
Date of acceptance Grade

Instructor

Information Retrieval with Finnish Case Law Embeddings

Sami Sarsa

Helsinki August 17, 2019

MSc Thesis

UNIVERSITY OF HELSINKI
Department of Computer Science

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/286390089?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Faculty of Science Department of Computer Science

Sami Sarsa

Information Retrieval with Finnish Case Law Embeddings

Computer Science

MSc Thesis August 17, 2019 61 sivua + 3 liitesivua

Information Retrieval, Document Embedding, Natural Language Processing, Neural Networks

Information is nowadays abundantly available in human readable and easily accessible form in the
Internet. However, the vast amount of text becomes a problem when searching for a specific piece
of information and thus, the effectiveness of information retrieval methods carries great importance.

The most common method to retrieve information from a collection of documents is to input a set
of keywords as a query [BYRN+99]. The query is then compared against the documents in the
collection. An algorithm will rank documents in the collection based on relevance to the query and
return the documents to the end user in the order of the ranking. This work studies an alternative
to the traditional keyword query: the usage of a whole document as a query. A query consisting of
a whole document has an advantage over the common keyword query, since there is no requirement
for formulating the keywords.

In this work, document ranking for retrieval is based on the assumption of vector space models: The
relevance of a set of retrieved documents to a query is approximately equal to the similarity between
the query and documents in the retrieved set [GRG18]. Therefore, this work focuses on semantic
textual similarity, a field of ongoing interest [BCA+17] in natural language processing, which has
been mostly focused on paragraph, sentence or word similarity instead of full text documents.

To compute numerical inter-document similarities for ranking, texts are mapped into vector space
with the use of document embedding models. A widely used word frequency based model TF-
IDF [SJ72] and probabilistic model LDA [BNJ02] serve as baseline document embedding models
for text similarity computation. More recent, neural network models, inspired by the popular
Word2Vec [MCCD13], Doc2Vec [LM14] and Doc2VecC [Che17], are compared to and combined
with TF-IDF and LDA in an attempt to improve on the standard methods. A comparison of the
document embedding models’ performance in capturing the semantics of Finnish case law documents
for similarity comparison is provided. A gold standard set of human evaluated document pair
similarities is created for evaluating the models. Also, topic classification with keywords is studied
as an alternative evaluation method due to arduousness of human labelled similarity acquisition.

In addition, an effective full document query information retrieval system for Finnish case law is
created and presented as a part of this work. The case law data set [OTM+17] used in the work
consists of ca. 13 000 Finnish case law judgements from 1980 to 2019 and is provided by the Finnish
Ministry of Justice.
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1 Introduction

Information is nowadays abundantly available in human readable and easily acces-
sible form in the Internet. This excessive amount of information at hand has had
a great impact on everyday knowledge acquisition for the people of today’s world.
However, there exists an inverse for the problem of getting information. It can be
extremely difficult to find relevant pieces of information in the World Wide Web due
to the ever increasing amount of available information. This phenomenon, known
as information overload, infoxication or infobesity [Cer17], has given importance to
information retrieval systems that aim to ease the search for relevant data.

Nowadays the most common way to retrieve information is using a Web search
engine, such as Google [Chr18] or one of its competitors. The straightforward tradi-
tional querying model to retrieve information with search engines comprises of the
following steps as described by Baeza-Yates et al [BYRN+99]:

1. Start with an information need.

2. Select a system and collections to search on.

3. Formulate a query.

4. Send the query to the system.

5. Receive the results in the form of information items.

6. Scan, evaluate and interpret the results.

7. Either stop, or reformulate the query and go to step 4.

Although this method is already simple and effective, it can be further simplified in
certain cases. Let us suppose that a certain person has a piece of text in his or her
hands and simply wants to retrieve similar pieces of text. Additionally, suppose we
have an algorithm able to identify the important characteristics in a query document.
With these assumptions, the aforementioned query model from Baeza-Yates et al
can be simplified by eliminating the need to create and reformulate the query and
will be reduced to:

1. Start with an information need.

2. Select a system and collections to search on.

3. Send the query document to the system.

4. Receive the results in the form of information items.

5. Scan, evaluate and interpret the results.
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An example use case for the renewed query model is a citizen receiving a sentence
and wanting to find similar ones to see whether his or her edict was just. This
use case, along with the alleviating relevant judgement search for lawyers and law
students, acts as a motivator for this work. We use Finnish case law judgements
to create an information retrieval system for Finnish case law optimised for full
document queries. Our case law data is provided by The Finnish Ministry of Justice
[OTM+17] and consists of ca. 13000 Supreme Court’s and Supreme Administrative
Court’s judgements.

