
Date of acceptance Grade

Instructor

Neural models for unsupervised disambiguation in morpho-
logically rich languages

José María Hoya Quecedo

Helsinki November 11, 2019

UNIVERSITY OF HELSINKI
Department of Computer Science

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/286390097?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Faculty of Science Department of Computer Science

José María Hoya Quecedo

Neural models for unsupervised disambiguation in morphologically rich languages

Computer Science

MSc Thesis November 11, 2019 53 pages + 0 appendices

natural language processing, machine learning, morphological disambiguation

The problem of morphological ambiguity is central to many natural language processing tasks.
In particular, morphologically rich languages pose a unique challenge due to the large number of
possible forms some words can take.

In this work, we implement and evaluate a method for morphological disambiguation of morpho-
logically rich languages. We use deep learning techniques to build a disambiguation model and
leverage existing tools to automatically generate a training data set.

We evaluate our approach on the Finnish, Russian and Spanish languages. For these languages,
our method surpasses the state-of-the-art results for the tasks of part-of-speech and lemma disam-
biguation.

ACM Computing Classification System (CCS):

10010147.10010178.10010179.10010185
Computing methodologies Phonology / morphology

10010147.10010257.10010293.10010294
Computing methodologies Neural networks

Tiedekunta — Fakultet — Faculty Laitos — Institution — Department

Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Oppiaine — Läroämne — Subject

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidoantal — Number of pages

Tiivistelmä — Referat — Abstract

Avainsanat — Nyckelord — Keywords

Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — övriga uppgifter — Additional information

HELSINGIN YLIOPISTO — HELSINGFORS UNIVERSITET — UNIVERSITY OF HELSINKI



ii

Contents

1 Introduction 2

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Structure of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Problem description 5

2.1 Terminology and definitions . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Morphological ambiguity . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Types of morphological ambiguity . . . . . . . . . . . . . . . . . . 8

2.3.1 Ambiguity between two declinable words . . . . . . . . . . . 9

2.3.2 Ambiguity between a declinable and an indeclinable word . 12

2.3.3 Ambiguity between two indeclinable words . . . . . . . . . 14

3 Previous work 16

3.1 Rule-based models . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Probabilistic models . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Neural models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Methodology 22

4.1 Data pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1.1 Tokenization . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1.3 Training and testing instances . . . . . . . . . . . . . . . . . 25

4.1.4 Word embeddings . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Model architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2.1 Long Short-Term Memory . . . . . . . . . . . . . . . . . . . 29

4.2.2 Multilayer perceptron . . . . . . . . . . . . . . . . . . . . . 31

4.2.3 Objective function . . . . . . . . . . . . . . . . . . . . . . . 33



iii

4.2.4 Network layout . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Evaluation 37

5.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6 Results 40

6.1 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.2 Comparison with state of the art . . . . . . . . . . . . . . . . . . . 43

7 Conclusions and future work 45

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7.2.1 Model enhancements . . . . . . . . . . . . . . . . . . . . . . 45

7.2.2 Other approaches . . . . . . . . . . . . . . . . . . . . . . . . 47



1

Acknowledgements

This work was supported in part by TEKES, the Finnish Funding Agency for
Technology and Innovation, Project “iMEDL—Digital Media Evolution through
Deep Learning” (number 5933/31/2017), and by Helsinki Institute for Information
Technology HIIT.

I would like to thank my supervisor, Dr. Roman Yangarber, for his guidance
throughout the entire process, for giving me the opportunity to work under his
wing, and for sparking my interest in the field of NLP.

I would also like to acknowledge the help and valuable input given to me by my
coworkers, Max Koppatz, Jue Hou, Anisya Katinskaya and Sardana Ivanova.

Finally, I would like to thank my family, my friends, and Silvia Azcárate, for their
unquestioning love and support.



2

1 Introduction

1.1 Motivation

All natural languages have some degree of ambiguity, that is, we can find words
or statements that can be interpreted in several ways. This is a consequence
of the fact that languages tend to maximize the information transmitted while
minimizing the encoding [25]—in the case of written language, word and sentence
length—relying instead on word inter-dependencies within a sentence to convey
an unambiguous idea.

Ambiguity can present itself in many different ways. Ambiguity can be either
structural, when it occurs on the sentence or discourse level, or lexical, when it
occurs on the word level.

One type of lexical ambiguity is morphological ambiguity, which takes place when
there are several different possibilities as to how a word was constructed.

For example, the English word “are” can be analysed in two different ways:

• As a form of the verb “to be”: you are, we are, etc.

• As the singular form of a noun meaning “100 square metres” (rarely used, in
favour of its derived form “hectare”).

Note that other forms are unambiguous, such as “ares,” which can only be the
plural of “are,” or “am,” which can only be the first person singular of the present
indicative of “to be.”

Many other types of lexical ambiguity exist, such as word sense ambiguity, when
a single word has different meanings—as in English “plant,” which can be an or-
ganism belonging to the Plantae kingdom or an industrial facility—or homophony,
when two distinct words are pronounced in the same way—as in English “die” and
“dye.”

Such ambiguities are out of the scope of this work, although word sense ambiguity
and morphological ambiguity overlap—since the latter always entails the former.
In our previous example, the two possible analyses for “are” clearly mean two differ-
ent things. However, word sense ambiguity can take place without morphological
ambiguity, as with “plant,” which can only be interpreted as the singular form of
a noun and it has the same root regardless of its meaning in the context.
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We consider a language to be morphologically rich when words can take many
different forms depending on their exact meaning or how they are used in the
sentence. These languages tend to have a high degree of ambiguity, since inevitably
some forms of some words will be written in the same way as other forms of different
words.

There are many cases in which morphological ambiguity presents a challenge for
a computer trying to perform some automatic processing on a piece of text.

In our language learning application,1 we have several uses for morphological dis-
ambiguation. For example, in one of the exercise types, users are provided a base
form (the lemma, as defined in Section 2.1) for a missing word in a sentence and
have to put it in the correct form [14]. In order to find the base form for an
ambiguous word, we need to analyse it properly.

With automatic translation, morphological disambiguation is crucial to determin-
ing the correct meaning of a sentence and producing a translation which makes
sense and where the words are in the correct form.

Another case where morphological disambiguation proves useful is in search en-
gines, where the words of both the search query and the text are reduced to some
canonical form, in order to be able to match relevant results in which the words
are in a different form. For example, say we have the query “learning resource
English” and the text “I learnt English with these resources.” We can reduce the
query to “learn” + “resource” + “English” and the text to “learn” + “English” +
“resource” and thus match them easily, even though “learn” and “resource” are in
different forms in the original query and text. For ambiguous words, this canonical
form is not immediately obvious to the computer.

1.2 Goals

The main goal of this work is to design, implement and evaluate a method for
morphological disambiguation of words in morphologically rich languages.

We need our approach to be language-independent, since there are many different
morphologically rich languages in our application which currently lack a viable
method for morphological disambiguation. Our focus is mainly on Finnish, but
we will also use Russian and Spanish2 to verify that the approach works for other

1revita.cs.helsinki.fi
2Since we have native speakers for all three and can thus manually confirm that the method is
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languages.

In addition, these languages lack a sufficient amount of manually annotated data
for traditional supervised methods, so our method needs to rely solely on unlabelled
data and leverage existing tools, such as a morphological analyser.

Our main hypotheses are:

• For every ambiguous word in some context, the corpus will contain many
morphologically similar words, which are unambiguous and which appear in
similar contexts.

• We can capture the relationships between contexts and specific word forms.

• We can train the models by using an “automatically annotated” data set—
which contains only unambiguous instances—which requires no expensive
manual data annotation and no supervision. Automatic annotation can be
performed by a morphological analyser.

1.3 Structure of this thesis

This work is structured as follows.

In Chapter 2 we define key terms used throughout this work and explore the
different types of morphological ambiguity, as well as the viable approaches for
each type.

In Chapter 3 we review relevant pieces of work in the field of morphological dis-
ambiguation, focusing on their merits as well as their shortcomings.

In Chapter 4 we describe in detail our solution to the problem and explain the
techniques used in our approach.

In Chapter 5 we describe the evaluation procedure and the data used for evalua-
tion.

In Chapter 6 we present the results of our experiments and discuss them.

In Chapter 7 we provide our conclusions and propose future lines of research.

working properly.
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2 Problem description

2.1 Terminology and definitions

A word is the smallest unit of language which has meaning by itself. A word is
defined by the following attributes:

• The surface form is the textual representation of the word. The surface
form gives us all the information we need to infer the other attributes, al-
though there may be several options, if it is ambiguous.

• The lemma is the canonical or “dictionary” form of the word. For example,
for our languages, the lemma for nouns is the nominative singular and the
lemma for verbs is the infinitive.3 The criterion for which form is considered
the lemma varies across languages—for instance, the lemma for verbs in
Latin is the first person singular of the present indicative.

• The part-of-speech (POS) of a word is its morphosyntactic category. The
POS determines both the morphological properties of the word (i.e., the
set of morphological features) and the syntactic properties of the word (i.e.,
the role of the word in the sentence). Examples of POS are: verb, noun,
adjective, etc.

