inverse Mathematics can be used in conjunction with Neural Networks to boost
the performance of the learning algorithms.

First, to start with the definition of a feature in a machine learning setting, which
is a term referred constantly throughout in this thesis, it can be thought as the de-
scriptive information extracted from the input data in order to make the approximation
function between the input and output more easy to learn. In other words, it is the
measurable properties of input data. A feature vector is the vector containing these de-
scriptive characteristics of the data. These features can be extracted in many different
ways which some of the examples will be discussed in this thesis.

When working with CNNs it has been mentioned in above section, why it performs
better than the other approaches such that it does automatic feature extraction unlike
the other conventional Machine Learning methods which rely on manually crafted
features from the data. However, some studies suggest that even though CNNs are good
at doing automatic feature extraction, sometimes there is a room for improvement. In
a paper published by Brebisson et al. [14], it can be seen that when the date feature is
fed to the Neural Network (NN) formatted like day, month and year results in better
learning (this will be revisited in chapter 3.4.1 Total Variation) compared to giving it
to NN unformulated, which is depicted as the "wolf case" in another paper [15]. In the
paper, there is a Convolutional Neural Network classified dogs and wolfs based on the
background rather than the animals themselves. In photos containing wolf, background
with snow was the distinguishing feature whereas the dog photos had green terrain as
the distinguishing feature rather than the animals themselves. This shows that it is
not enough that Neural Networks learns well, but how it learns is another important
question, which it’s importance is also supported by another study [16]. This shows us
even though CNNs are very good at extracting features by themselves, if they are fed
with hand crafted features they might even perform better [16]. This is where Inverse
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Mathematics comes in to the equation. It has tools, which has a potential to help the
NNs with the feature extraction and pre-processing of the data. Some of these tools
which will be used in this thesis are TV denoising, Wavelet Transformations and other
methods. Can popularly used Inverse Mathematics methods such as Total Variation
Denoising or Wavelet Transformation of the input image, prior to feeding it to the
Neural Network help the network to learn better? This will be one of the investigation
points of this thesis.

It is an important research question that if it’s better to feed Convolutional
Neural Networks with extracted features, raw image or both raw image and extracted
features concatenated. Many NN researchers tried to apply different input images to
the neural network to see the effect of different inputs. What input will make CNN
to perform better? Some studies show that image transformation (of the input image)
can make Neural Networks more robust against adversarial examples [17]. Some shows
that using pure images as inputs would make the neural network to perform better
[18] and some suggest that original image concatenated with a transformed version of
it might possibly enhance the performance of the learning algorithm [19].

More details about what kind of a Neural Network architecture should be ini-
tially chosen, how Inverse Mathematics can be used to improve the Neural Network’s
performance and more information about the used methods such as Wavelet Transfor-
mations and TV Denoising will be explained in more depth in the Chapter 3. Before
they will be examined, a background information about pre-Neural Network era will
be provided in the upcoming Background chapter to give a look at the bigger picture
before focusing deeper onto the Neural Networks.





2. Background

2.1 Background and history of algorithmic meth-
ods for image classification - Pre Deep Learning
Era

Before the Deep Learning methods got widespread and started to be commonly used,
there were other methods predominantly used for image classification and object de-
tection tasks. The main task was similar, extracting some feature descriptors from the
data and use a classifier to evaluate the nature of the problem. However, the biggest
difference between the older methods and the recent Deep Learning powered methods
were that in the conventional algorithms the feature descriptors are manually extracted
and crafted. In addition, their features are also more ridged and difficult to adopt to
new problems. Next, some of the conventional algorithms in the pre-deep learning era,
which became important milestones of the computer vision will be examined.

2.1.1 Overview of Viola and Jones algorithm for face detection

Viola and Jones [20] published a paper in 2001, which proved to be state of the art face
detection algorithm by the time. It is a haar feature based simple algorithm, yet quite
powerful. Haar like features are the basis of very trivial computer vision algorithms
which are created by dividing a rectangle into various different black and white parts.
The idea of using Haar like features originated from Haar Wavelets and adopted to
computer vision feature extraction tasks by Viola and Jones. It has a long training
time because of the ensemble approach it uses however prediction is fast. Basically, it
is a combination of several weak classifiers which are combined at the end. Some of
the common haar classifiers were consisted of haar like features below, some consisting
of rectangles which are used to find out if there is a face in the image [20]. The Viola
and Jones’s paper described how to use simple features in a boosted cascade setting to
quickly apply it to the test set.

A simple example can be seen in figure below. For instance, the second feature in

9



10 Chapter 2. Background

Figure 2.1: Common Haar Features [21]

Figure 2.1 can be used to detect the eyes on an image by sliding throughout the image
or the third one can be used to detect the nose. An example of this can be seen more
clearly in Figure 2.2. In Figure 2.2, Haar-like features are applied to eye parts of an
human face within a sliding window, where it then detects the location of the eyes in
the face.

Figure 2.2: Example Haar Image, with detection of features like noise or eyes [22]

2.1.2 Overview of Histogram of Oriented Gradients (HOG)

As the computer vision algorithms were proceeding, an important milestone was the
discovery and usage of Histogram of Oriented Gradients in 2005 which brought im-
provements on object detection [23].

Figure 2.3: Overview of Histogram of Oriented Gradients (HOG) [24].
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HOG uses gradients (derivatives) to calculate the gradient vectors of an image,
which is a simplified version of it. This gradient vectors extracted from an image
provides important, descriptive information about specific features of the image. As
it can be seen in the Figure 2.3, edges are calculated based on each pixel’s x and y
coordinate gradients. Based on the intensity of the gradients, directions of the edges
are calculated. Gradients highlights the information about edge and corners since their
values increases when it detects one. The image on the right is the extracted features
from the original image on the left. The extracted features then would be used in a
classifier or saved to used as an encoding of the original image, which then can be used
for image processing tasks like object detection.

2.1.3 Overview of Scale Invariant Feature Transform (SIFT)

Scale-invariant feature transform (SIFT) is another important conventional computer
vision technique, which had a big impact on the computer vision history. SIFT can be
thought of as accomplishing some modern features of Deep Learning when it comes to
being invariant to positional changes of the input image. Like Convolutional Neural
Networks the main reason SIFT was a big progression is that it made the learning
system robust to scale, rotation and small changes in perspective.

Figure 2.4: Illustration of SIFT

SIFT is a feature extractor, which works by ensuring invariances using an initial
scale spacing. It defines key points and descriptors which ends up extracting the SIFT
features. For each key point, an orientation is calculated which makes the extracted
features orientation invariant [25].

As it can be seen in Figure 2.4, SIFT features extracted from the photogra-
pher on the left can be matched with the rotated and cropped image on the right.
This illustration shows the importance of SIFT because it tackles a major challenge of
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computer vision algorithms, which is being invariant to change of the same object in
altered images, smoothly. Maintaining invariance is still an important aspect of mod-
ern computer vision algorithms, even though CNNs tend to perform well on ensuring
invariance, applying data augmentation before running the model is a common practice
to ensure invariance to the object location and position in machine learning [26]. SIFT
is an important milestone in computer vision, especially in image matching and object
detection tasks.

2.1.4 Support Vector Machines on Image Classification

When the times before we reach to peak of Deep Learning domination Era is considered,
machine learning methods were the proceeders of them and are still used actively. Usage
of machine learning methods such as Support Vector Machines, Logistic Regression and
Decision Trees were quite often and still being used in computer vision tasks actively.
They can be seen as a step between the conventional algorithms to data dependant
deep learning based methods. Among these conventional machine learning methods
for image classification, Support Vector Machines were the one of the most popular
ones [27].

Support Vector Machines (SVM) fall into the supervising learning algorithms
category in machine learning. Supervising learning refers to learning from data where
every data point has corresponding labels. In the figure below, it can be examined how
SVMs work. It is a binary case where the output can be either 0 or 1 -green or red
in Figure 2.5-. Support points, one for each class in this case, are the closest points
to the other class. After support vectors are defined, the decision boundary is drawn
based on maximizing the margin between the support vectors as shown with the bold
blue line between the support vectors [23].

Figure 2.5: Illustration of SVM [28]
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Mathematical formulation of a linearly separable classification SVM’s optimiza-
tion problem can be formulated as follows:

min
w,b

1/2||w||2,

subject to y_i(w.x+ b)− 1 ≥ 0, i = 1...m

where yi represents the linearly separable ground truth classes for each
input(xi,yi) belongs (e.g. yi = +1 or yi = -1), w (vector) and b are the weights
and biases of the hyperplane (classifier) to be predicted, M is the geometric margin of
the dataset and m is the number of samples [29].