An information retrieval system should be able to rank documents based on relevance
to a query for retrieval so that the documents can be reviewed in a meaningful order.
Document ranking for retrieval in this work is based on the assumption underlying
vector space models: The relevance of a set retrieved documents to a query is
approximately equal to similarity between the query and documents in retrieved
set [GRG18]. That is to say that document retrieval is optimal when it is based
on optimal query-document similarity. To enable direct computation of numerical
document similarity values, documents are transformed into vectors using document
embedding models. Consequently, the models’ proficiency in embedding texts into
vector space becomes the greatest factor that determines ranking effectiveness.

In this work, two traditional methods, Term Frequency - Inverse Document Fre-
quency (TF-IDF) and Latent Dirichlet Allocation (LDA), are compared and com-
bined with newer, neural networks based embedding models to improve upon the
traditional methods performance in embedding texts for similarity based ranking.
While the study of using text embeddings by neural networks has been popular re-
cently in information retrieval [BGG18] and textual semantic similarity computation
[MBB+14, CDA+17], the focus has been on short texts, such as keyword queries or
sentences, rather than whole documents comprising of possibly numerous long para-
graphs. In contrast, our case law data set consists of variously sized documents, the
longer ones containing over 10 000 words.

Besides concentrating on finding optimal document embedding models (or a com-
bination of such) for Finnish case law retrieval, we place some emphasis on model
performance evaluation. Evaluation of information retrieval models is a difficult
task due to challenges in measuring textual relatedness. Preferably, one would have
a human assigned ground truth ranking with which to compare models’ rankings.
Unfortunately, good ground truths for information retrieval are difficult to obtain,
wherefore an alternative approach is examined. This alternative approach consists
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of classifying documents embeddings to their respective topics. We investigate the
differences and challenges between evaluation by topic classification and evaluation
using ground truth ranking.

Thus, we concentrate on the following research questions regarding Finnish case law
retrieval:
RQ1: How do neural network generated document embeddings perform in ranking
compared to traditional document embedding models, TF-IDF and LDA?
RQ2: How can multiple models’ document embeddings be leveraged to improve
ranking effectiveness from ranking with a single model’s embeddings?
RQ3: How does topic classification compare to correlation with ground truth simi-
larities as a method for evaluating document embeddings for ranking?

The majority of this work consists of describing, analysing and evaluating various
text embedding models that are able to capture the texts’ semantic information for
similarity evaluation. This includes describing preprocessing the data for models and
the theoretical grounds for evaluating the embedding models as well as evaluation
results. In addition, we present a web application for Finnish case law retrieval.

This thesis is organised as follows. It starts with an introduction to theoretical per-
spective and gradually moves towards more concrete implementations. The back-
ground section introduces the theoretical bases for methods used in this work span-
ning the fields of information retrieval, natural language processing and machine
learning. Background is followed by a section dedicated to document embeddings,
which explains the models that are studied and used in our web application. After
that, our case law data, data preprocessing, model evaluation and similarity com-
putation from embeddings are addressed. Finally, we present evaluation results and
conclude with discussion and future work. Our application that utilises the studied
models is described in appendix A.
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2 Background

The key concepts as well as the domain of this work belong to the fields of informa-
tion retrieval (IR), natural language processing (NLP) and machine learning (ML).
This section introduces key theoretical terms and concepts for this work within the
three fields.

2.1 Information Retrieval

Information retrieval (IR) refers to acquiring knowledge from a collection of data
and the study of methods that enable retrieval. Retrieved information can be in any
format, e.g. text, image or sound, and it is stored in what is called an information
retrieval system. An IR System is a system that maintains, stores and is able to
retrieve stored data. William Frakes and Ricardo Baeza-Yates describe IR systems
[FBY92] as systems that match user queries to data stored in a database. The
data in an IR system is often surrogated with metadata to improve query time and
storage space. Metadata may consist of keywords, such as the author, title and date,
or data specific identifiers, e.g. European Case Law Identifier (ECLI) [EU17].

The creation of IR Systems, information acquisition, organisation, storage, as well
as retrieval itself, all fall within the field of information retrieval [Bat12]. Within
this work, we concentrate on retrieval, and only in the context of web document
retrieval as opposed to e.g. desktop search or question answering. Document retrieval
is described by Liu [L+09] as follows: A retrieval system contains a collection of
documents. A user asks for documents with a query consisting of words. The system
retrieves documents containing the query words from the collection and ranks them
chiefly by relevance with respect to the query. This process is illustrated in Figure
1.

Figure 1: A depiction of document retrieval with an information retrieval system.
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2.1.1 Ranking

A key IR concept in this work is ranking, which holds a central problem in multiple
IR applications [QLXL10]. Ranking, or ranking creation, formally means using a
function to create a ranked, i.e. ordered, list of objects. The ordering in the ranked
list can be based on various things. For instance, in machine translation, the objects,
or translations in this case, could be ranked not only by similarity to query, but also
by how likely the translation is to be used in human written text.