• The morphological features of a word are the different parameters which
define the morphology of said word. For example, nouns have the feature
“number,” which can take on two values in our languages, “singular” or “plu-
ral,” depending on whether there is one or many of such noun; verbs have
the feature “tense,” which can be “present,” “past,” etc. depending on when
the action takes place.

An inflectional morpheme is a string of characters that marks a set of morpho-
logical features for a given POS. In fusional languages such as Finnish4, a single
inflectional morpheme usually corresponds to several morphological features (e.g.,
case and number for nouns, or tense, mood and person for verbs).

For example, the Finnish word Suomessa (“in Finland”) has the surface form
Suomessa, the lemma Suomi (“Finland”) and the POS “noun.” The suffix -ssa

3For Finnish—which has 5 infinitives—the lemma is the first or -a infinitive.
4Note that Finnish exhibits some degree of fusion but is not completely fusional.
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is an inflectional morpheme that marks the inessive case (meaning “in” or “inside”)
and the singular number.

Morphological analysis is the task of breaking down a surface form into its
lemma, POS and morphological features (also called “tags”) by means of a mor-
phological analyser. As mentioned previously, the analyser may give more than
one possible valid analysis for a surface form. Each of the possible analyses given
by the analyser is referred to as a reading.

The morphological analysis for Suomessa would be:5

Suomi+N+Prop+Sg+Ine

Each analyser tag corresponds to a morphological feature:

• N: Noun.

• Prop: Proper noun.

• Sg: Singular number.

• Ine: Inessive case.

Furthermore, according to the inflectional pattern of a word (i.e., the set of inflec-
tional morphemes it accepts), we can define two categories for words:

• Declinable words are those that accept inflectional morphemes, and so a
single lemma can produce several distinct surface forms.

• Indeclinable words are those that do not accept inflectional morphemes—
which means that the surface form for these words will always be equal to
their lemma.

Whether a word is declinable is generally indicated by its POS. In our set of
languages, a given POS always gives the same inflectional pattern; we do not
have edge cases like English modal verbs, which are verbs—a declinable POS in
general—but have a fixed, single conjugation and are thus indeclinable (e.g., can,
must, etc.). In any case, it would be reasonable to create a new POS for these
specific words, if we did have them.

5Ine: inessive case.
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2.2 Morphological ambiguity

Morphological ambiguity occurs when a morphological analyser gives more
than one reading for a surface form. Morphological ambiguity can take three
different forms, which we will treat as separate problems in this work:

• POS ambiguity occurs when the analyser gives more than one possible
POS for the surface form.

• Lemma ambiguity occurs when the analyser gives more than one possible
lemma for the surface form.

• Feature ambiguity occurs when there is more than one possible reading
for a single POS and lemma combination—that is, there are several different
possible sets of morphological features.

For instance, take the Finnish surface form maksaa (“liver” / “to cost”), with the
following morphological analysis:6

maksa+N+Sg+Par
maksaa+V+Act+Ind+Prs+Sg3
maksaa+V+InfA

This surface form has three readings: one with the lemma maksa (“liver”) and the
POS “noun,” and two with the lemma maksaa (“to cost”) and the POS “verb.” The
verbal readings are an example of syncretism, where the first infinitive coincides
with the third person singular of the present indicative.

In this case, all three types of morphological ambiguity are present:

• There are two possible POS, “noun” and “verb.”

• There are two possible lemmas, maksa and maksaa.

• For the lemma maksaa and POS “verb,” there are two different possible sets
of morphological features: the third person singular of the present indicative,
and the first infinitive.

6Par: partitive case, V: verb, Act: active voice, Ind: indicative mood, Prs: present tense, Sg3:
third person singular, InfA: first infinitive.
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In addition, we can see that the problems of POS and lemma disambiguation are
equivalent in this instance—for example, if we know the correct POS is “verb,” we
know the lemma is maksaa, and vice versa—and, as we will see in the following
section, this is indeed the case for most instances. Furthermore, for the instances
where the lemma is maksa, the feature ambiguity is also resolved.

In Section 1.1 we saw that, for most tasks—i.e., those requiring text canonicalization—
we only need to find the lemma for a given surface form. Therefore, in this work,
we tackle only the problems of POS and lemma disambiguation as a first approach
that covers most major use cases. Nevertheless, the method could be extended to
handle feature ambiguity, as we will briefly discuss in Section 7.2.

2.3 Types of morphological ambiguity

Based on the three types of ambiguity and the declinable-indeclinable classifica-
tion, we can define a two-axis taxonomy for ambiguities which will group together
ambiguities that can be solved with a certain disambiguation method. One axis
indicates whether the words are declinable or indeclinable, and the other axis
indicates whether there is POS ambiguity, lemma ambiguity, or both.

Note that, for simplicity, we will assume that the ambiguities are two-way—i.e.,
there are two possible readings—since that is by far the most common kind in our
corpora.7 For n-way ambiguities, we would have to choose the intersection of the
viable methods for each pair of ambiguities .

For instance, consider the Spanish surface form bajo, which can be a form of the
adjective bajo (“low”), the preposition bajo (“under”) or the verb bajar (“to lower”).
It is thus a three-way ambiguity with the following pairs:

1. (bajar, verb) and (bajo, adjective).

2. (bajar, verb) and (bajo, preposition).

3. (bajo, adjective) and (bajo, preposition).

As we will see later in this section, the first pair can be solved either through
POS or lemma disambiguation, and the next two can only be solved through POS

7See Section for a description of the corpus used for each language.
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disambiguation. Therefore, we can solve the three-way ambiguity using POS dis-
ambiguation. If the intersection is the empty set, then the ambiguity is unsolvable
with our method.

Table 1 provides a summary of the effective approaches for each category.

In Table 2, we can see that POS disambiguation can effectively solve the majority
of ambiguities, except for those in which the POS is the same across readings.

2.3.1 Ambiguity between two declinable words

Different POS, different lemma This is the easiest type to solve, since, in
general, the words will only partially overlap in their surface forms: different
lemmas with a different inflectional paradigm—given that the POS is different—
will generate many distinct surface forms. For example, consider the Finnish word
tuli (“fire” / “he came”), with the following morphological analysis:8

tuli+N+Sg+Nom
tulla+V+Act+Ind+Prt+Sg3

This surface form can be a form of either the noun tuli (“fire”) or the verb tulla
(“to come”). Both POS are declinable, so we can find unambiguous surface forms
corresponding to each lemma.

For example, for tuli we have the unambiguous partitive case tulta:

tuli+N+Sg+Par

And for tulla the second person of the same tense, tulit, is unambiguous:9

tulla+V+Act+Ind+Prt+Sg2

Therefore, we expect to find enough unambiguous forms of both tuli and tulla to
be able to model the context in which each of them generally appears, and so
decide whether a given context is more likely to be surrounding one or the other
in the ambiguous cases.

This type of ambiguity is ideal in the sense that either POS or lemma disambigua-
tion can be used to effectively solve it.

Some examples of this type of ambiguity are:
8Nom: nominative case, Prt: past tense (preterite).
9Sg2: second person singular.
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Language Surface Lemma POS Translation

Finnish tuli
tuli Noun “fire”
tulla Verb “he came”

Russian стали
сталь Noun “steel”
стать Verb “they became”

Spanish vino
vino Noun “wine”
venir Verb “he came”

Different POS, same lemma For this type of ambiguity, we can consider two
different cases, depending on the POS of the ambiguous readings:

1. If the POS have the same inflectional paradigm.

2. If the POS have a different inflectional paradigm.

An example of case 1 is the Finnish word kuusi (“spruce” / “six”):10

kuusi+N+Sg+Nom
kuusi+Num+Sg+Nom

Even though the lemma is the same, since they are both declinable words and
their pattern of inflection is different, there are many unambiguous surface forms
for each lemma.

For instance, the genitive case (meaning “of” or indicating possession) for the noun
kuusi (“spruce”) is kuusen, and it is unambiguous:11

kuusi+N+Sg+Gen

In contrast, the genitive case for the numeral kuusi (“six”) is kuuden, and also
unambiguous:

kuusi+Num+Sg+Gen

Therefore, relabelling each lemma—for example, as kuusiNoun and kuusiNum—is
enough to make ambiguities in this case equivalent to the previous type (different
POS, different lemma), and solvable by either POS or lemma disambiguation.

10Num: numeral.
11Gen: genitive case.
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This case is particularly common in Russian, where there are many nouns which
have the same lemma as a verb, and nouns and verbs have a very different set of
morphological features.

For case 2, this approach is ineffective. An example of this which appears fre-
quently in Finnish is words which can be nouns or adjectives, such as colours.
Consider the analyses for punainen (“red”):12

punainen+A+Sg+Nom
punainen+N+Sg+Nom

Nouns and adjectives in Finnish have exactly the same morphological features and
inflectional morphemes modify the lemma in exactly the same way. Therefore,
these ambiguities can only be solved via POS disambiguation.