Before moving into the image processing with Deep Learning methods, taking
a look at the complete picture from extraction of the features to classifiers would be
beneficial. SVM is good for classification after the features are extracted with some
other feature extractor algorithm beforehand such as HOG, Haar like features or SIFT
features mentioned above. Extracted features from a feature extractor algorithm e.g.
HOG, can then be fed to the SVM learning algorithm to apply the classification and
learn from these features. To give a complete picture of a machine learning classification
framework below graph can be examined 2.6. The input image is pre-processed, then
the features are extracted by using a feature extractor such as Haar or HOG. After that,
a classifier (learning algorithm) is applied to learn from the extracted features, which
can be thought of an SVM and at the end, in the label assignment, part prediction
output is produced.

Figure 2.6: Complete picture of a NON Deep Learning Classifier [30]



14 Chapter 2. Background

2.1.5 Neural Networks and Defect Detection

Deep Learning based methods has shown a great performance on defect detection
in the last decade. Especially, after the possibility of large amounts of data storage
and increase in the computational power, practical usage and the importance of the
Neural Networks got boosted in image recognition domain, as well as defect detection
tasks. There has been various different approaches on using CNNs and referencing
models, mostly training an existing Neural Network architecture such as Alex-Net,
VGNet, ResNet etc. with task specific data [31]. Comparison between the model
based approaches and Neural Network based approaches have been examined in various
studies. Neural Networks outperformed the model based approaches mostly in all the
cases [32].

The main reason Neural Networks doing better than other approaches in image
recognition and defect detection tasks is that, first, existing approaches used before
Neural Networks needed hand crafted feature extraction, whereas one of the most
strong aspects of Neural Networks is that they are able to do the feature extraction
by themselves. They do it by learning from the data and finding the features, features
that are the most important (descriptive) when it comes to distinguishing the objects
from background or defects from non-defects.

In regards to defect detection and more generically image classification tasks,
one type of neural network is dominating the field which is the Convolutional Neu-
ral Networks (CNNs). It is important to understand why they work better and what
makes them superior to the other approaches. Their structure will be examined in
more detail in the upcoming section, but the main reason they are doing better than
other algorithmic methods (and traditional Machine Learning methods) is that they
can leverage the spatial information better [33], hence does better representation of the
inputs. In algorithmic approaches, where images are examined on a pixel level, spatial
information between pixels might be ignored, however by the usage of convolution ker-
nels and downsampling of adjacent pixels, CNNs make use of this spatial information.
Another thing is; in algorithmic approaches, features are tried be extracted manually
and then these features are often used to feed a classification algorithm like SVMs,
which requires special feature engineering for different tasks, since optimal features
for one image classification task might differ from another. Here, where CNNs comes
into the picture. Because of their ability to extract features automatically, CNNs does
considerably better [32] than algorithmic approaches and traditional Machine Learning
methods.

Before going more deeper into the CNN architectures, let’s briefly define how a
convolution operation takes place in a Neural Network setting. Convolutions filters or



2.1. Background and history of algorithmic methods for image
classification - Pre Deep Learning Era 15

kernels, have a shape of Height (H), Width (W) and Depth (D). These are (indeed)
tuneable, but common practice is to use 5x5 or 3x3 of convolution kernels same with
the backbone network used in our experiments ResNet [8], where the depth is equal
to the input’s depth (d_input). In each layer, convolution kernels are applied to the
input and dot products for the corresponding regions are calculated. The output of
this operation is referred as a feature map. How to work with convolutional kernels in
Keras environment, which is used in our experiments, is explained in more detail here
[34]. Mathematical formulation of convolution is described below:

(p ∗ f )j =
∞∑

l=−∞
plfj−l (2.1)

where * is the convolution operation symbol, p is the point spread function which
is also referred as the convolution filter, f is the original signal (function) to be convo-
luted with point spread function, j denotes a point in time, and l defines the size the
convolution filter, it can be thought of a window size where convolution operation will
take place [35].

Mathematical formulation of a fully connected Neural Network is explained in
the introduction chapter. A Convolutional Neural Network follows the same structure
by adding additional layers on top of the fully connected ones, a convolution layer
followed by a pooling layer. A pooling layer is basically a downsampling layer. It
reduces the spatial dimensions of the feature maps, which also means reducing the
number of weights (parameters), thus increasing the computational efficiency of the
network. It can be thought as summarizing the information in a feature map into a
smaller feature map. Output of a convolution filter applied to the input image is called
the feature map. These feature maps are calculated based on this formula for a 2D
image:

(p ∗ f )[m,n] = ∑
j

∑
k
h[j, k]f [m− 1, n− k], (2.2)

where f corresponds to the input image, p is the convolution filter (kernel) and
m denotes the index of the rows and n denotes the index of columns [36]. Applying
this formula to an image would look like the calculation in the figure below (2.7).
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Figure 2.7: Example of how a feature map is extracted by convolving a kernel with an image [36]

A good research paper, which shows how CNNs are successfully utilized in a defect
detection problem is explained here [31], where the defects are in a manufacturing
setting. Images used are produced from X-Ray measurements. The network used
is a version of ResNet, ResNet-101 where number "101" indicating the depth of the
network. Results of the defect detection network (without segmentation) indicates a
successful detection accuracy with 0.931 accuracy rate. In another paper, authors used
different CNN configurations, comparing deep and shallow CNN approaches to detect
the defects on textured surfaces of greyscaled wood images [37]. They used LesNet to
test the shallow network’s (basic CNN) performance and a VGG variant (VGG19) to
test the deep network’s performance. Their work proved, once again how CNNs are
successful on these defect detection tasks with both networks performing above %90
accuracy, where the deep CNN with %99 accuracy is further outperformed the shallow
one %91. In this work, CNNs will be used in defect detection in a similar manner, but
this time, also trying to enhance the learning performance by using different inputs
created by Inverse Mathematic techniques.
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2.2 Overview and comparison of Common Convo-
lutional Neural Network Architectures

Nowadays, there are many different CNN architectures used in object detection and
classification tasks. In this section, two early Convolutional Neural Network architec-
tures will be explained, which are the ones started the CNN publicity and brought more
attention to them. LeNet-5 (1998) and Alexnet (2012) can be considered as pioneers
of this era. In addition, ResNet (2015), which will be used in our experiments as the
backbone network, will be explained.

2.2.1 LeNet-5(1998)

LeNet-5 [38] is a very trivial CNN architecture compared to the ones currently in use
today, however it doesn’t change the fact that it is the building blocks and basis of the
CNN architectures used nowadays. The idea of stacking convolution layers one another
and usage of pooling layers after convolution layers are still mainly used. A pooling
layer is where the feature map output of convolution filters are downsampled. Also,
using fully connected layers for the output, after the convolution layers is a common
approach in modern Neural Network architectures.

Figure 2.8: LeNet-5 Architecture

[38] [39]

In Figure 2.8, LeNet-5 architecture is shown. Even looking from the Figure it
can be seen that it is trivial compared to the modern CNNs yet similar stacking of
convolution and pooling layers are still widely used. LeNet can be thought as the basis
of standard CNN architectures.

2.2.2 Alex-net(2012)

Alex Net can be considered as the actual attention bringer to the CNNs by winning
the 2012 ImageNet challenge with a clear gap to the 2nd best performer. In 2012,
"ImageNet Classification with Deep Convolutional Neural Networks" article is published
[18]. After the release of this paper, it is proven that this CNN architecture achieved
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better accuracy scores compared to the previous state of the art models and CNNs have
much more potential which could be utilized. It won the 2012 ImageNet challenge.

Figure 2.9: AlexNet-5 Architecture

[18] [39]

Basically, it is an extension of the previously mentioned LeNet-5 architecture.
It has 5 convolution and 3 fully connected layers. Increased computational capacity
within years enabled the AlexNet authors to add more layers on top of the LeNet-5
architecture. It has ≈ 60M parameters which is mentioned as the one of the biggest
parameter containing CNNs at that time, by the authors of the article [18]. One of
the novelties it brought to the CNN research is that making the usage of ReLU as an
activation function (which will be explained in detail) for the first time. Another big
contribution, which is commonly used in the modern architectures now, is the usage of
drop-out layers. Drop out in deep learning setting can be defined as a regularization
technique, which randomly ignores (sets to zero) some nodes in the corresponding layer.
This helps improving generalization power and reducing overfitting by regularizing the
network. Basic idea behind drop out regularization is that, randomly ignoring some
nodes in a layer in each epoch will prevent the network from being over-dependant to a
one particular node. To deal with overfitting drop-out layers has introduced and used
in the paper which showed a successful performance.