In our case law document retrieval setting, we aim for optimal ordering of retrieval
documents for a full document query. As explained in the introduction, we base our
ranking on similarity of texts using the assumption that relevant documents to a
query are somewhat equal to query-document similarity. It is not, however, simple
to understand what is optimal ordering by textual similarity, as similarity itself is a
complicated concept in natural languages.

2.1.2 Semantic similarity

Semantics, a branch of linguistics, is the study of meaning and relations of words and
phrases. In other words, semantics seeks to explain what texts and their components
stand for. When evaluating similarity between texts or words, often what is meant by
similarity is semantic similarity or semantic relatedness. This is also the case in this
work, since we are interested in finding out how close or far away the representations
of texts’ meanings are from each other by the means of document embedding.

For a more formal definition of semantic similarity, this work uses Harispe et al’s
definition [HRJM15] for semantic relatedness: “the strength of the semantic inter-
actions between two elements with no restrictions on the types of the semantic links
considered”. Harispe et al make a distinction between semantic similarity and se-
mantic relatedness, but here, the more broader definition of relatedness is used. The
two semantic measures are considered synonyms for simplicity, since these terms are
used somewhat interchangeably [MBB+14, ABC+14] in the scientific literature.

Truly understanding, or even defining semantic similarity is a demanding task.
Whereas it is easy to say that the word dog is more similar to hound than dog
is to refrigerator, it is far more difficult to tell whether cat is semantically further
away from kitten than from lynx. One could argue that the semantic difference
between cat - kitten is in a different dimension than cat - lynx. The former being
related to age and the latter to biological taxonomy. However, regarding ranking,
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the division to dimensions causes complications. The dimensions would have to be
first defined and then weighted in order to create a numerical ordering of semantic
items. An additional challenge arises from the human notion of similarity not being
always symmetric as shown by Tversky [Tve77]. For instance, in one of Tversky’s
experiments, the similarity between a smaller country was deemed more similar to
a large country than the other way around, with examples including North Vietnam
- Red China and Mexico - USA.

Due to the complexity of similarity in natural languages, it would be excessive to
dive deep into semantic similarity’s cognitive or psychological definitions. Having
some grasp on the matter will suffice. The goal in this work is to have automatically
generated similarity values that correspond to what humans consider similar, not to
fully analyse similarity as a concept.

2.1.3 Document embedding

In order to narrow the gap between machine and human performance in assessing
semantic similarity, machines require sophisticated models to process texts. Simple
string comparison is hardly likely to give meaningful values for similarity.

Vector Space Model (VSM) is a traditional [SWY75, GRG18] and widely used
[BGLB16] family of IR models that provides a framework for computers to under-
stand natural language texts by embedding documents into vector space as bag-of-
words (BoW) [Har54] representations. BoW is a straightforward model to represent
text in vector form, where a document’s word token frequencies serve as embedding
vector’s elements. That is, a BoW consists of a fixed number of integer or floating
point values, where each value represents a frequency of a vocabulary term.

When the documents are embedded into vectors, pairwise similarity between doc-
uments can be obtained from the correlation between their vector representations.
We refer to these vector representations as document embeddings.

For information retrieval, as documents are embedded into vector space, user queries
also undergo the same process to allow the usage of vector correlation for ranking.
Given a user query, the query text is first converted to a vector. Then, similarities
between the query and each document in the IR System are computed. When each
query-document pair has been assigned a similarity score, the IR system’s document
collection can be ranked by the documents’ respective similarity to the query. Then,
documents in the collection can be delivered to the user who constructed the query
to be viewed in a desirable order.



7

2.1.4 Vector similarity

In VSMs, the typical correlation measure for vectors is the angle between the vectors
[S+01]. To compute vector correlation, the cosine of an angle θ between two non-
zero vectors a and b may be computed according to eq. (1) in order to obtain a
numerical similarity value for the two vectors.

cos(θ) =
a · b
||a|| ||b||

=

n∑
i=1

aibi√
n∑
i=1

a2i

√
n∑
i=1

b2i

(1)

This method of computing vector correlation for document embeddings, according
to Manning et al [MRS08], is the standard way to quantify the documents’ similarity
for information retrieval and is referred to as cosine similarity measure.

Multiple correlation measures for a pair of vectors’ similarity exist, including Eu-
clidean distance, Jaccard coefficient, Pearson correlation coefficient and Sørensen–Dice
coefficient, among others. According to Huang’s experiments [Hua08], the different
metrics perform relatively similarly when used for clustering texts, apart from Eu-
clidean distance being evidently the worst. Furthermore, Li and Han show that
cosine similarity outperforms [LH13] Jaccard coefficient in several textual classifica-
tion tasks.