Examples:

Language Surface Lemma POS Translation

Finnish kuusi
kuusi Numeral “six”
kuusi Noun “spruce”

Russian знать
знать Verb “to know”
знать Noun “nobility”

Spanish parecer
parecer Verb “to seem”
parecer Noun “opinion”

Same POS, different lemma If the lemmas are different, then in general the
surface forms they produce will only partially overlap, so, for this type of ambiguity,
we expect to have many unambiguous instances of each lemma.

Since the ambiguous readings have the same POS, we cannot use POS disam-
biguation to solve the ambiguity. Thus, for this type we have to resort to lemma
disambiguation.

It is the only type where such method is the sole viable approach and, despite
being far less common than the other major types, it is equally interesting for our
purposes. This type is therefore the reason why we explore lemma disambiguation
at all.

Examples:
12A: adjective.



12

Language Surface Lemma POS Translation

Finnish palaa
palaa Verb “to return”
palata Verb “he burns”

Russian белку
белка Noun “squirrel”
белок Noun “protein”

Spanish fui
ser Verb “I was”
ir Verb “I went”

Same POS, same lemma If the lemma and POS are the same and both words
are declinable, then there is only feature ambiguity. This is the corner case where
neither POS nor lemma disambiguation suffice to solve the morphological ambi-
guity, and so our approach is ineffective.

This type is less relevant for most NLP tasks, but worth exploring for some more
advanced ones, such as dependency parsing—i.e., finding syntactic relations within
a sentence—where, for example, the case of a noun tells us if it is a direct object,
or the person of a verb indicates which pronoun accompanies it.

Examples:

Language Surface Lemma POS Translation

Finnish nostaa
nostaa Verb “to raise”
nostaa Verb “he raises”

Russian кота
кот Noun “of the cat”
кот Noun “the cat”

Spanish come
comer Verb “he eats”
comer Verb “eat, you”

2.3.2 Ambiguity between a declinable and an indeclinable word

Different POS, different lemma This type is particularly common in Finnish,
where many adverbs or post-positions originate historically from an inflected form
of a semantically related noun. As an example, consider the Finnish surface form
jälkeen (“into the footprint” / “after”), which has two readings:13

jälki+N+Sg+Ill
jälkeen+Po

13Ill: illative case, Po: postposition.
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We get two lemmas, jälki (“footprint”) and jälkeen (“after”), and two POS, “noun”
and “post-position.” The post-position etymologically comes from the illative case
(meaning “into” or “toward”) of the noun, in the sense that “after” is synonymous
with “in the footsteps of.” However, this form has become its own lemma and
diverged slightly from its original meaning by being commonly used figuratively,
taking on a more general and abstract meaning.

At first glance, it might seem like this ambiguity can be solved by predicting the
lemma. However, in practice, we will never find unambiguous instances of the
lemma for the indeclinable word—in this case, jälkeen—thus making it impossi-
ble to model the context for said lemma. We can know how likely it is that a
given context surrounds the declinable word—since there are many unambiguous
forms of jälki—but without a reference for how likely the indeclinable word is in
comparison, we cannot say with confidence whether it is one or the other.

Therefore, the only viable approach for this ambiguity using our method is to
disambiguate the POS, since there will be plenty of instances of other unambiguous
words with the same POS.

Examples:

Language Surface Lemma POS Translation

Finnish jälkeen
jälki Noun “into the footprint”

jälkeen Postposition “after”

Russian для
длить Verb “while delaying”
для Preposition “for”

Spanish cabe
caber Verb “he fits”
cabe Preposition “next to”

Different POS, same lemma This type of ambiguity is very uncommon—the
rarest in Finnish, as shown in Table 2. Many of the instances are nouns which can
be used as particles or interjections, such as Finnish helvetti (“hell”), which can be
used as an expression of surprise or annoyance. For many NLP tasks, it would be
reasonable to make a rule that removes the indeclinable reading for most of these
words. There are, however, a few words for which this ambiguity is significant on
a morphosyntactic level.

As with the previous type, lemma disambiguation is infeasible, and so these am-
biguities must be solved by disambiguating the POS.
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Examples:

Language Surface Lemma POS Translation

Finnish aika
aika Noun “time”
aika Adverb “quite”

Russian уж
уж Noun “grass snake”
уж Adverb “already”

Spanish sobre14
sobre Noun “envelope”
sobre Preposition “over”

Same POS As we mentioned in 2.1, the POS determines whether the word
is declinable or indeclinable. Thus it is impossible to have the same POS in an
indeclinable and a declinable word, and this type of ambiguity does not exist.

2.3.3 Ambiguity between two indeclinable words

Different POS, same lemma This is a somewhat prevalent type of ambiguity
across many languages, since short, indeclinable words tend to be reused for several
different purposes in a sentence. For instance, in Finnish, many post-positions can
also function as adverbs—such as kanssa (“with” / “also”), which can accompany
a noun, as a post-position meaning “with,” or a verb, as an adverb meaning “also.”

Due to this, this type can be considered extra-morphological, since the difference
between POS which do not accept inflections is purely syntactical—and therefore
it is essentially outside the scope of this work.

As with almost all other ambiguities where the lemma is the same, this type is
only solvable through POS disambiguation.

Same POS, same lemma If the lemma and POS are the same, the words must
be trivially the same word, since there are no other morphological features—and
so there is always only one reading for the word, and no ambiguity.

Different lemma If the words are both indeclinable—neither can be inflected—
and if their lemmas are different, there is no ambiguity, as the surface forms will
always differ as well. Therefore, similarly to the previous type, this type never
occurs in practice.

14Also a form of the verb sobrar (“to be in excess”).
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Declinable-
Declinable

Declinable-
Indeclinable

Indeclinable-
Indeclinable

6= POS
= lemma

POS disamb. POS disamb. POS disamb.

= POS
6= lemma

lemma disamb. n/a n/a

6= POS
6= lemma

either POS disamb. n/a

= POS
= lemma

neither n/a n/a

Table 1: Viable approaches for each type of ambiguity.

Declinable-
Declinable

Declinable-
Indeclinable

Indeclinable-
Indeclinable

6= POS
= lemma

8.78% 1.63% 6.47%

= POS
6= lemma

8.93% 0.00% 0.00%

6= POS
6= lemma

40.29% 27.88% 0.00%

= POS
= lemma

6.04% 0.00% 0.00%

Table 2: Incidence of each type of ambiguity in the Finnish corpus.
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3 Previous work

3.1 Rule-based models

One of the simplest and most intuitive ways to approach the problem of morpho-
logical disambiguation is by manually writing rules which look at the context of a
word in order to decide which is its correct analysis.

One of the earliest and most widely used frameworks for writing disambiguation
rules is Fred Karlsson’s constraint grammar specification [13].

The input to a constraint grammar is a sentence where every word has been mor-
phologically analysed. With this information, the rules of the grammar remove
impossible readings or select the correct reading for each word, based on conditions
within the context.

For instance, suppose we have the following rule:

SELECT (Sg3) IF (-1 (Pron Sg3)) (0 (V));

This rule has two conditions, (-1 (Pron Sg3)), which is true if the preceding
word has a singular third person pronoun reading, and (0 (V)), which is true if
the current word has a verb reading. The result of this rule is to select the reading
with the tag (Sg3) if both conditions hold true.

Suppose we have the ambiguous phrase hän tuli (“he came”). The input to the
rule would be all the possible readings for each word:15

hän+Pron+Pers+Sg3+Nom

tuli+N+Sg+Nom
tulla+V+Act+Ind+Prt+Sg3

Applying the previous rule on this phrase, we would select the verbal reading for
“tuli,” since we have a reading with the tag Sg3 in the current position, and a
reading with the tags Pron and Sg3 in the previous position.

Note that constraint grammars are a very powerful paradigm and allow us to do
other tasks such as syntactic annotation; these rules for disambiguation are just a
small subset of the functionality they provide.

15Pron: pronoun, Pers: personal pronoun.
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As with any other approach using handmade rules, there are several advantages
and disadvantages.

The main advantages are:

• They are human-readable: one can understand the rationale behind each
decision made by the model.

• They behave consistently, i.e., every instance which matches a rule will pro-
duce the same result.

• Their behaviour can be easily adjusted to account for exceptions to a rule or
previously uncovered cases.

• They can have an arbitrarily high precision, given rules with enough com-
plexity and ability to generalize.

In addition, a set of rules can be used as a pre-processing step to augment any other
approach, in order to solve cases which are very clear-cut, such as the previous
example where a pronoun agrees in person with a verbal reading.

However, they also come with a host of disadvantages, such as:

• Writing rules is a very labour-intensive process, compared to automatic pro-
cedures.

• Expert knowledge is necessary to write the rules—they require both extensive
knowledge of linguistics and of the rule language specification.

• The coverage of the set of rules—that is, the number of cases which are picked
up by the rule conditions—is limited. In order to have perfect coverage, one
would have to write a set of rules that covers the entire grammar for a
language, as well as exceptions to grammatical rules.