2.2.3 ResNet-50

As the previous two architectures suggests, the popular idea in the Neural Network ar-
chitectures were that the more layers are better and if the number of layers is increased
in the network, then the generalization power should be also increased. In theory, it
was true but because of a phenomenon called vanishing gradients, this assumption did
not hold. As the network depth increased, it ended up in saturation in the learning
and decrease in the accuracy. So, stacking up more layers is better but it doesn’t work
that well all the time. Vanishing gradient problem is the reason of this saturation,
because as the network gets deeper, the gradients become less sensitive to the updates
in the parameters than in the early layers, which ends up in a state where update of the
parameters not effecting the final output enough. One way to tackle this problem is
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Figure 2.10: ResNet-50 Architecture

[40] [39]

using skip connections between two not adjacent layers so that the earlier information
coming from previous layers wouldn’t be vanished [40]. Res-Net made this idea possible
and allowed us to work with deeper networks, yet not having a vanishing gradient issue
where it would take away all the benefits of using a larger network. ResNet solves this
by using identity matrices to move the information from earlier layers to latter layers
which can be seen in the Figure 2.10, in identity block sub-figure. An identity block
merges the previous convolution layer’s information with the currently calculated ones.
By using these skip or residual connections this architecture allowed us to use more
layers in the network, thus make the networks deeper without saturating the accuracy.

There are two activation functions used in ResNet architecture, Sigmoid and
ReLU (Rectified Linear Unit). They are shown in Figure 2.11. It is mentioned before
that an activation function maps the output value of a node to another scalar by
introducing non-linearity. Sigmoid and ReLU are the most commonly used non-linear
activation functions in Neural Networks [41]. In Figure 2.11, it can be seen that
Sigmoid function takes values between 0 and 1, whereas ReLU takes values between
0 and infinity. Sigmoid is mostly used in the output layers where we want to have a
distinct probability score or a probability distribution which sums up to 1, whereas
ReLU is used mostly after each convolutional (or pooling) layer. In ReLU, all the
negative values are mapped to 0 and all the positive values are mapped to itself. It
is still a research topic why ReLU works that well but one of the reasons of ReLU’s
success is that, it is mathematically simple which makes it computationally efficient,
yet still able to approximate non-linear relationships quite well. Activation functions in
a Neural Network context will be revisited in FPN architecture section in more detail.
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Figure 2.11: Sigmoid and ReLU Function

[42]



3. Materials and Methods

3.1 Data

The data set for this thesis consisted of 10.000 training images. Each image has cor-
responding defect coordinates and shape as labels. An example image looks like in
Figure 3.1:

Figure 3.1: Example sample image with defects in red and non-defects in yellow

What can be seen from Figure 3.1 is that a sample IR image of Cadmium Zinc
Telluride Cd(Zn)Te. There are 3 defects marked in red. Our aim is to detect them
while not detecting the yellow ones which are coming from either the measurement
device, defects from another image layer or the background dirt and dust. Another
challenge when trying to detect these defects is, as will be explained in more detailed
in the upcoming section, when the network is tried to be optimized to detect both the
large (on the left) and the smaller defects (on the top) the accuracy of detecting the
small defects underperforms the detection accuracy of the large defects.

As it can be seen in several examples below, the nature of the defects can vary.

21
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There are 10 categories that roughly classify each type of defect such as:

• round single

• round double

• unclear single

• unclear double

• hexagonal single

• hexagonal double

• square single

• trigonal single

• void single

• bubbles single

Some examples can be seen below. There are 2 main goals. First, detect and
count the number of defects in a given image and secondly classify the defects based
on their shape. For this purpose, Neural Networks are used to train our models. Data
is divided into training and validation sets. Models are trained and evaluations are
conducted. For the computing environments Ukko2 [43] and NVidia P4000 GPU from
the Inverse Problems Research group is used [44].

Figure 3.2: round single

Figure 3.4 is one of the examples, which makes the detection task harder because
the defect is not clear, somehow blurry and hard to distinguish from the background
image. Also there is a risk of the yellow marked background shape can be interpreted
as a defect.
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Figure 3.3: Round double defect example

Figure 3.4: Unclear single defect example

Figure 3.5: Hexagonal single defect example
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3.2 Keras Retina-Net as Benchmark

Retina-Net network architecture is one of the most popular CNN architectures for
object detection in tensorflow backend (tensorflow is a commonly used open-source
machine learning library developed by Google [45]). Among the state of the art CNN
architectures like Yolo [46], Faster-R-CNN [47] and Retina Net [8], Retina-Net per-
forms better in most of the classification tasks among other single stage detectors by
leveraging the focal loss [48] which is explained in section 3.2.1. It is implemented
based on a paper called Focal Loss for Dense Object Detection [8].

When it comes to object detection using Convolutional Neural Networks (CNNs),
there are 2 main approaches exist. One stage detectors and two stage detectors. A one
stage detector means it only makes a single pass to extract the features and make the
prediction, whereas two stage approach consists of 2 different passes on the image. In
the first pass, it extracts the areas of interest where potentially an object is present,
then for each region that is extracted, CNN is applied to those regions for classification.
In contrary, in one stage approach classification and detection is done within a single
pass. This brings a trade off between the accuracy and performance, performance in
terms of speed. Generally, two stage approaches result in better accuracy and one
stage approach results in better performance. Here comes the Retina-Net which uses
the one stage approach but still able to beat some state of the art 2 stage approach
detectors, such as plain Feature Pyramid Networks (FPN) and Mask R-CNN which is
shown in the original paper evaluated on COCO dataset [8].

In the paper, the reason for one stage detectors to not achieve as high accuracy
levels as the two stage detectors is explained as the class imbalance problem, which
Retina-Net proposes to solve by introducing a unique loss function. This loss func-
tion is called the focal loss. Before going deeper in the focal loss -which is a highly
distinguishing feature of the architecture we use (Retina-Net)- first, in order to under-
stand the network better we need to focus on FPN type networks more in detail which
Retina-Net can be considered as an improvement on top of them.

The need emerged for FPN based architectures, because of the size mismatch
problems when trying to detect objects in different sizes especially for the small ones.
For instance, when a task requires of detecting a different sized objects with the same
network, such as a tennis ball and a human or a big defect on a surface and a very
small one, CNNs were experiencing problems with these settings. Feature Pyramid
Network architecture is designed to bring a solution to this problem.

Initially pyramids can be constructed in 3 different ways [49]. Most trivially,
different sizes of image can be used in the pyramid. For example, the bottom image
would be the original, higher layers would be the scaled versions of each previous
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Figure 3.6: Feature Pyramid Network [49] architecture example

layer, but this would consume a lot of computational resources, hence it is not very
feasible. Another approach is using the feature maps of each layer to do predictions,
but in this case there will be a lot of generic information coming from the low level
layers, which would effect the accuracy negatively. Third and the state of the art
approach uses some feature extractor layers from another network (e.g. ResNet as a
feature extractor), consisting of several convolution layers, max pooling and activation
functions and combine them in the upsampling layers with the original image. As it
can be seen in the Figure 3.6, 2 different feature maps are merged, which makes the
feature extraction process more powerful and faster. To give a brief explanation of
convolution layers, max pooling and activation function in this context, convolution
layers can be thought as the layers where relationship between the pixels are extracted
with a filter (kernel) applied to the input image. Activation function is an essential
part of the Neural Network architectures, which conventionally applied right after the
convolution layer. The main purpose of using activation function is it decides if a node
on a network would get activated or not based on the input values it receives from the
output of the convolution layer. It has many different types, but the most commonly
used ones are Sigmoid and ReLU which are also the ones used in Retina Net. Max
pooling layer can be thought of a downsampling layer, applied after the activation layer
in this context, which decreases the size of the input by either averaging or taking the
maximum of the adjacent pixels.

When it comes to our problem setting with the defects, it would be fair to ask this
question, why would an FPN architecture be more useful than a Single Stage Detector
(SSD), which also leverages the usage of pyramid networks? In Figure 3.7, there is
a VGG-16 architecture, which is a Single Stage Detector. It can be seen that Single
Stage Detectors, in this case VGG-16, only uses the last several feature maps when
the classification starts (classification layers begins with the latest box that is marked
by red). If the inputs the classification layers get are examined, which are depicted
with arrows pointing to the red box, only feature maps extracted in recent layers are
fed into the classification layer. Basically, the network applies convolution and max
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Figure 3.7: An example of Single Shot Detector Network - VGG-16 architecture

[50]

pooling for layers from the start, but uses only last couple of layers to initiate the
classification. Classification layer in this context corresponds to the fully connected
layers, after convolutional layers extracted the features from the input image. This
brings a problem when it comes to detecting smaller objects. Information about smaller
objects might be lost and not present in high level features. However, if FPNs are
used instead, it will be still possibles to leverage the information on the low level
features by combining them with the high level features, hence it would increase the
probability of accurate detections of the smaller objects. This is important in our
problem setting, since in our defect detection case we indeed deal with different scaled
and sized artifacts, which usually contains very small ones as well. It can be seen in
the Figure 3.7 that pyramid hierarchy starts after conv4 3 layer of VGG, which skips
the higher resolution information (feature maps) in the earlier layers. Feature Pyramid
Networks for Object Detection article [49] proves that these features are important
when it comes to detecting smaller objects, thus using FPN’s rather than SSD’s would
be a better choice in our setting.