Given a set of already available similarity labels of document pairs for a part, or
all, of the text data, there exists another approach to derive similarity values for
document pairs besides computing vector correlations. This other method consists
of using a machine learning model to learn similarities with the pre-defined values
as targets. The approach is called learning to rank [L+09], as the similarities are
learned instead of computed directly from document representations.

Learning to rank has the potential of leading to better similarity rankings between
document embeddings than the cosine similarity, since some vector dimensions might
be more relevant than others, and this can be learnt from the vector embeddings.
Learning to rank is, however, a double-edged blade. The learning improves as the
training set for the learner model becomes larger, yet, if the set of gold standard
labels is small, the model’s performance is unlikely generalisable leaving a trained
model ill suited for practical use.
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2.2 Natural Language Processing

Natural language processing (NLP) is a subfield of computer science and artificial
intelligence (AI) that can be considered to cover all kinds of natural language manip-
ulation by computers [BKL09]. Natural language here denotes any language used by
humans for ordinary communication. With this definition of NLP, it largely overlaps
with IR. Converting texts into vector form for vector space models, or computing
text similarities, can be considered NLP as much as they are a part of IR. These
tasks, however, differ by their role in the two fields.

Computing text similarity is an NLP task, whereas in IR, such task is merely a tool
for improving the task of document retrieval. In addition, multiple NLP tasks that
consider minor manipulations of texts have been proven beneficial for IR. Brants
[Bra03] shows that multiple such techniques can be used to improve document re-
trieval, but also that it is important to optimise NLP for IR.

For NLP methods considered in this work, besides text vectorisation and similar-
ity computation, we study the most effective NLP tasks for IR in Brants’s study:
normalising word forms and filtering out words that may mislead algorithms.

2.2.1 Text normalisation

Document embedding models accept certain kinds of input which may differ de-
pending on the model. In order to embed texts into vector space, the texts need to
be converted into a format which is accepted by the embedding model. This falls
within the NLP task of text normalisation, which according to Martin et al [MJ09]
is defined broadly as converting text to a convenient standard form.

The aforementioned BoW model consists of word frequencies, but to create BoWs
from text, one needs to separate words from text first. That is to say that it is
required to define what counts as a word in a text. This task is called tokenisa-
tion, which can be described more formally as separating words in text into tokens.
For languages where words are separated by whitespace, which includes Finnish,
tokenisation can be performed relatively simply by extracting pieces of text between
spaces, tabs and newline characters as separate tokens. This would mean that num-
bers, for instance “2”, “1998” or “3.14”, and also symbols and punctuation, e.g. “&”
and “!” would be considered words if between whitespace characters. Punctuation,
however, appears rarely on its own but rather connected to a word. Thus, it is often
desirable to handle punctuation when tokenising to remove the distinction between
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tokens such as “cat” and “cat.”. This can be done e.g. by removing punctuation
marks entirely or including them as separate tokens. The usefulness of including
punctuation is dependent on the task a text is used in.

While a set of tokenised words is enough to create a BoW, as the BoW is merely a set
of token counts, word normalisation, a subtask of text normalisation that considers
converting words into a standard form, can help make the BoWs more meaningful.
For instance, words in text can be abbreviated, capitalised or inflected. Whereas
capitalisation can be conveniently handled by converting a whole text into lower
or upper case, and abbreviations unabbreviated via regular expressions or a list of
known abbreviations, inflections are more difficult to normalise.

The study of words forms falls under morphology, which is a field in linguistics.
Inflection, in morphology, stands for a word formation process, where a word is
modified to express e.g. a different tense or plurality. Inflected word forms carry
various additional meanings to a word’s base form, while the core meaning of the
word remains the same as in its base form. Since our dataset is in Finnish, which
is morphologically rich, that is, highly inflected, normalising different word forms
affects the data considerably.

For similarity computation methods that consider any distinct combination of word
characters a different one, such as any BoW based method, morphological variations
of a word would be considered as completely different words from the original. Words
such as “dog”, “dogs” and “dog’s” would be all counted as separate words and the
only way to infer their similarity would be to consider the context for these words.
Even an algorithm that has access to word context is incapable of inferring that
obviously similar words convey the same meaning, if the words don’t appear enough
in similar context.