There exist several approaches to learning these rules automatically in order to
alleviate the first problem, which is arguably the biggest one. One such approach
is by Šmerk [32], which uses inductive logic programming to learn the set of dis-
ambiguation rules.

Rules are learned by optimizing two criteria: the rules must cover the largest
possible number of positive examples and the smallest possible number of negative
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examples. Examples are taken from unambiguous words in a corpus which has
been analysed by a morphological analyser.

One of the merits of this work is that it shows that there is a strong overlap in
context between ambiguous words and unambiguous words which fulfil a similar
role in the sentence. That is, an unambiguous word which is similar to an am-
biguous word will appear in a similar context, thus making it possible to learn to
disambiguate just by looking at the context of unambiguous examples in a corpus.
This is one of the main assumptions made by most unsupervised approaches to
morphological disambiguation, including our work.

However, by using an automatic procedure instead of a manual one, the possibility
of errors (i.e., unaccounted for exceptions to a general rule) is introduced, making
it a trade-off with regard to manual rule writing. Additionally, the rule format
must be manually specified—therefore, domain knowledge is still required to build
the model.

3.2 Probabilistic models

Probabilistic models work by capturing statistical dependencies between words
within some unit of language—usually a sentence or document.

A very widely used probabilistic model is the Hidden Markov model (HMM), which
is designed for sequential data. Let us assume that we want to use an HMM for
POS tagging—that is, given a sequence of words W = {w1, w2, . . . , wn}, find the
sequence of tags T = {t1, t2, . . . , tn} corresponding to each word. Thus, W would
be the sequence of observed states (the ones we know) and T would be the sequence
of hidden states (the ones we do not know).

In order to make the problem tractable, two assumptions are made: that the
current hidden state depends only on the previous hidden state, and that the
current observed state only depends on the current hidden state. This is known
as the Markov assumption.

First, we need to train the model by learning two sets of parameters:

• The transition probabilities—that is, the probability that, being in some
hidden state ti, the next hidden state will be some other state tj. In our case,
this would be the probability of finding some POS following the current one.

• The emission probabilities—that is, the probability that the current hidden
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t1 t2 tn. . .

w1
. . .w2 wn

Figure 1: An HMM for POS tagging. Arrows indicate dependencies: each hidden
state only depends on the previous one, and each observed state depends only on
the hidden state.

state ti produces some observed state wi. In our case, this would be the
probability of having each word given that our POS is some value.

Once the model is trained, inference is performed by picking the sequence of hidden
states T that maximizes the probability of having produced the observed states
W using dynamic programming, e.g., the Viterbi algorithm [6].

Figure 1 shows a diagram for an HMM with these characteristics.

Due to these assumptions, HMMs cannot capture long-term dependencies. Fur-
thermore, they require annotated data for training, and inference tends to be much
slower than other methods (for large inputs). However, they still achieve very high
precision, and were the de facto standard for POS tagging before the advent of
neural networks.

An example of a relevant work using an HMM is that by Hakkani-Tür et al. [9].
It tackles the problem of morphological disambiguation for Turkish, which is a
language with similar characteristics to Finnish—such as a high morpheme-to-
word ratio and free word order.

In the above work, two models are built: one which uses sets of morphological tags
as the input, and one which uses only the lemma and POS of each context word.
They work with the assumption that both models are independent: morphological
tags are defined by the syntactic context of a word, whereas lemmas depend on
the appearance of other lemmas in the sentence. They obtain results which show
that such assumption holds true to a large extent.

Another statistical approach to morphological disambiguation of Turkish is the one
by Yatbaz and Yuret [30]. They first build a language model, which is a function
that takes in a piece of linguistic input (word, sentence, document) and assigns a
probability to it. This language model is then used to obtain the probability that
a reading appears in a given context.
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Such probability is estimated by computing the probability of a set of replacement
words having the same POS and morphological features. The context is mod-
elled as a window of words centred around the target word—thus utilizing words
appearing after the target word, unlike the previous method.

Their approach does not require manually annotated data, relying exclusively on
information given by the analyser and a large, unlabelled corpus. They obtain
results comparable to a supervised baseline.

3.3 Neural models

In the past few years, neural networks have dominated the research in NLP. In
particular, deep learning models have surpassed the high accuracy of more tra-
ditional models in areas such as POS tagging, which had previously seen little
improvement for many years.

The most commonly used neural network model for this purpose is the bidirec-
tional Long Short-Term Memory architecture, which we will describe in detail in
Section 4.2, since it is the same model we use in our work. All the following works
referenced in this section use this same architecture. Furthermore, these works use
information from the morphological analyser, in order to constrain the predictions
for each word to the choices given by the analyser.

For Arabic, the work by Zalmout and Habash [31] uses independent models for
predicting different morphological features. For each word, each model predicts a
feature based on the context. If the feature is found in one of the possible readings
for the word, the score for that reading is increased. Then, the reading with the
highest score is selected as the most likely one.

They test several input data representations and conclude that character-level
representations result in an increase in accuracy over word-level representations.

The approach by Inoue et al. [11]—also for Arabic—is similar, but improves on
the previous method by using multi-task learning. Instead of trying to predict
each feature individually, the model performs a joint prediction which exploits the
dependencies between features. They accomplish this by reusing model parameters
across different models.

For Estonian, the work by Tkachenko and Sirts [29] uses a similar architecture to
ours. They use dense representations for the context and target word which are
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then encoded into a single state vector. Then, they try two different models: a
simple softmax classifier over the state vector, and a decoder architecture which
generates a sequence from the encoded state. Their results for each model are
basically identical, with the former model being significantly simpler.

The overall results for each method show that current neural networks outperform
previous methods while having significant advantages:

• They require very little or no feature engineering, that is, the model auto-
matically extracts the features it needs from raw data.

• They do not require domain knowledge on the input data.

• They do not require us to make assumptions on how the data and the solution
are structured, as with rule-based or probabilistic approaches.

They do, however, come with several disadvantages, some of them being:

• The models are effectively black boxes: in most cases it is impossible to know
how some prediction was computed.

• Training is very slow and in most cases requires specialized hardware.

• They require a large amount of annotated data for training.

In our work, we aim to address this last issue, by developing a method which does
not require manually annotated data.
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4 Methodology

4.1 Data pre-processing

4.1.1 Tokenization

Tokenization is the task of segmenting a string of characters into its minimal
relevant sub-strings for some purpose, called tokens. Our purpose is to transform
an input string—which represents an entire document—into a list of strings which
can be parsed by the morphological analyser. Thus, we consider tokens to be the
surface forms of words, punctuation marks, acronyms, symbols or abbreviations—
in short, any string which has meaning on its own.

For example, the sentence Hän tuli kotiin. (“He came home.”) is given to the
tokenizer as a single string:

Hän tuli kotiin.

And the tokenizer should return a list of tokens:

Hän tuli kotiin .

In order to produce useful tokens, the tokenizer has to correctly identify the word
boundaries within the string. For many languages, these are mostly indicated by
white spaces, but some cases are non-trivial—consider, for instance, the English
string “don’t,” which is composed of two tokens: “do” and “not.”

Furthermore, abbreviations are usually followed by a full stop, which should not
be split from the rest of the token, since it does not function as a punctuation
mark. For example, the Finnish abbreviation “t.,” short for terveisin, (“regards,”
as in the signature of a letter) should be a single token, and not split into “t” +
“..” However, if the abbreviation is the last word in the sentence, then one of the
full stops is omitted for readability, and the tokenizer should recover it.

Other cases where a full stop might not indicate a word or sentence boundary are
numbers with decimals or dates in the standard Finnish format DD.MM.YYYY.

In addition, Finnish words are not always separated by a white space, and some
punctuation marks like the colon have two purposes: either as a sentence separator,
or as a way of attaching an inflectional ending to a number or acronym. For
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example, EU:n (“of or pertaining to the EU”) is a single token, whereas EU-maat
(“EU countries”) is composed of two tokens, EU and maat.

Other languages (e.g., Mandarin) may not at all have explicit word boundaries—
such as the white space—and thus tokenization should be done based on contextual
information. These languages, however, are out of the scope of this work.

For our Finnish training corpus, we use the Turku OpenNLP model for tokeniza-
tion [12], which is a statistical model trained in order to deal with these problem-
atic cases, and thus in principle better than a simpler approach such as regular
expressions.

The Finnish evaluation corpus and the Russian and Spanish training and evalua-
tion corpora are already given in tokenized form.

4.1.2 Analysis

After tokenizing the input text, we proceed to analyse each token with a morpho-
logical analyser.

For Finnish, we use the analyser from the Giellatekno platform16 [20].

For Russian, we use the Crosslator analyser [16].

For Spanish, we use the analyser from Apertium17 [5].

Since the goal is to disambiguate the output of the analyser, the coverage of said
analyser—the percentage of tokens that have an analysis—is a relevant concern.
The Finnish, Russian and Spanish analysers have 95.14%, 97.79% and 96.78%
coverage on the training corpora, respectively. Most of the unknown tokens are
names, foreign words or misspellings.