The architecture of Retina-Net consists of convolution layers instead of fully con-
nected layers. It is a single stage detector, which consists of 3 different subnetworks.
First one is the backbone, which is ResNet51 in our case on top of a Feature Pyramid
Network. Second network is the classification subnetwork and third is the bounding
box regression network, which runs in parallel and uses the output of the first network.

ResNet (2.3.3), which has been explained previously, now will be used as our
feature extractor or put in other words, the backbone network. Here the key point
is to understand how Retina-Net combines the low level feature maps with high level
feature maps. There are 2 pathways as it can be seen in Figure 3.8. First, bottom to top
pathway can be seen in 3.8a, it can be observed that ResNet extracting convolutional
feature maps in different resolutions, where the higher the layer it goes the resolution
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Figure 3.8: Retina Net architecture

[8]

drops and semantic information goes up. After the feature maps are extracted, we
go to the top down path, which can be seen in Figure 3.8b. This time the usage of
Feature Pyramids starts. Here, low resolution feature maps are merged with the higher
resolution feature maps. What actually happens in the merging is that the last layer
in the "a" part of Figure 3.8 is up-sampled to match the dimensions of the second last
layer. Then, they are added together to form a new feature map, which can be seen
in the top layer of Figure 3.8b where arrows depict the merged feature maps. This
process goes on until there is no feature map to be matched. Each of the merged
feature maps then produces an output independently, which will be used as an input
for classification and regression sub networks [8].

At the end of the first subnetwork (subnet), feature map outputs for each pyramid
layer will be calculated. These feature maps would be used to create the anchor boxes
(9 directions for each feature map) and then for each feature map, classification and
regression subnet would run in parallel [8]. An anchor box can be thought of a candidate
bounding box with a probability of containing some target object, which predictions
will be run for.

Classification subnet consists of Fully Convolutional Layers. Convolution layers
has 3x3 dimensions. They use both ReLU and Sigmoid activations after the convolu-
tions. They output a feature map at the end, which has the dimensions of (W,H,CxAB)
where W is width, H is height, C is the number of classes and AB denotes anchor boxes,
which means at the end, class probabilities for the objects in each anchor box would
be extracted.

Regression subnet is also consist of Fully Convolutional Layers. It’s design is
same with the classification subnet and runs parallel with it. Only difference is the
output would have a different dimension since it supposed to output a bounding box
coordinates instead of the object classes, hence the output becomes 4 times anchor
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boxes (W, H, 4 x AB) .

3.2.1 Loss Function

Another important aspect of the Retina Net is the loss function it uses. A loss function
is one of the most important part of a Neural Network. After each forward pass of a
network a prediction is outputted. In a supervised learning setting this output is called
prediction and the prediction is compared with the ground truth label to calculate the
difference between them (which is referred as the loss value) in the loss function. A loss
function evaluates the difference between the prediction and the ground truth, then
updates the neural network’s weights based on this loss. Updating of the parameters
is done with an optimization algorithm called stochastic gradient descent. Stochastic
gradient descent uses only 1 sample for each iteration to calculate loss which means
setting the batch size ∗ parameter to one in a Neural Network context where a sample
is selected randomly from the training set for each iteration. More information about
Stochastic gradient descent can be found here [51] which exceeds the scope of this
thesis. Retina Net uses an exotic loss function called Focal Loss [8]. It uses a loss
function which adds the regression loss and classification loss together. Regression loss
is the loss calculated for the location of the predicted bounding box and classification
loss is the loss calculated for the category of the detected defect. Focal loss can be
formulated as below:

FL(ρt) = −(1− ρt)γlog(ρt) (3.1)

where FL stands for Focal Loss, γ is the focusing parameter which adjusts the
decrease level of the easy example’s effect on weight updates and is greater than zero.
(1 − ρt) is the modulating factor where ρt is the class probabilities (e.g. background
and object1 for the binary case) for each anchor box predicted by the model [8]. If the
anchor boxes consists of mostly background which is considered as the easy class, then
it will be downweighted by subtracting it from 1 to limit the effect of it on parameters.

This loss function takes it roots from the plain Cross Entropy loss [52]. Focal
Loss concept added on top of Cross Entropy loss ensures giving more weight to penalize
false negatives by adding the modulating factor to the equation.

∗Batch size is the number of samples the Neural Network uses the calculate the loss for each
iteration. Working with different batch sizes can have an effect on the outcome. Working with larger
batch sizes are computationally more efficient but it can introduce a convergence bias which might
end up in less accurate local minimums
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3.3 Keras Retina Net with different Hyper Param-
eters

Retina Net is implemented with different batch sizes. As the optimizer, stochastic
gradient descent is used which is the default version where the batch size is equal to 1.
Then, experiments are also conducted with batch size = 8.

3.4 Wavelet Transforms and using Wavelet Trans-
forms with CNNs

Wavelet transforms is an important tool to decompose signals in the time-frequency
domain. Most important thing about wavelet analysis is that it enables us to make
a "localized" analysis about the signal. Wavelet Transforms has been used in many
different areas such as speech-compression and analysis, image compression and en-
hancement and removing noise from audio and image data [53]. Continuous wavelet
transform can be formulated as follows:

W (a, b) =
∫ ∞
−∞

ψa,b(t)f(t) (3.2)

whereas W (a, b) is the wavelet transform of continuous variables a (shifting) and
b (scaling), f is a continuous function and ψ(t) is the mother(basis) wavelet function,
which can be thought of a basis transformation function [54]. In wavelet transforma-
tions, our aim is to extract the representations of the signal or a function in terms of
the mother wavelet. Thus, it will give us a chance to evaluate the the decomposition
of the signal in terms of the mother wavelet patterns.

What we are interested in our case is using wavelet transformations with 2D
images, which can be done by Discrete Wavelet Transforms. Before going into that,
first some of the main mother wavelet signals will be examined. I, then try to decompose
the signals based on the selected mother wavelet and measure it in terms of that wavelet
coefficents. This can be done for different scales and frequencies [55]. In Figure 3.9
below, some of the common mother wavelets are shown.

So far, information about an overview of wavelet transformation which was con-
tinuous way of doing them were explained. However, in our setting where we work
with 2D images we will need to use discrete wavelet transforms because of the nature
of our problem (spatial information consisting of pixels are considered discrete), since
the images we use are also given in a discrete setting. If we take a closer look how
wavelet transforms works, we first need to recognize the main components we use in
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Figure 3.9: Common mother wavelets used for wavelet analysis: (a) Haar wavelet, (b) Gaussian
wavelet of order 1, (c) Daubechies wavelet of order 4, and (d) Morlet wavelet. Source [55]

Discrete Wavelet Transforms which are the mother wavelets.
In our task, 3 main mother wavelets are applied to the images from our dataset

to see how they work and then, based on the outcomes most promising one is selected
and fed to the Neural Network. Below are the wavelets, which have been tested in this
work:

• Haar Wavelet

• Daubechies Wavelet

• Discrete approximation of Meyer Wavelet

To start defining them briefly, Haar Wavelets are first introduced by Alfred Haar
in 1910 on his thesis [56] and it has been used in many different problems, since Haar
transforms works in a straightforward logic when applied to discrete images using high
pass and low pass filters. To understand how these high pass and low pass filters behave
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in Haar wavelet setting let’s assume we have a 1D signal, a vector as follows: [8 4 8 4],
which has a dimension of 1x4, and is depicted in Figure 3.10. First level discrete Haar
transform for this vector would be calculated as averaging the consecutive elements of
the vector and keeping track of the detail coefficients for each scale, which will allow
us to construct the original values by using these coefficients when the calculation is
finished. Calculation is finished when there is no consecutive number in the coefficient
vectors to average. This would be easier to understand by examining the figure below.
As it can be seen from the figure 3.10, in the first scale, we end up with a down sampled,
averaged version of the original vector which would be [6 6]. This is the approximation
coefficients of scale 1 and the detail coefficients of scale 1 are the distance from these
averaged values to the original values, [2 2] which can be propagated from output to
original input. In this example, detail coefficients are calculated as follows, for the scale
1, ((8-4) / 2) = 2 and ((8-4) / 2) = 2 and for scale 0, ((6 - 6) / 2) = 0. This gives us
D0 = [0] and D1 = [2 2]. Wavelet coefficients in this case would be [A0, D0, D1] which
corresponds to [6 0 2 2] where A0 means approximation coefficient with scale = 0, D0
is detail coefficient with scale = 0 and D1 is detail coefficients with scale = 1 [57].