The simplest way to normalise word forms, in order to make a machine understand
that a set of morphologically different words carry the same meaning, is to use
heuristics for cutting off the end or beginning of a word. In the optimal case,
the resulting word will be reduced to its stem, i.e. the part of the word to which
affixes can be added. Thus this word cutting process is, rather optimistically, called
stemming. From the previous example, “dogs” and “dog’s” would be reduced to
“dog”, and the three variants of the word “dog” would now be considered as the same
word. However, stemming suffers from considering only the removal of prefixes and
suffixes. It does not work well for irregular forms, since e.g. reducing the word “am”
and “are” to “a” could be more harmful than leaving them be.
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Another approach, which takes into account irregular forms, is to utilise dictionaries
and morphological analysis to derive the base form of the word. In morphology,
the base, or dictionary form of a word is called lemma, wherefore this approach is
referred to as lemmatisation. With dictionary lookups, lemmatisation can overcome
problems with irregular inflecting which stemming cannot. Additionally, lemmatisa-
tion is proven to work better than stemming for Finnish as Korenius et al [KLJJ04]
finds lemmatisation superior to stemming for Finnish while evaluating the two word
normalisation methods for document clustering. Lemmatisation, however, is diffi-
cult to perform perfectly as inflected forms can be ambiguous. For instance, the
Finnish word “voi” (butter) has the same written form as the third person singular
form of verb “voida” (to be able to).

Besides normalising word forms, the vocabulary, i.e. the set of used words, of an
NLP task can be normalised by excluding some words from the vocabulary. A
tempting group of words to exclude is stopwords, that is, the most common words
in a language that do not carry any significance on their own [Ull11]. They include
words such as “and”, “for”, “or” and “to”. Unsurprisingly, information retrieval has a
long history of removing stopwords from texts and queries before processing them for
document retrieval [Bra03]. Without stopword removal, a model might apply excess
weight on insignificant words, which would lead to suboptimal ranking. Removing
stopwords, as well as punctuation, also reduces the size of an information retrieval
system as less data has to be stored online.

Removing stopwords can be done using list of unwanted common words and filter-
ing them out from tokenised text. The stopwords are often extracted from text
by picking the most frequent words and are possibly then hand-picked to disal-
low removing semantically relevant frequent words [MRS08]. Another approach is
to use a predetermined set of stopwords known to carry little meaning within a
language. Stopword removal, however, carries its risks. There can be important
meaning conveyed in stopwords when more than one word is analysed at once. If
an algorithm has can leverage word context, removing stopwords or punctuation
may result harmful. Ellen Riloff [Ril95] has shown that including prepositions with
significant domain words can be critically important for classifying texts in their
respective domain. Also, verb forms and differentiating between the singular and
plural forms of nouns had a crucial effect in some cases in Riloff’s experiment, which
argues against removing certain morphological properties.
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According to Manning et al [MRS08], the general trend in IR systems has been to
reduce the number of stopwords removed with focus on finding other methods to cope
with stop words. Nevertheless, stopword removal remains useful in improving vector
space model effectiveness [ILS16, SAY+16] and is present in modern information
retrieval [BL17, GTS+16].

2.3 Machine Learning

As NLP, machine learning (ML) also is a subfield of computer science and AI. What
separates ML from other forms of AI is that it studies automated “learning” to
perform well, where “learning” implies self-improvement upon making observations
from data. This is opposed to e.g. AI models whose intelligent behaviour is hand-
programmed or achieved by direct computation or manipulation of data.

Similarly to NLP providing tools for IR, one can say that ML provides tools for
NLP. For instance, ML has been used to improve multiple NLP tasks, including
machine translation [VBB+18] and Part-of-Speech (PoS) tagging [GZH+17], with
PoS tagging being an NLP task that considers identifying words as nouns, verbs
and other grammatical property categories. Within this work, ML is leveraged
to generate optimally useful text embeddings and to learn ranking based on the
generated embeddings.

2.3.1 Neural Networks

Neural networks, a subset of machine learning algorithms, has been a hot topic in
recent Artificial intelligence (AI) discussion. Machine learning is a field within AI
that studies algorithms, which are not explicitly programmed to behave in a certain
way, but learn their desired behaviour from data. Neural Networks have gained
popularity even in the non-academic world as the first AI models to win against
the human current champion in complex games such as the board game Go [Gib17]
and card game poker [Klö17]. Neural networks are also famous for being the state-
of-the-art models in the field of image recognition [ZLK+18] and achieving human-
like performance in multiple image classification tasks. Regarding NLP, a notable
example is Google Translate’s [WSC+16] highly increased performance after starting
to use Neural Machine Translation (NMT) instead of previously used phrase-based
machine translation [KOM03].
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Importantly to us, the art of generating text embeddings has been affected by neu-
ral networks to large extent. Importantly, using neural network generated word
and document embeddings has raised attention in the field of information retrieval
and the legal setting. For instance, Ash et al [AC18] analyse judges’ relations and
judicial reasoning by examining spacial relationships between case law embeddings
of different judges’ verdicts. Moreover, closely related to our topic, Landthaler et
al [LWHM16] use word embedding averages to improve a vector space model for
retrieving related rights or obligations in EU data protection directives.