Each analyser has its own set of POS, since these differ slightly across languages.
For example, Spanish has determiners, which Finnish and Russian lack; Finnish
has postpositions, which are absent in Russian and Spanish. However, one can
build a relatively small universal POS set (see for instance the Universal Depen-
dencies set18), since most of the major POS are common to every language.

Moreover, as explained in Section 2.3, some ambiguities are not strictly morpho-
logical. There are groups of POS which tend to appear together for a single lemma

16giellatekno.no
17apertium.org
18universaldependencies.org/u/pos



24

but differ only in their syntactic role, if at all. Examples of this include lemmas
which can be both postpositions and adverbs, participles and adjectives, or con-
junctions and relative pronouns. We merge these POS, since they are outside the
scope of morphological analysis and instead belong to the problem of syntactical
parsing.

We define a set of 5 possible targets for the POS which captures all the relevant
ambiguities:

• Noun: Nouns and noun-like POS, such as numerals or acronyms.

• Adjective: Adjectives and adjective-like POS, such as participles (in Rus-
sian).

• Verb: All types of verbs, including auxiliary verbs.

• Adverb: Adverbs and adverb-like POS, such as adpositions.

• Other: All other POS which do not fit in the previous categories—conjunctions,
interjections, particles, etc.

These 5 POS make up the target set Sp.

For the lemmas, we build a set Sl of all unique lemmas in the language—or, in
practice, the ones that appear in the corpus. We use the special tag <num> for
numbers consisting solely of one or more digits and zero or more punctuation
marks, and the tag <unk> as the lemma for surface forms for which the analyser
does not give any readings.

Then, we build a vocabulary V as an enumeration V : S → N0 over the target set
S which assigns a natural number (including zero) to each element of the set.

The vocabulary Vp built on Sp for the POS model maps POS to unique indices:

Vp(Noun) = 0

Vp(Adjective) = 1

…

The vocabulary Vl built on Sl for the lemma model maps lemmas to unique indices:

Vl(<num>) = 0
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Vl(<unk>) = 1

Vl(viikonloppu19) = 2

…

The image of V can therefore be considered the set of possible classes for each
word, and the problem of disambiguation can be thought of as a classification
problem, regardless of whether we are trying to predict the lemma or the POS for
the word.

4.1.3 Training and testing instances

After tokenizing and analysing each document in the corpus, we proceed to gen-
erate the training and testing instances. Training instances consist of two parts:
the context and the label for the target word. Testing instances consist of three
parts: the context, the label and the set of possible labels.

We discard those testing instances in which the label is not in the set of possible
labels, which happens occasionally due to discrepancies between the analyser out-
put and the label manually assigned to a word—for instance, the person tagging
the word might consider the given word to function as a preposition in a sentence,
while the person who wrote the analyser considers that word to always be an ad-
verb. We must also bear in mind that analysers may be incomplete, or have errors,
and this might be the source of the discrepancy. We make several rules to try to
resolve these, but a small proportion remain unresolved.

Context window The context is a list of surface forms which contains the
target word and its neighbouring words in the document. We refer to this list as
a “window,” and its radius r is the number of surface forms to each side. To each
position in the window that extends beyond the boundaries of the document we
assign the special surface form <pad>. For example, given the input text Hän meni
kotiin. (“He went home.”), the context window with radius r = 2 and with target
meni would be:

<pad> Hän meni kotiin .

We found that using a sliding window across the entire document was more ef-
fective than using whole sentences, since many sentences are very short and the

19Viikonloppu (“weekend”) is the first lemma that appears in the corpus.
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contextual clues needed to disambiguate the target word will be found in neigh-
bouring sentences within the document. Besides, the model can have implicit
knowledge of sentence boundaries by looking at the punctuation marks.

At this point, we can also improve the tokenization using information from the
analyser readings. For Finnish—which has compounding—we split the surface
form of the compounds into their “maximal” pieces, i.e., the largest parts for which
there is a lemma in the analyser’s lexicon.

For example, the Finnish compound word eläinlääkäriasema (“veterinary clinic”)
is made up of three elementary stems: eläin (“animal”) + lääkäri (“doctor”) +
asema (“station”).

However, since the analyser has eläinlääkäri (“veterinarian”) in its lexicon, we split
as eläinlääkäri + asema. This helps us keep the vocabulary smaller—since there is
an extremely large number of possible compounds in Finnish—while keeping the
meaning of commonly used compounds, which usually differs a little from that of
the sum of its parts.

For Russian, this is not a concern, as there are generally no compound words.
There may be cases in which a lemma is formed by joining two other lemmas, but
this is considered a new lemma in its own right.

The same applies to Spanish, where in addition there can be clitic pronouns at-
tached to verbs, as in dímelo (“tell me that”), formed by di (“say, you”) + me (“to
me”) + lo (“that”), or prepositional contractions, as in al: a (“to”) + el (“the”).
These are separated by the analyser into individual tokens.

Label The label for an instance is the vocabulary index of the POS or lemma,
depending on which model we are training. The set of possible labels is the vo-
cabulary index for each POS or lemma given by the analyser in an ambiguous
word.

In the previous example, since meni (“he went”) is unambiguous, the label would
be the index for mennä (“to go”), Vl(mennä), or the index for “Verb,” Vp(Verb).
The context and this label would be used as a training instance.

In the example given in Section 4.1.1, Hän tuli kotiin., since the target word
tuli (“he came”) is ambiguous, the set of possible labels for the lemma model is
the set of indices for its two possible lemmas tulla (“to come”) and tuli (“fire”),
{Vl(tulla), Vl(tuli)}, and for the POS model it is the set of indices for its two
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possible POS, “Verb” and “Noun,” {Vp(Verb), Vp(Noun)}. Being an ambiguous word,
we require supervision to know that the true label is Vl(tulla) for the lemma or
Vp(Verb) for the POS. Therefore, this instance would be used only as a testing
instance, if found in the manually annotated corpus.

With the two previous examples, we can see the main intuition behind our ap-
proach: even if tuli is ambiguous, if we find another instance with a similar con-
text but an unambiguous target word, such as meni, then the model can learn
that the context Hän _ kotiin. probably surrounds a verb, and it probably sur-
rounds a word semantically close to meni. In contrast, it is very unlikely that such
context surrounds a noun or a word semantically close to tuli (“fire”). Using this
information, we can predict both POS and lemma, respectively.

Ambiguities between common nouns and proper nouns are ignored, as names are
out of the scope of what we try to accomplish here and should be solved using
Named Entity Recognition (NER) techniques instead.

4.1.4 Word embeddings

Up to this point, our window consists of surface forms, represented as strings of
characters. In order to work with these inside a neural network, we need to find
a meaningful way to represent them as real-valued vectors. This is where word
embeddings come in.

First, we build a vocabulary V over the set of possible input strings, as in the
previous section. Next, we take our input string s and make a one-hot vector x of
length |V |, where the element with index equal to V (s) has a value of 1 and the
rest have a value of 0:

xi =

1 if i = V (s)

0 otherwise

An embedding function E : {0, 1}|V | → Rd maps x to a real-valued vector E(x) of
length d. Since the domain of E is extremely sparse and each vector is independent
(all distinct one-hot vectors are orthogonal), the goal is to have d � |V | and, at
the same time, have meaningful dependencies between vectors.

We use FastText [2] as the embedding function, a modification of the earlier
word2vec [19] architecture. In particular, we are using the pre-trained Common
Crawl20 embeddings [8] and we do not adjust the parameters of E at all during

20commoncrawl.org
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training—which is why we consider obtaining the embeddings to be part of the
pre-processing and not part of our model architecture.

The main idea behind FastText is to break down the strings into character n-
grams, and learn an embedding for those instead. The embedding for the entire
string is then computed as the sum of the embedding for each of its n-grams.

Thus, we only need to build a vocabulary of n-grams Vg which is bounded in
size by the number of distinct characters c in the language and the value of n

|Vg| ≤ cn. Given that c ≈ 30 in our tested languages and typically 3 ≤ n ≤ 5, |V |
is relatively small. Furthermore, only certain character combinations are allowed
in each language, which means that, in practice, |V | is much smaller than the
theoretical upper bound.

The benefit in doing so is three-fold:

1. We can get embeddings for surface forms for morphologically rich languages,
which would otherwise prove infeasible due to memory constraints; in Finnish,
the number of possible surface forms is very large due to the vast number of
potential inflectional combinations for any word, and due to the possibility
of making arbitrarily complex compound words.

2. The embeddings capture morphological features, by learning embeddings for
common inflectional affixes.

3. It allows us to obtain an embedding for out-of-vocabulary words, such as
misspelled words, neologisms, etc. This embedding will be close to that of
existing words with a similar set of n-grams, which is usually a reasonable
guess.

FastText uses the special characters < and > to denote the beginning and the end of
the word, respectively. As an example of how an embedding is obtained, consider
the surface form tuli and n = 3.

The set of 3-grams for tuli would be {<tu, tul, uli, li>}. Let xs be the one-hot
vector where the value at index Vg(s) is 1 and the rest are 0. The embedding for
tuli would then be E(x<tu) + E(xtul) + E(xuli) + E(xli>).