Figure 3.10: Wavelet Coefficient Calculation of 1D 1x4 Wavelet

This simple, computationally efficient Haar function calculation of a signal allows
us to decompose it into different wavelets, which gives characteristic information about
the original signal. We can think of Discrete Haar Wavelet Transform in 2D setting
with the same logic. By passing the low pass and high pass filters it allows us to get
characteristic and localized information about the input image. High pass and low
pass filters can be thought of convolutional kernels. An example of them, in a 2D
image setting can be seen in Figure 3.11. When the original image is convolved with
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a high pass filter, the image gets sharpened, whereas the low pass filter, which is the
opposite of high pass filter, gives a smoothing effect to the applied image by averaging
the adjacent pixels. High pass filters aim to keep the high frequency information and
low filters aim to keep the low frequency information [58].

Figure 3.11: High Pass and Low Pass Filter Example [58]

Below in Figure 3.12, we can see a wavelet decomposition tree which shows how
Haar Wavelets can give distinguishing information about an image with a computa-
tionally low cost calculation.

Figure 3.12: Wavelet Decomposition Tree example. Ai, Di are approximation and detail coefficients
consecutively [59]

The basic calculation example above was about 1D signal. When it comes to
2D signals, like images in our case, it is actually the same process, but generalizing
the 1D version to 2D as mentioned with the high pass and low pass filtering above.
Every row is treated as a 1D signal and all the pixel values in a row is transformed in
the same way we did above in the 1D transformation. After applying the 1D wavelet
transform to all the pixel values in a row, we will end up with detail coefficients for
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Figure 3.13: a) Single level decomposition scaling
= 1. L denotes the low pass filter, H denotes the
high pass filter

Figure 3.14: b) Two level decomposition
scaling = 2. L denotes the low pass filter, H
denotes the high pass filter

each row alongside with an average value. Subsequently, these transformed rows are
treated as an image and in a second transformation pass, each column starts to get 1D
wavelet transforms. Again, the result would consist of detail coefficients and one value
for the average. To complete the transform this process is recursively gets applied to
the quarter size image, until it only contains one average.

Discrete Wavelet Transform (DWT) can be in different levels and actually deeper
levels might provide semantically more valuable information based on the task. In
Figure 3.12, it can be seen how wavelet transformation occurs for 3 levels setting with
a graph more clearly before the actual example of an image is shown. In Figure 3.12
above, it can be observed that in each level, a signal is decomposed into detail and
approximation coefficients and this goes on until level 4 in this case. In each of the
detail and approximation coefficients, the signal decomposed into 4 bands. For each
detail decomposition in each level (D) there are 3 coefficients: horizontal, vertical and
diagonal detail coefficients. Horizontal is formed by passing a high pass filter followed
by a low pass filter (HL), Vertical is formed by passing a low pass filter followed by a
high pass filter (LH), diagonal detail coefficient consists of 2 High pass filters (HH) as
figures 3.13 and 3.14 shows that more clearly for 2D DWT setting.

For a real image, the results would look like in Figure 3.15. In that figure, we
see a 1st level wavelet transformation example. Original image is decomposed to 4 sub
bands similar to 4 "squares" in Figure 3.13 and it also shows what filters each square
corresponds to in the real image. On the top left side, there is the approximation
coefficient, top right is the horizontal detail coefficient, bottom left is the vertical
detail coefficient and on the bottom right there is the diagonal detail coefficient. To
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use the resources efficiently, our approach was to first apply some different forms of
wavelet transforms listed previously, to example images in our problem and see the
outputs. If the outputs looked promising in any way we can then start to use them in
training processes of the Neural Network. Let’s try to look to some of the real images
we are going to use and how the different wavelet transformation looks on them. Our
aim is to find transformations which can be fed input as the Neural Network and
improve the learning task, but we first experiment with some different outputs of the
transformations and manually evaluate if they are potentially good to be used as an
input.

Figure 3.15: Haar Wavelet Transform of image Lena [59]. Each transformation highlights different
features of the image
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There are some defects, which are larger than the others, whereas there are some
defects that are smaller. We will be trying to see if wavelet transforms are going to help
us to distinguish them from each other and from background. As in the Lena Image in
Figure 3.15, horizontal and vertical coefficients of the wavelet transform would highlight
different details such that in the horizontal detail coefficient (top right) eyes are more
apparent, whereas in the vertical detail coefficient (bottom left) nose is highlighted,
diagonal coefficient seems to be in between. This is only one level transform and
we will try deeper levels of the transform to see which one does better in terms of
identifying the defects.

Before proceeding to the actual experiment results, a pre evaluation step will be
applied to see which one of the wavelets will have a potential to perform better. Based
on the example transformations it will be decided which type of wavelet should be fed
to the Neural Network. Let’s look at some of our images and wavelet transformed
versions of it. We used MatLab Wavelet ToolBox to generate these transformations.
In Figure 3.18, we can see Dmey (Discrete Meyer) wavelet is not useful because it has
some unusual patterns which spoils the image. The cause might be due to the boundary
effect, but we did not study through that because it is out of the scope of this thesis.
On the other hand, Haar and Daubechies wavelets provide promising results. Here in
the image below (3.16), there are 2 defects, a bigger one on the top and a tiny one
on the middle right. Both Haar and Daubechies transforms seems like they are able
to highlight the bigger defect quite well in their Horizontal detail coefficient of level
3. They almost give the same results and we decided to move on with only one of
them, which is the computationally efficient Haar Wavelet Transform. Deeper levels
especially the 3rd level transforms are too small in Figure 3.16 , 3.17 and 3.18 and hard
to see in detail. Larger versions of 3rd level coefficients can be found in the Appendix
section.

As it can be observed, the bigger defect is highlighted better, but small one is
not that easy to distinguish. It can bee seen that there is a lot of background noise,
which gives similar pixels to the small defect, but in fact they are not actually defects.
This problem is tried to be tackled by using Total Variation (TV) Denoising [60] in the
pre-evaluation step and if the transformation would have seemed promising we could
use them in our Neural Network training. With a certain threshold, TV Denoising
might help us to eliminate some of these pixels and give a better highlighted areas of
the defects. Next, TV Denoising will be discussed, then finally implementation details
of our methods defined in this section and corresponding results will be presented.
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Figure 3.16: Haar Transform of an example image [59]

Figure 3.17: Deabuchies Transform of an example image [59]
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Figure 3.18: Dmey Transform of an example image [59]
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3.4.1 Total Variation Denoising

Total Variation Denoising is one of the most commonly used denoising algorithms with
the purpose of keeping the sharp edges in the image. The one we use is based on
the Rudin-Osher-Fatem (ROF) [60] image denoising model, which is a minimization
problem of the function below:

arg min
uεBV (Ω)

||u||TV (Ω) + λ/2
∫
Ω

(f(x)− u(x))2 dx, (3.3)

where u is the restored image, λ is the regularization parameter and f is the noisy
original signal. TV (Ω) represents the Total Variation Domain and BV (Ω) represents
the Bounding Variation domain, more detail about the algorithm can be found here
[60].

After examining our target images which will be used in the experiment, in some
images it can be seen that there are background noise which is roughly similar to defects
but in fact they are only measurement errors or background pixels (recall the images
in 3.1 section). It is not wanted to have background pixels to be labeled as defects. TV
denoising is a promising technique to apply to these kind of problems in pre-processing
step, because it has the smoothing effect, which can eliminate the noise, hence the false
positives, before the prediction process starts. Here in the figures below, there is an
example of TV Denoising applied to a natural image first to see how it behaves more
clearly followed by the images from our dataset.

In Figure 3.19 & 3.20, we can see the effect of TV denoising more clearly on a
real image before we apply it to our images from the dataset. In these figures, it can
be seen that denoised image highlights the sharp edges more and gives a smoothed,
"cartooned", look to the original image. Background noise is reduced significantly and
the image looks a bit blurred.

Now, the same denoising will be applied to one of the original images from our
dataset and to the Haar coefficients of it. When TV Denoising applied to the original
image the results are not too promising, however when we apply it to the Horizontal
level 3 coefficient we can see that it significantly reduces the noise.