Neural networks as machine learning models are officially referred to as artificial
neural networks (ANN). However, the “artificial” in “artificial neural network” is
often dropped as artificiality is obvious from context, Thus, ANNs are mostly re-
ferred to as neural networks (NN). ANNs are algorithms whose study is motivated
by the natural way of processing information in the organic brain [Smi97]. Brain,
the organ that enables people and animals to control their body, think, reason and
understand the world, is made of nerve cells, typically billions of them. These cells
enable thought processes and are called neurons. Neurons communicate with each
other by sending signals that, if powerful enough, activate recipient neurons, which
in turn send signals to other neurons.

While an organic neural network is formed by physical connections between physical
neurons, an ANN consists of inter-connected activation functions. As can be seen in
Figure 2, the biological neuron has dendrites for receiving, a cell body for processing
and an axon for sending signals [BH00], whereas an ANN’s neuron is purely math-
ematically defined as having inputs, activation function and output as depicted in
Figure 3.

Figure 2: A simplified biological neuron. Signals received through synapses between
neurons are picked up by dendrites, processed by cell body and sent to other neurons
via the axon.
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Each neuron in an ANN produces a real valued activation according to its acti-
vation function, which is in contrast to their natural counterparts whose neurons’
activations are always binary. Every neuron in has at least one input and a weight
for every input of the neuron. The activation, i.e. the output of the neuron, is the
weighted sum of the inputs that is passed through the neurons activation function
as illustrated in Figure 3.

Figure 3: A single neuron, where xi is an input, wi its weight and f is the activation
function of the neuron.

Depending on the problem at hand, a machine learning model should have com-
plexity that matches the problem to perform optimally. Optimising complexity in
machine learning is crucial, since an overly complex model is likely to learn wrong
things during training and not generalise well when applied to new data, whereas a
simple model might not be able to separate even its training data properly [GBC16].
In NNs, neurons are arranged in layers and the complexity of a neural net is man-
aged by altering the number of layers, the number of neurons within layers and how
the neurons in the layers are connected to each other.

At a minimum, a NN contains two layers to allow the net to interact with data from
outside the network, one layer for input data and another for output data. There
can, however, be arbitrarily many if needed. The first layer of the network is called
the input layer since it depicts the network’s input data. The final layer is referred
to as the output layer for a similarly obvious reason, its outputs serve as output for
the whole network. Layers in between input and output layers are referred to as
hidden layers due to them being in contact with nothing outside the network.

A common neural network model is a dense feed-forward network, whose structure is
visualised in Figure 4. Being dense, within the context of neural networks, indicates



14

that every input node of a layer is connected to every neuron of the layer. For a dense
network, this applies for all layers. Feed-forwardness indicates that connections
between the neurons do not form loops, but the arithmetic operations within the
network flow directly from one end to the other. In other words, for a one forward
or backward pass through an ANN, a neuron is visited at most once. Descriptions
for other forms of neural networks, such as recurrent neural network, which includes
loops, are omitted, since only dense feed-forward networks are used in this work.

Figure 4: An illustration of a simple feed-forward four layer neural network, where
each circle represents a single neuron. In terms of biological neural networks, the
arrows represent synapses, which connect the neurons.

As computation for a single neuron’s output is the sum of its weights,

ŷ = f(
∑
i

wixi)), (2)

passed through an activation function, a dense layer’s computation can be conve-
niently described as a matrix product between the matrix of layer weights and layer
inputs. For instance, with a layer of 5 neurons, and 3 inputs, the layer’s outputs
ŷ ∈ R5 can be expressed using weight matrix A ∈ R3×5 and layer’s inputs x ∈ R3

ŷ = f(ATx). (3)

In order to train an ANN, the model needs ground truth targets with which to
compare its outputs. Another requirement is that of a loss function to assign error
values for its outputs, e.g. squared error∑

i

(yi − ŷi)2, (4)
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where y is a target value and ŷ is a machine learning model’s predicted approximation
of y.

When the error function is differentiable, which squared error is, gradient descent can
be used to minimise the error. Gradient descent is an iterative method that updates
model parameters based on the model’s output errors’ gradients gradually decreasing
the errors towards the error function’s minimum, thus, enabling a machine learning
algorithm to “learn”. Essentially, training by gradient descent is a reversed hill-
climbing problem, as the error function, when flipped around, can be visualised as
a mound on top of which the model attempts to climb step by step.
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3 Text embedding models

Document embedding models, i.e. computation procedures that convert text doc-
uments into vectors, hold the greatest responsibility regarding vector space model
effectiveness since ranking in VSMs is based on text embedding models’ outputs.
The capability of text embedding models in mapping a text documents’ information
content to vectors is essential in determining how effectively the documents can be
ranked for information retrieval.