The training method for FastText is out of the scope of this work, but it is analo-
gous to that of our own model, described in the following section.

For the special token <pad>, we return a zero-valued embedding, which will go
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through the neural network without affecting the output or the network parame-
ters.

4.2 Model architecture

Throughout this section, we will use the term layer to denote the basic building
blocks of a neural network.

Let x ∈ Rn be the input and L(x) ∈ Rm the output of the layer. A network layer
L : Rn → Rm consists of the following elements:

• A weight matrix W ∈ Rn×m.

• A bias vector b ∈ Rm.

• An element-wise nonlinear activation function a : Rm → Rm.

The weight matrix and bias vector define a linear function ` : Rn → Rm:

`(x) = Wx+ b

The output of the layer is thus:

L(x) = a(`(x))

W and b are the trainable parameters of the layer—that is to say, the values that
will be updated during training. They are initialized randomly and adjusted at
each step in order to minimize some objective function. We will further discuss the
training procedure in Section 4.2.3.

4.2.1 Long Short-Term Memory

The Long Short-Term Memory architecture (LSTM) is a type of recurrent neural
network (RNN). Unlike static networks like the MLP where the input is evaluated
for one point in time, RNNs allow us to process sequential data by updating the
network parameters at each time step.

For this work, we use the LSTM architecture described by Gers et al. [7].
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LSTM Cell An LSTM cell consists of two state vectors—the hidden state or
output vector h and the cell state vector c—and three “gates”: the input gate i,
the output gate o and the forget gate f .

The input to each of the gates at each time step t is the concatenation of the
input vector for that step xt and the hidden state of the previous time step ht−1,
xt ++ht−1.

The forget and output gates each consist of a single layer with an activation func-
tion σ:

ft = Lf (xt ++ht−1) = σ(Wf (xt ++ht−1) + bf )

ot = Lo(xt ++ht−1) = σ(Wo(xt ++ht−1) + bo)

where σ : R → [0, 1] is the standard logistic function:

σ(x) =
1

1 + e−x

The input gate consists of two separate layers, one with σ activation and one with
tanh activation:

it = Li(xt ++ht−1)� L′
i(xt ++ht−1)

= σ(Wi(xt ++ht−1) + bi)� tanh(W ′
i (xt ++ht−1) + b′i)

where tanh : R → [−1, 1] is the hyperbolic tangent function:

tanh(x) = ex − e−x

ex + e−x

and � is the Hadamard (element-wise) product for matrices.

The rationale behind this architecture is that, at each step, the forget gate re-
moves values from the cell state—hence the product with values in [0, 1], which
is the codomain of σ—and the input gate updates the state with new values—by
summing values in [−1, 1], which is the codomain of tanh. This allows the cell to
selectively forget or remember the most useful pieces of information. Next, the
information from the cell state is incorporated into the current hidden state by
use of the output gate.

Figure 2 shows the internal layout of an LSTM cell.

Bidirectional LSTM A bidirectional LSTM (BiLSTM) consists of two separate
LSTM cells: a left-to-right cell LSTML which receives the input in its original
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Figure 2: An LSTM cell. Rectangles represent network layers and ellipses represent
element-wise operations.

LSTML
1

LSTMR
1 LSTMR

2 LSTMR
n

LSTML
2 LSTML

n

. . .

. . .

xnx2x1

c0

h0

c0

h0

h1 h2 hn

++ ++++

Figure 3: A BiLSTM network.

order, and a right-to-left cell LSTMR which receives the input in reversed order—
that is, starting with the last element and ending with the first element. At
each step t, the hidden state of LSTML

t is concatenated with the hidden state of
LSTMR

t to produce a unified hidden state ht = hL
t ++hR

t .

Figure 3 shows the layout of a BiLSTM network.

4.2.2 Multilayer perceptron

A multilayer perceptron (MLP) is a type of feed-forward neural network—that is,
the connections only go from the input to the output, without any feedback loops.
Therefore, unlike RNNs, an MLP only produces output for a fixed point in time.
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Figure 4: An MLP with n inputs, m outputs and one hidden layer.

The MLP is one of the simplest neural network architectures. It consists of at least
two layers: one or more hidden layers, and an output layer. Each layer has its own
weight matrix, bias vector and activation function, and the output of the MLP is
the composition of all its layers. For instance, an MLP with a single hidden layer
Lh and an output layer Lo will give, for an input x, the following output:

MLP (x) = Lo(Lh(x))

Provided the activation function of at least one hidden layer is nonlinear, the
MLP is a universal approximator—which means it can theoretically model any
function [10]. It is important to note that, since the composition of linear functions
can be expressed as a single linear function, it is unproductive to use several hidden
layers with linear activation.

Figure 4 shows the layout of an MLP.

For our model, we use LeakyReLU [18] as the activation function. Unlike the stan-
dard ReLU function, which assigns a value of zero to all negative input values,
LeakyReLU lets a small portion of the value through. This helps with a com-
mon problem with multi-layer neural networks, where the updates to the network
weights become increasingly small due to multiplying the gradients of output val-
ues close to or equal to zero. This problem is known as the vanishing gradient
problem [1].

The LeakyReLU function is defined as follows.

LeakyReLU(x) =

x if x > 0

0.01x otherwise
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4.2.3 Objective function

Let x be our input. Let V be the output vocabulary—i.e., the set of all possible
labels. Let j ∈ V be the true label for x. The true probability distribution
y ∈ {0, 1}|V | of x is a one-hot vector where the index corresponding to the true
class has a value of 1, and the rest have a value of 0:

yti =

1 if i = j

0 otherwise

To obtain the predicted probability distribution ŷ, we take the output of the neural
network z ∈ R|V | and apply the softmax function softmax : R|V | → [0, 1]|V |. The
softmax function is a generalization of the standard logistic function for vectors:

softmax(z)i =
ezi∑
k e

zk

The softmax function takes a real-valued vector and normalizes its values such
that zi ∈ [0, 1] ∀zi ∈ z and

∑
i softmax(z)i = 1—that is, it turns vector z into a

probability distribution.

The objective function for the network is the cross-entropy H of the true proba-
bility distribution y and the predicted distribution ŷ for an instance x. This gives
us a loss value L corresponding to that instance.

L = H(y, ŷ) = −
∑
i

yi log ŷi

In our case in particular, since y is 1 for the true label j and 0 for all other labels,
L = − log ŷj.

To train the model, we need to compute the gradient of H with respect to each of
the trainable parameters. Since our network is simply a composition of functions,
we can apply the chain rule of derivatives. The gradient of a layer L with respect
to the input x is given by:

∂L(x)

∂x
=

∂a(`(x))

∂`(x)
· ∂`(x)

∂x

The gradient of the loss L for a given instance x in a k-layer network is thus:

∇L(x) = ∂(Lk ◦ · · · ◦ L0)(x)

∂x
=

∂Lk(x)

∂Lk−1(x)
. . .

∂L0(x)

∂x
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To train the network, at each time step t and for each trainable parameter θ, we
compute the gradient of the loss L with respect to θ, weighted by some learning
rate α, and subtract the result from the value of the parameter:

θt = θt−1 − α∇θL(xt)

This method of optimization is commonly known as gradient descent. More specif-
ically, we use stochastic gradient descent, where the gradient is only computed for
a subset (a batch) of the set of training instances.

We use Adam [15] as the optimization algorithm. In contrast to standard stochastic
gradient descent, Adam adapts the learning rate over time, so as to make coarse
adjustments to the parameters at the beginning and do finer adjustments toward
the end—thus allowing us to quickly have a reasonable estimate of the model’s
performance.

4.2.4 Network layout

In this section, we give an overview of the inference and training procedures for
the network.

Let x be our input window of surface forms, with radius r and total length w =

2r + 1. Let xr be the target word at the centre of the window. Let j be the true
label for xr, whence we obtain the true distribution for the instance, y.

Firstly, we obtain the surface form embeddings E(xi) ∀i ∈ [0, w].

Secondly, we feed the embeddings to the BiLSTM to get the hidden state vectors
at step r hL

r and hR
r for the left-to-right and right-to-left LSTMs, respectively:

hL
r = LSTML

r (E(x0:r))

hR
r = LSTMR

r (E(xw:r))

Next, we concatenate the left and right hidden state vectors with E(xr) to obtain
a single hidden state vector hr:

hr = hL
r ++ E(xr) ++hR

r

Then, we feed the hidden state vector to the MLP to obtain the network outputs
z:

z = MLP (hr)
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If we want to use the model to infer the predicted label ̂ for an unambiguous
instance, we find the index with the maximum value in z among the set of k

possible labels J = {j0 . . . jk} which are returned by the analyser:

̂ = argmax
ji∈J

zji

For inference, no further steps are necessary. If we are training the model, we
proceed to obtain the predicted distribution ŷ by applying the softmax function
to z:

ŷ = softmax(z)

Finally, we obtain the loss L for the instance:

L(x) = H(y, ŷ)

And we update the network parameters as shown in Section 4.2.3. Note that
the parameters of the embedding function E are not updated, and thus remain
constant throughout the training.