Here in Figure 3.21, the difference between the H3 (Horizontal Level3 Haar coef-
ficient) and Total Variation Denoised H3 can be seen. Background noise is decreased
significantly and 2 defects is highlighted better than the H3 coefficient before TV De-
noising. What can be don with this denoised image and the Haar coefficients is that,
they can be used in our deep learning model to help the model in making better fea-
ture extraction. This can be thought as an additional data pre-processing step as some
studies showed when the Neural Network is fed with transformed images rather than
original image only, it could possibly contribute to the learning [62]. In addition, Fig-
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Figure 3.19: a)Original Image [61]

Figure 3.20: b)Tv Denoised [61]

Figure 3.21: TV denoising effect on Haar coefficient On the left original Image, in the middle Haar
3rd level coefficient and on the right TV denoised Haar 3rd level coefficient
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ure 3.21 shows us the singular, large noise spots can be better highlighted when 3rd
level Horizontal Haar coefficient is combined with TV denoising. In this work, it will
be examined if that can be generalized for all cases in our task to further improve the
learning.

As mentioned previously, when it comes to Convolutional Neural Networks main
advantage of them is their ability of doing automated feature extraction. However,
what kind of initial input is best for a CNN is an important question in our task. In
some cases adding hand crafted features to the CNN or applying transformations to
the raw input image in the pre-processing step could improve the performance [16] [63].
Before moving to the Results and Discussion chapter, to remind the simple example
mentioned previously about this phenomenon, we can think of a Neural Network which
takes the date as input variable. In which format the date should be fed to the Neural
Network? In theory, neural network would be able to understand the encodings of
unformatted date after some iterations by itself (such that which digit corresponds to
hour, day, month, year etc.) and learn which column corresponds to month, day or
year. However, common usage in Neural Network applications is to encode the date
into some formatted feature representation before feeding it to the Neural Network
because it performs better than raw unformatted version of it [64] [14]. As discussed in
the papers, higher-level variables for date and time are constructed to better capture
their effect such that quarters of hour, day of the week, week of the year. Same logic
applies to the input images we have. We want to see if higher-level variables of our
input image also improve the learning performance. This time, instead of date we have
the original image and as the date gets formatted before fed to the network, we try to
pre-process the original input with TV Denosing and Wavelet Transformations to see
it’s effects on learning.

One of the things in the next section which will be tested is, whether this assump-
tion holds in our problem setting or not. It will be compared how the performance of
Neural Network differs when we use only the original image, one of the coefficients, TV
denoised version of the H3 coefficient and finally feeding all the coefficients alongside
with the TV Denoised version of the H3 coefficient. To see the differences, all the other
parameters of the network is kept constant.



4. Results and Discussion

Before diving into the comparisons and results of different networks, one of the first
research questions discussed was to find an answer to when to end training. How
many epochs would be sufficient? First, the model is ran with 180 epochs (default)
to see if overfitting occurs and when does the model perform the best on the test set.
Overfitting is an important phenomenon in Neural Networks as discussed in previous
chapters. One of the most crucial metric we need to take into consideration. It means
the Neural Network memorizes the data instead of learning, where training error is low
but validation error is high. This would be an undesired outcome because it means
the generalization power of the neural network is low and it only fits the training set
very closely. Neural Networks can easily overfit because of the complex non linear
mappings they use. So, overfitting should always be taken into consideration when
training Neural Networks. Results showed that after the 50h epoch over fitting starts
(this is where training error started to decrease sharply whereas validation error started
to increase) and especially after epoch 80 accuracy starts to decrease due to overfitting,
which will be discussed next. After analyzing that, our experiments has ran with a
maximum of epoch number 80.

Another important thing is the evaluation criteria. Retina Net prediction consists
of a class and a regression box. We calculate the losses for both of them separately in
each iteration of the Neural Network. Loss values produced by these loss functions are
one of the evaluation criterias and the other one is the true count number (accuracy
of predicted number of defects disregarding the category of them, correct if defect is
detected); which is the count where how many of the defects in a given image are
predicted by the model is compared with the actual number of defects which were
manually labeled (ground truth). Also, number of false positives are important in our
task. A false positive in our task is, for a given image, where the model predicts a
defect (coordinates) when it is not. This is another point which will be discussed in
this section.

Besides the loss function, in order to actually see the detection patterns and
evaluate the quality of the model -also figuring out when to stop training-, a small
video tool is developed by the author where prediction of each model for a given image
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is displayed in a video for each epoch. Doing manual evaluation with this tool was
fairly convenient and clearly showed that especially after the 80th epoch detection
quality decreases, which confirms the values coming from the loss functions (training
validation). In Figure 4.1 and 4.2, some examples from the video tool and the change
in the loss functions after the 80th epoch are shown which will be discussed next.

Figure 4.1: Manuel Evaluation Tool at Epoch 54 - predicted defects are marked in red

In Figure 4.1, a screen shot can be seen from the manual evaluation tool which
generates a video, where defect predictions for the same image from each epoch is
applied to the image (e.g. model after each epoch is saved and applied to the same
image) . Number at the top of the image "54" in this case- shows the number of epoch
and in different epochs both the shape of the bounding box and location of defects
vary. That can be seen in another screenshot of the video tool in Figure 4.2. Here, for
the same image, where this time we see the prediction of the model at epoch 67. Here
it can be seen that there is one more extra detection compared to the Figure 4.2, which
is actually a false positive. Using this tool helped to manually observe the behavior of
the network as well as being aware of the false positives, which are important in our
task in terms of decreasing the number of them as much as possible and also to show
us where to stop.
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Figure 4.2: Manuel Evaluation Tool at Epoch 67 - predicted defects are marked in red

The loss function in Figure 4.3 displays the training loss which shows the change in
the loss function over epochs of the training set. It can be seen that training loss starts
to decrease after the 80th epoch, which might indicate an increase in the accuracy.
This seems like a good thing at first look. However, the reason it starts to decrease
is that due to the overfitting which can be confirmed by looking to the validation loss
4.4.

In Figure 4.3, the training loss figure, x-axis shows the number of epochs and
y-axis shows the corresponding loss values. Our aim is to make the loss value as low
as possible, while not overfitting. Here we can see a convergence point in Figure 4.3,
where the training loss does not get lower any more and the curve becomes asymptotic
which indicates there is a possibility of overfitting. To confirm this we also need to
look to the validation loss. Validation loss is calculated the same way mathematically
as training loss is calculated by using focal loss, explained in 3.2.1. Difference is,
there is no weight update occurring in validation steps. It is used to calculate the loss
value for the samples which network did not see in training. It is used to tune the
hyperparameters, find out when to stop, detect overfitting and see how good is the
generalization power of the model until that point in training epochs. Back in our
case, in fact, while the training loss doesn’t decrease any more and it’s curve becomes
asymptotic, validation loss starts to increase after 80th epoch, which means after that
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Figure 4.3: Training Loss : Change in Training loss over 180 epochs

point training more epochs is redundant. This can be seen in Figure 4.4 where the
validation loss graph is shown. Validation loss starts to increase after the 80th epoch
whereas as we examined, the training loss starts to decrease after the same point. This
is a strong indication of overfitting and tells us to stop overtraining.

Figure 4.4: Validation loss : Change in Validation loss over 180 epochs

Validation loss starts to increase after the ≈50th epoch and then it converges
after the ≈120th epoch. As it can be seen, the validation loss increases while the
training loss decreases, which means model is starting to memorize the training set and



45

generalization power of the model starts to decrease. At the same time, when we check
the results of the manual evaluation tool it also confirms our findings about overfitting
and detection (also classification) performance starts to decrease especially after the
80th epoch. After these findings (by the loss function and manually evaluating the
classification quality) it is concluded that 50 epochs of training would be sufficient
but to be certain we kept training for the 80th epochs as it is obsereved that 180
epochs of training is both time and resource consuming. When the performance of
50th and 80th epochs are compared, although there is no big difference in terms of
detection accuracy, 50th epoch is slightly better and validation loss is lowest on the
40th epoch for the training of the original image. So far, only original image is used
for the results.

When to stop training is an important question when working with Neural Net-
works in terms of both for the performance of the model and resources used for it. Also,
it takes considerable amount of time to train more epochs when working with large
data sets. There are 2 basic, yet popular approaches on early stopping. Thresholding
the loss value itself and thresholding the decrease rate of the loss. In addition to that,
there is an optimization method called patience (patience step), which does not trigger
the early stopping until N epochs ensuring at least some particular number of epochs
passes before the stopping is triggered. One problem with these approaches is that
they might contain some level of bias (by setting the threshold manually), but if we
can find a reasonable loss level in our task, which has already found, then we can set it
as a threshold for the further experiments alongside with thresholding the decrease rate
of the loss. Best time to stop is usually when the training accuracy starts to increase,
while the validation accuracy starts to decrease, then overfitting occurs and its time to
stop training but we saved all the models in each epoch, to be able to compare their
performance manually.