With text embedding we refer to all forms of text vectorisation, including word
embedding as well as document embedding. This section introduces text embedding
models that are evaluated for Finnish case law retrieval. The models are presented
with some mathematical detail in chronological order by the time of their creation.
Besides the individual models, two ensembles of the embedding models are presented.

The embedding algorithms used in this work are the statistical model TF-IDF,
probabilistic LDA, neural network based word embedding model Word2Vec and
Word2Vec’s two variants designed for document embedding, Doc2Vec and Doc2VecC.
We use readily available implementations of the embedding models with Doc2VecC
as exception. For Doc2VecC, there was available only an inconvenient implemen-
tation in C that lacked the ability to transform documents into embeddings after
saving a trained model. Thus, we created a python module1 for Doc2VecC from its
original C-implementation to simplify its use for information retrieval and perfor-
mance evaluation.

3.1 Bag-of-Words Models

3.1.1 Term Frequency - Inverse Document Frequency

Building on the idea of word frequency embeddings, i.e. BoWs consisting of word
counts, a widely used [BGLB16] document embedding model in IR, Term frequency
- Inverse Document Frequency (TF-IDF), adds regularisation for term, i.e. word,
frequencies to give more weight to uncommon words among the whole dataset. In
short, TF-IDF consists of BoWs, whose elements are the product of two numeric
statistics, term frequency and inverse document frequency.

1https://github.com/taikamurmeli/Doc2VecC_python
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Term Frequency considers a single document and accounts for the proportional num-
ber of occurrences for a term in that document. It can be expressed as a function
tf(t, d) of a term t and a document d, which gives the occurrence frequency of t in
d normalised by the document’s length, i.e.

tf(t, d) =
word count for word t in document d

total word count in document d
. (5)

Inverse Document Frequency [SJ72] (IDF) was introduced by Karen Spärck Jones in
1972 to improve on Term Frequency, as she found out that matches on less frequent
terms should carry more value than commonly occurring terms.

As an example to demonstrate Spärck’s observation, let us have a corpus which
has the common English word and appearing multiple times in every document.
Querying the corpus by the phrase coffee and sugar with mere term frequency gives
seemingly random results if the word and is not frequent in documents containing
the words coffee or sugar but appeared more often in other documents.

Thus, to weigh a document’s term counts appropriately, Spärck presented the inverse
document frequency function (IDF)

f(N)− f(n) + 1 : log2(x)− 1 < f(x) ≤ log2(x) (6)

where N is the number of documents in a collection of texts D and n is the number
of documents containing t, i.e. n = count({d ∈ D|t ∈ d}).

Nowadays, however, the most cited version of the term weighting function is

idf(t,D) = log
N

n
(7)

[Rob04], which is more precise than the original IDF-function eq. (6). In this thesis,
we use the common versions of TF in eq. (5) and IDF in eq. (7) for the TF-IDF
algorithm

tfidf(t, d,D) = tf(t, d) ∗ idf(t,D). (8)

While TF-IDF is a powerful algorithm, it has no built-in way to account for word
semantics. For TF-IDF, terms like “milk”, “coffee” and “alien” are all equally distant
from each other. Consequently, TF-IDF gives a similarity score of 0 for sentences
“Dogs consume meat” and “Wolves eat other animals” as they have no words in
common. Furthermore, being based on BoW, it is oblivious to word orders, causing
e.g. “river bank” and “bank river” to be equal. Although there exist pre-processing
solutions to add contextual information to TF-IDF, its shortcomings have led to
more complex text embedding algorithms being developed for describing documents
and the relationships between words.
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3.1.2 Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) [BNJ02, BNJ03], introduced by Blei et al in
2002, is another relatively old model used in this work. Similarly to TF-IDF, LDA
is oblivious to word ordering within documents and treats them as BoWs. However,
as opposed to TF-IDF, LDA is not a simple statistical model but rather a machine
learning model. Whereas TF-IDF generates embeddings by directly computing word
counts in a corpus, LDA has parameters that are trained, i.e. optimised, using the
corpus’s words as model inputs.

LDA is a generative probabilistic model that assumes a document is created by first
sampling topic distributions and then the document’s words from selected topic dis-
tributions. Using this assumption, LDA reverse engineers topic probabilities for each
document in a corpus. The reverse engineering is done by optimising parameters
for the topic and word probability distributions to the extent that picked words for
a document correspond to the original words in the document.