In addition, we use dropout [28] during training as a form of regularization. With
dropout, instead of always updating all the parameters, we set the gradient to
0 for any given parameter with some probability p. This helps avoid complex
dependencies between parameters and train a model that generalizes better.

Figure 5 shows a diagram of the network layout.



36

LSTML
0 LSTMR

r LSTMR
wLSTML

r
. . .

xwxrx0

. . .

MLP

softmax

ŷ
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Figure 5: Overview of the network (see Section 4.2.4).
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5 Evaluation

5.1 Experimental setup

For the training and evaluation data sets, we use data from the Universal Depen-
dencies Treebank [22]. These data are in the CoNLL-U 2006/2007 format [21] and
consist of automatically annotated and manually corrected sentences from various
sources, mainly newspapers and magazines. They are annotated for morphology
and syntax, although we only use the morphological annotations.

We map their POS set to ours, and use the unambiguous words for the training
set and the ambiguous words for the evaluation set, as explained in Section 4.1.3.

For Finnish, as the number of annotated instances is quite small, we use a collection
of 1M proprietary news articles to generate the training set.

For each language, we train two separate models: one to disambiguate the POS,
and one to disambiguate the lemma. For each model, we obtain two different
predictions:

• The guided prediction picks the output with the highest probability among
the possible classes given by the analyser. For example, for the POS model,
if the analyser says that a surface form can be analysed as a noun or a verb,
it will pick only from those two classes.

• The blind prediction simply picks the output with the highest probability
among all classes. For example, for the POS model, it would pick from
the set of all POS. It therefore gives an output equivalent to that of plain,
uninformed POS tagging or lemmatization.

The blind prediction is there both as a sanity check—to verify that the model
is learning correctly, and not simply picking randomly from the reduced set of
classes—and to measure the accuracy of the model on out-of-vocabulary words—
i.e., those for which the analyser does not return any readings.

Evidently, the guided prediction accuracy is an upper bound on the blind predic-
tion accuracy: if a class is deemed to be the most probable, the model will choose
it from the set of classes given by the analyser anyway. So, to obtain the best
results during inference, we should only consider the guided prediction.
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Window size 21
Embedding size 300
LSTM hidden units 512
LSTM layers 1
MLP hidden neurons 1024

Table 3: Settings for the network.

Batch size 50
Dropout rate 0.1
Adam β1 0.9
Adam β2 0.999
Adam α 0.0001
Adam ε 0.001
Epochs 20

Table 4: Settings for the training hyper-parameters.

Table 3 details the settings used for the network. We set a relatively small network
size due to hardware constraints. It is possible that with a more complex model
the prediction accuracy could be slightly higher, especially for the lemma model,
given the much larger number of possible classes.

Table 4 details the training hyper-parameters. We found that, given the amount of
data and network size, the differences in prediction accuracy were minimal when
adjusting these.

5.2 Evaluation metrics

For each class i, we compute the following values, based on the true class y and
the predicted class ŷ for each instance.

• The true positives (TPi) are the number of instances where ŷ = y = i.

• The false positives (FPi) are the number of instances where ŷ = i but y 6= i.

• The true negatives (TNi) are the number of instances where ŷ 6= i and y 6= i.

• The false negatives (FNi) are the number of instances where ŷ 6= i but y = i.
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The precision for a given class i is defined as:

Precisioni =
TPi

TPi + FPi

The recall for a given class i is defined as:

Recalli =
TPi

TPi + FNi

The F1 measure for a given class i is the harmonic mean of the precision and the
recall:

F1i = 2
PrecisioniRecalli

Precisioni +Recalli

Let Ni be the number of instances which belong to class i (i.e., the true label is i).
Let N =

∑
i Ni be the total number of instances. The overall F1 measure is given

as the weighted average of the F1 measure for each class:

F1 =
1

N

∑
i

NiF1i

The overall accuracy of the model is defined as the ratio between correctly classified
instances and the total number of instances:

Accuracy =

∑
i TPi

N

In addition, we define the confidence for a prediction as the value of the probability
for the predicted class ŷ, as given by the output of the network.

For many tasks, we prefer to maximize the precision at the cost of discarding
some predictions the model is “unsure” about. This is commonly known as the
precision-recall trade-off.

Therefore, we compute the precision, recall and F1 measure as a function of the
prediction confidence for the POS model, in order to test whether the more con-
fident predictions are more precise and to measure the impact of choosing only
the more confident predictions, in terms of how many instances we would get a
prediction for.

For the lemma model, the confidence is generally very low due to the large num-
ber of classes; we would need to perform some kind of normalization to properly
evaluate this trade-off.
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Language Target % Ambiguity Precision Recall F1 score

Finnish
POS 8.9 0.81 0.79 0.79
Lemma 8.8 0.80 0.75 0.76

Russian
POS 7.7 0.85 0.84 0.84
Lemma 10.2 0.82 0.77 0.80

Spanish
POS 15.3 0.83 0.81 0.81
Lemma 15.5 0.82 0.75 0.75

Table 5: Evaluation metrics for each model.

6 Results

6.1 Evaluation

We trained models for POS and lemma disambiguation for all three languages,
and computed our metrics over the evaluation set, composed solely of ambiguous
instances.

Table 5 shows the results for the evaluation metrics for each model. The column
ambiguity indicates the percentage of ambiguous tokens in the training corpus,
for reference.

The results show that our approach works to a reasonable extent. There is still
room for improvement, but clearly the models are able to learn to predict the
correct lemma or POS.

One potential drawback of our method could be that it needs a large enough
number of unambiguous instances to be able to train. However, in our results, we
see that even though Spanish has a significantly higher percentage of ambiguous
tokens than the other languages, the models perform comparably—which leads us
to believe that other factors, such as the level of overlap in surface forms for each
lemma21—are much more relevant to the quality of the trained model.

In addition, we perform error analysis for the POS model—since there are too
many labels for the lemma model—so as to verify whether the model is able to
predict every class. The overall accuracy could otherwise be misleading, since the
model could simply be predicting the most likely label for every case, and failing

21That is, on average, how many surface forms overlap for a given pair of lemmas out of all the
possible surface forms.
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Language Noun Adjective Verb Adverb Other

Finnish 75.8 82.8 78.3 74.7 75.5
Russian 77.4 79.8 90.7 82.6 92.5
Spanish 82.6 71.6 86.3 86.6 82.7

Table 6: Accuracy (percent) for each POS.

at predicting the less common POS from the possible label set.

There are significant differences across POS, but given that the average ambiguity
“size” (i.e., length of the set of possible labels) across languages is approximately
2.5—thus a random prediction would be correct around 40% of the time—the
model performs well above the random baseline for each class.

In Section 5.2 we hypothesized that we could trade off recall in order to obtain near-
perfect precision for applications in which obtaining correct predictions is much
more important than obtaining a prediction at all. To this end, we conducted the
following experiment.

First, we define an “unsure” label which always results in a false negative for
every class—i.e., an indication that the model does not return a prediction for the
instance. Note that such a false negative will reduce recall, but not precision, since
the latter only depends on true positives and false positives.

Next, we set a confidence threshold θconf such that any prediction with confidence
below that threshold will be set to “unsure.”

We ran this experiment only on the POS model, due to the reasons stated in
Section 5.2—the fact that the confidence is inversely proportional to the number
of classes—which were confirmed experimentally.

Figure 6 shows the results for Finnish. Figure 7 shows the results for Russian.
Figure 8 shows the results for Spanish.

The results confirm that we can indeed obtain very high-precision (> 0.9) pre-
dictions by choosing only those with high confidence, while maintaining a high
enough recall (≈ 0.5) that the model is still useful. This is of particular im-
portance in applications where there is human-machine interaction—such as our
language-learning application—where for the machine, being unsure is acceptable,
but being wrong is not, since it actively misleads the human.
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Figure 6: Finnish POS confidence vs. metrics.
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Figure 7: Russian POS confidence vs. metrics.
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Figure 8: Spanish POS confidence vs. metrics.

6.2 Comparison with state of the art

In order to compare our results with the state of the art, we must use token-level
accuracy instead of accuracy on ambiguous instances only, since state-of-the-art
methods provide metrics only across the entire set of tokens.

Let A be the percentage of ambiguity in the corpus and G the guided disambigua-
tion accuracy. The token-level accuracy T is thus T = 100 − A + AG/100. That
is, T is the weighted average of the accuracy over unambiguous instances (which
is always 100%) and ambiguous instances, expressed as a percentage.

For Russian, the best result to date for POS tagging was reported by Dereza et al.
[4], achieved using TreeTagger [27], at 96.94%. We could not find lemmatization
results for Russian, but the work by Korobov [17] solves the broader problem of
morphological ambiguity with an accuracy of 81.7%.

For Finnish POS tagging and lemmatization, the TurkuNLP neural model [12]
achieves 97.7% and 95.3% accuracy, respectively, evaluated on the same dataset
as our method.