Since the background information about the experiments and the methods which
are going to be used in these experiments are explained in previous chapters, now we
can run them and see the results. In our experiment setup, 4 different runs of the
model with 4 different inputs will be compared. These 4 different inputs which will
produce 4 different models can be listed as follows:

• Original Image

• Horizontal Level 3 Coefficient of Haar Wavelet

• TV Denoised Horizontal Level 3 Coefficient of Haar Wavelet

• Concatenated Image
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Concatenated image is created by combining the original image, wavelet coeffi-
cients (horizontal and vertical) and TV denoised H3 Haar coefficient. Below in Figure
4.5 and 4.6, 4 input images separately fed to the network can be seen.

Figure 4.5: Different Inputs for Neural Network. Original image on the left, Horizontal Level 3 Haar
Coefficient in the middle, TV Denoised Horizontal Level 3 Haar Coefficient on the right

Figure 4.6: Concatenated Image : Original image on top left corner, Vertical H3 Coefficient on top
right corner, H3 Haar Coefficient on bottom left corner, TV Denoised H3 Haar coefficient on bottom
right corner

Let’s take a loot at the results of these different inputs. First, how their loss
function behaves will be compared. Then, count based evaluation of the defects will
be conducted. Network is ran with stochastic gradient descent which is explained in
the loss function section, where batch size is equal to 1. Each of them are trained for
80 epochs with a decaying learning rate.

Here in the figures (4.7 - 4.8) below , we can see the change of the training and
validation losses. The lowest validation error is around 40th epoch’s, whereas training
loss decreases sharply after the 50th epoch. For all of them, also at the same time
validation loss starts to rise up significantly after 50th epoch.

It can be said that, based on the performance on the validation set, original model
does slightly better than the other 3 models. Around epoch 30 they are the closest. If
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Figure 4.7: Change in Training Losses Over Epochs of 4 Trained Models with Different inputs.
Inputs are referring to; Original (Raw Image) , H3 (3rd level Haar Coefficient of the Original Image),
TV_H3 (TV Denoised 3rd level Haar Coefficient of the Original Image), MAT3 (Concatenated image
consisting of Horizontal H3, TV_H3, Vertical H3 and original image)

we sort them based on how they perform on the validation set in 30th epoch, we get
this kind of a result consecutively with the validation loss values as 0.42, 0.58, 0.63,
0.81.

1. Original Image (Blue) - 0.42

2. Concatenated Image (Red) - 0.58

3. Horizontal Haar coefficient 3rd level (Dark Orange) - 0.63

4. TV Denoised Horizontal Haar coefficient 3rd level (Grey) - 0.81

Figure 4.8: Change in Validation Losses Over Epochs of 4 Trained Models with Different inputs

To do the evaluation based on the actual defect counts, 200 random images from
the test set are chosen. Then each of the 4 models are run with these inputs. All the
models used are from their 30th epoch’s. Using the prediction tool made by the author,
which can predict one images or several images based on the given folder containing
the images to be predicted (which is provided by the user and with a validation set
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option). In case there is a validation set, the accuracies would be displayed. Results
from the prediction tool are as follows in Table 4.1.

Model Input Accuracy

Original 0.9685
H3 Haar Coefficent 0.8831

MAT3 0.7012
TV H3 0.5324

Table 4.1: Results based on detected defect counts

Original (Raw Image) , H3 (3rd level Haar Coefficient of the Original Image), TV_H3
(TV Denoised 3rd level Haar Coefficient of the Original Image), MAT3 (Concatenated
image consisting of Horizontal H3, TV H3, Vertical H3 and original image)

Here it can be seen that original model works the best, with a quite high count
accuracy followed by H3 (Horizontal level 3 Haar transformation of the original image)
with a decent accuracy, MAT3 (concatenated image) comes as third and TV H3 (Total
Variation denoised version of H3 Haar coefficient) performs the worst. This table
confirms the validation loss results, while it also shows us the small differences on the
validation set error, in this case can lead to big differences on the actual detection
accuracy. This indicates that small differences between the validation set error, in fact,
has larger effect on the count based evaluation. For instance, validation loss of the 30th
epoch for the original image and TV H3 is 0.42 and 0.81, respectively. While difference
is 0.40 on the validation losses, the count accuracy of the original image is %96 and
TV_H3 is %53.

Both H3 Haar coefficient and the original image did quite good on count accura-
cies separately, it means that they can be used together as well. MAT3 (concatenated
image) results are interesting because it contained 4 different images and expected to
perform at least as good as the H3 Haar coefficient alone but, in fact it performed
worse. The reason of that is perhaps one of the components it contains, which is the
TV denoised image. Model with the TV denoised image input has the lowest accuracy
among all and including that image in the MAT3 (concatenated image) might as well
decreased the overall performance of it. This is important in our experiment because a
concatenated image contains all the images in it, which means the information Neural
Network can learn is there all together and in theory, it shouldn’t perform worse than
any of the models with single images as input. However, the opposite is the case. To
test this hypothesis, the TV Denoised (worst performed) image from the concatenated
image is taken out and one more test is conducted by running the same concatenated
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input model this time without the TV denoised component. This did not increase the
accuracy performance significantly (Accuracy is 0.6831, slightly below MAT3). It is
hard to tell precisely why the concatenated image did not work well but it can be due
to the labeling or the way concatenation is applied to the images. When 4 images are
concatenated, labeling is done to only to top left image by calibrating the coordinate
labels. This means the prediction result we expect would be one label corresponding
to the top left image’s defect coordinates but not to the other concatenated images’.
This might have introduced a bias and possibly making the concatenated images does
not perform well. Other concatenation methods will be discussed in the Further Im-
provements chapter.

Another important outcome to note is that, even though MAT3 and TV H3
performed considerably worse than H3 and the original image. When false positive
rates are evaluated it can be seen that they are doing slightly better than these two.
This is mostly due to their poor performance on predicting the defects, but at the same
time it decreases their false positive rates. This can be seen in Table 4.2.

To sum up the results, when we look to the earlier loss function results which
was trained for 180 epochs, they showed us the networks are overtrained and starts to
memorize the data points rather than learning from them, starting from 50th epoch.
This is getting more severe after 80th epoch. It has been mentioned in the Materials
and Methods section that different batch sizes are used in the experiments. Default
batch size was 1 and we tried to use 2 different larger bath sizes (8 and 16) which did
not proove an increase in the accuracy, however it gave us some gains in performance.
Training time for batch size 16 was about x3 times faster compared to the configuration
with batch size 1 and batch size 8 was about x2 times faster. This means in our problem
setting using Stochastic Gradient Descent performs better than mini batch gradient
descent. It is hard to conclude with an exact certainty about the reason of it but
mini batch gradient descent might got stuck in local minima whereas SGD has more
variance in parameter updates which has a potential to end up in a global minima.
This can be one of the reasons SGD works better than mini batch gradient descent in
our setting. Exploring the impact on mini batch size in a Deep Learning setting is an
important resear ch area [65] which goes beyond the scope of this thesis.

In one of the sample types we consider as hard, where there is both a large defect
and a small one, main problem is that detection of the smaller defect is below average.
In these hard samples, TV denoised image underperformed significantly. It missed
almost 50% of the small defects in this case. Original and H3 performed better on
this. The reason TV denosing performs worse in this case might be that using a global
denoising parameter is not optimal for this case. With a fixed denoising parameter,
TV denoised image highlights the large defect well whereas it might cause small defect
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to be considered as noise on the background.
Another interesting findings of our results is that even though H3 coefficient

performed slightly worse than the original image, it still performed remarkably well,
especially considering that resolution of H3 coefficient is 1/4 of the original image and
it still performed quite good on predicting the counts. Training time of the H3 images
are ≈ 2.5 times faster than the network with the original image.

All these models can be used in an ensemble learning setting in the prediction
phase, which will be explained and discussed in the Further Improvements chapter. A
majority voting on a test image can be done by using all or some of 4 models.

When false positives are considered independently, original and H3 coefficient
results are very similar which can be seen in Table 4.2.

Model Input False positive rates

Original % 8.1
H3 Haar Coefficient % 7.6

TV H3 % 5.7
MAT3 % 5.2

Table 4.2: False positive rates on randomly sampled test images. Lower false positive rates are
desired

These experiments showed us even though there are performance gains from the
other image inputs, in terms of general accuracy original image beats the other images.
This does not mean that models with different inputs are completely useless. Especially,
H3 Haar coefficient is very promising considering that it gives closer accuracy to the
original image while having 1/4 of it’s resolution. In computationally costly tasks this
coefficient can be used instead of the original image, also using original and H3 together
in an ensemble learning setting or with using advanced concatenation techniques can
improve the performance of the Neural Network. Different ways of concatenation can
further improve the performance which will be discussed in the Further Improvements
chapter.

In this chapter we discussed different models created from different inputs using
the same network architecture. Original model is compared to Wavelet coefficients
enhanced models, Total Variation Denoised image inputted model and concatenated
image model. The original model performed best in respect of the main task (to count
the defects), but the other models provided important results for further improvements.
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Automated defect detection is an important topic which it’s applications are used
commonly in manufacturing and material industries. It is one of the areas where Deep
Learning algorithms are used actively in industry. This research is aimed to analyze
the state of the art defect detection and object detection algorithms, as well as selecting
and applying one network architecture to a real world industry problem. In this thesis,
Convolutional Neural Networks are discussed in an automated defect detection setting.
Research questions are stated in introduction section and before answering the research
questions, background information about conventional object detection algorithms and
Neural Network powered detection algorithms are discussed. Examples from different
studies of how CNNs are used in defect detection is explained. Inverse Mathematics
methods were used, such as Wavelet Transformations and TV Denoising. They are
explained with comprehensive examples. Then, in the Materials and Methods section,
which methods will be utilized for the experiments (pre-evaluation step as it is called)
are presented. Based on the results, it is been concluded that our selection of CNN
architecture (Retina Net) was well grounded, hence performed well on identifying the
number of defects in a given IR image of Cadmium (Zinc) Telluride Cd(Zn)Te. En-
hancing the Neural Network with different Inverse Mathematic transformations such
as using wavelet transformation coefficients and TV denoising did not beat the original
model but gave us important insights. This approach can be further improved with
the usage of the methods explained in the Further Improvements chapter. Also, it has
been observed that using more advanced Inverse Mathematics transformations has a
potential to provide some development of the topic.

To summarize some of the key findings from the research conducted was that,
first, usage of an FPN architecture is essential in a problem setting where we have
objects/defects which differ in the sizes. Using SGD performed well with a decaying
learning rate. Haar Wavelet transformation in 3rd level highlighted the defects suc-
cessfully, especially the horizontal and vertical coefficients contains useful information
about the image. TV denoising the original image did not provide a big difference on
the image, but applying TV Denoising to a Haar Wavelet coefficient showed promising
results, especially in terms of eliminating the background noise. However, large defects
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were isolated successfully but the same can not be said for the smaller ones. It is
clear that to benefit more from the TV Denoising some optimizations should be done
to the algorithm. Original image performed best on detecting the count of the defect
but when it comes to false positive ratio, H3 Haar coefficient performed better than
the original model, in addition TV denoised H3 Haar coefficient also performed better
than the original model. Determining when to stop was an important hyperparameter
to deal with. It is concluded that saving the models only between the 30th and 50th
epochs would give the best results.

Based on these conclusion, researchers should consider using Inverse Mathematics
transformations (perhaps more advanced methods than the ones used in the thesis)
to help the network to learn better. Especially, running the network with different
transformed inputs, particularly with transformations which are computationally not
expensive, in an ensemble learning setting could be promising.



6. Further Improvements

In this section, possible ways of future development of the experiments conducted
in this thesis will be examined. There are 4 main points in this part. Advanced
concatenation techniques, adaptive denoising, ensemble learning methods and usage of
a segmentation network.

Firstly concatenation: In the experiments, after the model selection is done,
alongside with the original image, different transformations of the original image are
used. Wavelet transformations and TV Denosing separately applied to the original
image, as well as concatenation of both to the transformed images and original image
together. MAT3 is the concatenated example. Concatenated image created by combin-
ing them in the same dimension. Other approaches for concatenation might be more
efficient, one way is to experiment with channelwise concatenation, instead of horizon-
tal concatenation. Instead of horizontally concatenating the images, each additional
image can be treated as a new channel, similar to the three RGB channels in a color
image. Another way of doing the concatenation is, using an additional network or a
layer for concatenation in the network architecture. This has a potential to work better
because instead of applying the same filter to 4 images which are concatenated, another
learning step would be added where that step would be dedicated for combining the
information of 4 different images. Since we are dealing with a black box model, these
possible methods all needs to be experimented separately with a try and error strategy
to see if they can bring any additional benefits to the learning.

Second: In the results, it is observed that worst performing model was where the
TV denoised image is used as input to the model (TV H3). In fact, before running the
NN model, in the pre-evaluation step transformed image looked quite promising when
TV denoising applied to it, which can be seen in TV Denoising section of Chapter
3. Applying TV denoising to the original image did not provide any major changes
on the image, but when it is applied to the Haar coefficient it considerably smoothed
down the noise in the background and highlighted the defects. However, main problem
here was the usage of the smoothing parameter. When the parameter was low, larger
defects were highlighted nicely, whereas same can not be said for the smaller defects.
When a large and small defect contained in the same image the performance of TV
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denoising decreased considerably. Also with a larger parameter, this time, some noise
on the background did not get smoothed enough. To tackle this, an adaptive TV
denoising [66] or a localized denoising technique can be used to further benefit from
TV denoising. Main idea would be applying denoising with different parameters to
different parts of the image. By doing that, both larger and smaller defects could be
highlighted at the same time and noise can be reduced while doing this.

Another possible improvement is Ensemble Learning. Ensemble learning in a
machine learning setting is combining different models in order to increase the accuracy
of predictions [67]. It has 2 popular methods used in machine learning. Bagging and
boosting. Bagging means running the same model with changing the dataset each
time. This can be done by either taking a random subset of the dataset in each run
of the model or changing the weights of the hard examples in the dataset, where hard
examples mean the samples which have lower detection accuracy. Boosting, on the
other hand, is using various trained models together to make the prediction for a test
sample. Since we have 4 different models, it can be suitable to use them in a boosting
ensemble learning setting. We have 4 models with different accuracies and weights.
They can be used together when a test image will be predicted. 4 models can run
separately and their outputs can be combined. This can be done in a majority voting
setting such that averaging the predicted coordinates of the defect and the number of
detections from each model. For example, if 3 out of 4 models predicts there is a defect
and one does not than majority voting will decide that the sample consists a defect
with a probability of %75. It would be even better to do the majority voting with
a weighting, based on the accuracy levels of each model. In this case, most accurate
model will have more impact on the outcome. Especially, the original image and H3
Haar coefficient are suitable to be used in this majority voting scheme. When it comes
to bagging, it can be promising to see the outcome of training a model for different
datasets or for an additional dataset which weights more the hard samples. This can be
done either by modifying the loss function so that it would penalize the hard examples
more/easy examples less or removing the number of easy examples in a subset of the
whole dataset. These methods can increase the accuracy while compromising from
the performance, but needs detailed research to see if they would actually bring any
significant benefits to the defect detection problem.

Finally, an important further development to this research can be usage of a
different network structure. The author has explained and worked with CNNs dedi-
cated for object identification and detection throughout this thesis. These networks
can be called classification networks. Using classification networks is one approach to
the problem and another one is using a segmentation network instead of a classifica-
tion one. Difference between segmentation and classification network architectures is
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that, segmentation networks produce a mask output as the prediction rather than the
bounding boxes, which most of the object detection networks produce. Some research
are done using segmentation networks to tackle this problem and some used segmen-
tation alongside with classification networks [31]. This approach can be used to test if
segmentation networks such as U-Net can bring any improvements to this problem set-
ting. U-Net is a network architecture which consists of 2 sections. Encoder subnetwork
and decoder subnetwork. In encoder part of the network, it works like a conventional
CNN architecture with stacked convolutions, pooling layers and activation functions.
This encoder part does downsampling. Decoder part starts after encoding part ends,
which uses transposed convolutions this time to upsample the feature maps outputted
from encoder part of the network. Decoding part outputs a segmented prediction mask
as the result of the network. More information about U-Net can be found here [68].
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Appendix A.

Figure A.1: Haar Wavelet Horizontal 3rd level Coefficient

Figure A.2: Haar Wavelet Vertical 3rd level Coefficient
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Figure A.3: Haar Wavelet Diagonal 3rd level Coefficient

Figure A.4: Daubechies Wavelet Horizontal 3rd level Coefficient

Figure A.5: Daubechies Wavelet Vertical 3rd level Coefficient
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Figure A.6: Daubechies Wavelet Diagonal 3rd level Coefficient

Figure A.7: Discrete Meyer(dmey) Wavelet Horizontal 3rd level Coefficient
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Figure A.8: Discrete Meyer(dmey) Wavelet Vertical 3rd level Coefficient

Figure A.9: Discrete Meyer(dmey) Wavelet Diagonal 3rd level Coefficient
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