For Spanish POS tagging and lemmatization, the model by Carreras et al. [3]
achieves an accuracy of 89% and 88%, respectively, according to the evaluation
done by Parra Escartín and Martínez Alonso [23].
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Language Target Blind Guided Token SOTA

Finnish
POS 73.7 79.1 98.1 97.7 [12]
Lemma 40.4 76.5 97.9 95.3 [12]

Russian
POS 81.9 83.9 98.6 96.9 [4]
Lemma 60.7 83.4 98.3 81.7 [17]a

Spanish
POS 74.9 80.7 97.0 89.0 [23]
Lemma 55.2 74.7 96.1 88.0 [23]

Table 7: Comparison with state-of-the-art POS tagging and lemmatization.
aThis is a lower bound, since they solve the more complex problem of full morphological dis-

ambiguation (i.e., including feature disambiguation).

Table 7 shows our results for accuracy alongside the results for the current state
of the art.

The columns mean:

• Blind: The accuracy for the blind method, over only ambiguous tokens.

• Guided: The accuracy for the guided method, over only ambiguous tokens.

• Token: Overall token-level accuracy, by applying the guided method.

• SOTA: The state-of-the-art results.

With these results, we feel that our approach is currently a viable alternative to tra-
ditional methods that employ manually annotated data for training. Our method
is not targeted to languages where the amount of annotated data is sufficient—
such as English—but rather to those in which it is not, like the three languages
tested here—and any other language, provided a morphological analyser exists.
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7 Conclusions and future work

7.1 Conclusions

Overall, we believe that the proposed models have met the original goals for this
work. We have shown that it is possible to train a model for morphological disam-
biguation using only unambiguous instances and verified that the approach works
for several languages with no modifications. We have surpassed the performance
of state-of-the-art methods—which rely on manually annotated data—for the set
of evaluated languages, perhaps in doing so proving that the amount of annotated
data for these languages is indeed insufficient.

However, the results show that there is still much room for improvement. In the
following section, we go over some of the ideas we have for future lines of research
in this problem.

7.2 Future work

7.2.1 Model enhancements

Feature disambiguation In Table 2 we saw that, although POS disambigua-
tion works for most of the cases, around 9% of the ambiguities are only solvable
by lemma disambiguation. Moreover, around 6% of the instances currently cannot
be disambiguated using either method.

This puts the upper limit on accuracy to 85% for POS model, which is the better
of the two. If we were to use the lemma model for the type of ambiguity that is
only solvable by lemma disambiguation—two declinable words with the same POS
and different lemma, as shown in Section 2.3—the upper limit on accuracy would
be raised to 94%.

To push this limit to 100%, it would be necessary to use a model that disambiguates
morphological features. A relatively straightforward approach to this would be to
make a vocabulary of feature combinations. For example, for the Finnish word
nostaa (“to raise” / “he raises”), with the following readings:

nostaa+V+Act+Ind+Prs+Sg3
nostaa+V+InfA

We could consider the feature sets Ind+Prs+Sg3 and InfA+Sg+Lat to be two dis-
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tinct labels in our vocabulary (similarly to two different lemmas or POS) and use
the same method as for the POS and lemma models.

This method could work as long as the number of feature combinations in the
language is finite, as is the case for the three languages we tested, and as long
as the number of combinations is reasonable—the lemma model has been shown
to work, while having a vocabulary size of ≈ 100000. It is unclear whether this
approach would work with a larger vocabulary, although it is likely that we would
need a proportionally larger training corpus.

We did not try to implement this mostly due to time constraints; the feature set
used in our annotated data differs significantly from that produced by our analyser,
and so it would have been necessary to produce a mapping from one to the other
in order to evaluate the model.

Ensemble solution Since we can determine the type of ambiguity (according
to our taxonomy) during inference, an ensemble solution that picks the best model
depending on the type of ambiguity would be a natural next step.

A baseline ensemble model could simply select the model based on whether the
ambiguity is solvable by said model or not. A more sophisticated model could pick
the model which obtained the highest tested accuracy for each type of ambiguity.

The results show that confidence is a strong predictor for accuracy. Therefore, an
improved version of the ensemble model could instead decide on a per-instance ba-
sis, taking the prediction with the highest confidence. We would have to normalize
the confidence for POS, lemma and feature in order to make them comparable.

Named entity recognition As mentioned in Section 4.1.3, our method cur-
rently conflates proper noun readings with common noun readings, effectively ig-
noring the possible ambiguities between the two. For example, the Finnish word
Turku can refer either to the city in Finland, or it can be a capitalized form of turku
(“marketplace”), which is an archaic doublet of tori (“market” / “town square”).

This type of ambiguity is quite prevalent in all of the languages we tested, since
names often originate from common nouns or adjectives. When the word appears
at the beginning of the sentence, the ambiguity becomes non-trivial: is it capi-
talized because it is a name, or because it is the first word in the sentence? In
German in particular, this issue is even more widespread and harder to solve, since
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all nouns are capitalized, regardless of where they appear in the sentence.

Therefore, a worthwhile addition to our method would be to perform named en-
tity recognition before giving the data to the disambiguation model, keeping only
proper noun readings for those words which are deemed names, and removing them
for all others.

7.2.2 Other approaches

Alternative context features Currently, our method represents context words
using only an embedding function that is trained separately from the rest of the
model. It would perhaps be worth exploring replacing the embedding function
with some network architecture that computes these embeddings and is trained
alongside the rest of the model, in order to maximize the relevance of the learned
features to the problem of morphological disambiguation.

Character-level convolutional neural networks are a popular choice for this in other
state-of-the-art representation learning models, such as ELMo [24]. They do not
come without downsides, however: the training is much slower, it consumes much
more memory, and the context window must be a fixed length of characters—
whereas in our method there is nothing preventing us from having variable-length
windows.

In addition, it could be useful to enrich the context representation with features
extracted from the morphological analyser. For example, the LSTM could receive
the POS of each word in the context. This would probably help guide the training
significantly, but there is still the issue of ambiguity in the context: if a context
word is ambiguous, which POS do we give? Do we choose one randomly, give both,
or give none? We would need to devise a feature representation that accounts for
this issue.

Multi-task learning Another approach we have explored is the use of multi-
task learning to predict both POS and lemma jointly. So far this has been some-
what unsuccessful, yielding an accuracy slightly below that of either of the single-
task models, but we believe there is still much room for improvement.

The intuition behind multi-task learning is that both models should look for similar
contextual cues and the information learned by one model should be useful for the
other, since the two tasks are dependent to some extent.
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We tried a naïve approach, reusing the LSTM parameters between the two models
and alternating training steps between the two objectives. A better approach
may be to combine the loss of the two tasks into a single loss value, and then
try to optimize that. The main technical challenge in this approach would be
to normalize the loss of the two tasks so that they are both considered equally
important during training.

Language models A language model computes the likelihood of a given list of
words in a language. This problem subsumes that of morphological disambigua-
tion, given that a grammatically correct (i.e., morphologically, syntactically and
semantically consistent) sentence should be far more likely than an incorrect one.

One way to leverage this information for disambiguation could be as follows. First,
take a sentence with an ambiguous word. Next, for each possible reading, replace
the ambiguous word with an unambiguous word that fulfils the same role in the
sentence (i.e., it has the same POS), has the same set of morphological features,
and is semantically close to the lemma given in the reading. Finally, compute the
likelihood of each resulting sentence. The most likely sentence should be the one
containing the substitute for the correct reading.

For example, consider our previous example Hän tuli kotiin. (“He came home.”).
The word tuli (“fire” / “he came”) is ambiguous, with a nominal and verbal reading:

tuli+N+Sg+Nom
tulla+V+Act+Ind+Prt+Sg3

First, we pick a noun substitute for tuli (“fire”), such as palo (“fire, conflagration”),
inflect it in the same number and case, and replace it in the sentence, thus giving
us *Hän palo kotiin. (“*He fire home.”). The likelihood for this sentence should
be very low, since it is grammatically incorrect, and one would be hard-pressed to
find an instance of such sentence being used in the language.

Next, we pick a verb substitute for tulla (“to come”), such as mennä (“to go”),
inflect it in the same tense and person, and replace it in the sentence, resulting in
Hän meni kotiin. (“He came home.”). The likelihood for this sentence should be
much higher, since it is grammatically correct, and has probably been used many
times in the language, in an equal or similar form.

Therefore, picking the lemma and/or POS associated with the more likely substi-
tuted sentence (in this case, tulla and “verb”) effectively solves the ambiguity.
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As for automatically picking adequate substitutes, one could compute the lemma
embeddings for the language and choose, among the nearest neighbours in the
embedding space for each lemma, one with the same POS.

We believe this approach has potential, especially now that language models are
becoming more accurate, but there is still the issue of morphological disambigua-
tion being a much simpler problem than language modelling, and thus in theory
requiring far fewer resources and model complexity in order to solve it.

For comparison, state-of-the-art language models such as GPT-2 [26] take weeks
to train on a GPU cluster, whereas our approach takes less than an hour on a
desktop computer with a single GPU.
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