In essence, for texts, LDA produces a vector embedding for a document, where each
dimension in the vector corresponds to some topic determined by the LDA model.
Thus, likewise TF-IDF, LDA can be used to embed texts for vector space model. The
latent part of LDA refers to the topics being latent, i.e. hidden variables, variables
that are not directly observed but inferred from observed variables. LDA’s latent
variables are called topics merely to provide an intuitive meaning in the context of
natural language processing. The remainder of LDA’s name, Dirichlet Allocation
refers to the model drawing topic probabilities from a Dirichlet distribution.

In order to depict the model more precisely we use the following variables:

N ∈ N corpus document count

d ∈ 1..N integer identifier of a document

K ∈ N number of topics

k ∈ 1..K integer identifier of a topic

V ∈ N number of words in vocabulary

Wd ∈ N number of words in document d

wd ∈ 1..V Wd vector of word identities for document d

ŵd ∈ 1..V Wd vector of word identities inferred by LDA for document d

α ∈ RK
≥0,β ∈ RV

≥0 non-negative vectors, used as distribution prior

ϕk ∈ [0, 1]V probability distribution of words in topic k

θd ∈ [0, 1]K vector of topic probabilities for document d

zd ∈ NK vector of topic identities for document d
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To infer topic probabilities, first LDA generates the corpus documents as BoWs by
the process described in algorithm (1).

foreach topic identity k in 1..K do
Using a vector β as a prior, sample word probabilities per topic k from
Dirichlet distribution:

ϕk ∼ Dir(β)
end
foreach document d in 1..N do

Sample probabilities for topics in document d from Dirichlet distribution:
θd ∼ Dir(α)

foreach word index i in 1..Wd do
Sample a topic: zd,k ∼ Multinomial(θd)
Sample a word ŵd,i based on the sampled topic: ŵd,i ∼ Multinomial(ϕzd,k)

end

end
Algorithm 1: LDA generative process

As any machine learning algorithm, LDA needs to be trained for it to become
useful. In the natural language context, it needs training to infer the topic and word
probabilities so that it produces BoWs similar to the actual BoWs in a given corpus.
The goal is to infer the hidden variables based on the observed ones. Formally, that
is to compute the posterior distribution

p(θd, zd|wd,α,β) (9)

of the latent variables θd and zd given priors α,β and the document’s words wd for
each document d.

Figure 5: LDA in plate notation. The circles refer to LDA’s probability variables and
arrows to dependencies. The squares indicate repeated entities, with the exterior
corresponding to documents and the interior to words within documents.
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However, as Blei et al show in their original paper for LDA, solving the problem
directly is computationally intractable due to dependency connections between θd
and β, wherefore they propose using a variational Bayes approximation to compute
the topic probabilities.

The variational inference method for LDA introduces two new variables, a dirichlet
parameter γ and a Multinomial parameter φ. This allows replacing the computa-
tionally problematic dependencies in LDA with simpler ones using the variational
distribution

q(θd, zd|γd,φd) = q(θd|γd)
Wd∏
i=1

q(zd,i|φd,i). (10)

The variational distribution is optimised to resemble the original posterior distribu-
tion in eq. (9) by minimising the Kullback-Leibler divergence, a measure of prob-
ability distributions’ differences, between the two distributions. As a reference to
training a neural network, the Kullback-Leibler divergence between the two distri-
butions serves a similar purpose as the loss function in neural networks. While
neural nets loss is optimised via gradient descent, LDA’s Kullback-Leibler diver-
gence is minimised by variation expectation maximisation, as explained by Blei et
al, or alternatively, via Gibb’s sampling, which was proposed later by Porteous et
al [PNI+08] to speed up LDA training time.

Contrary to TF-IDF, for training the model, LDA has manually selectable param-
eters, which are referred to as hyperparameters. Model parameters, on the other
hand, are parameters that are learned by a machine learning model. The most
notable hyperparameter in LDA is the number of topics for the documents, which
we denote by K. Since K cannot be known beforehand, different values of K are
tested to see which provide optimal results. Besides affecting model performance,
the value K also determines the dimensionality of LDA embeddings, making small
values of K preferable in terms of space and time complexity of the model.

3.2 Neural Network Models

3.2.1 Word2Vec

Word2Vec [MCCD13, MSC+13] is a neural network model introduced by Mikolov et
al’s research team in 2013, with the chief purpose of creating dense vector represen-
tations for words. Similarly to LDA, Word2Vec is an unsupervised learning method,
as it does not require labelled text for its training. It has become a popular word
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embedding method, as it is effective in mapping words’ semantic meanings close to
each other using mere text data as its input. Word2Vec’s competence is shown in
the original paper where Mikolov et al show the generated vectors’ performance in
phrase analogy task. In the task, word relationships of form “What is the word a

that is similar to b in the same sense as c is similar to d?” are tested with sim-
ple algebraic vector operations. Famous examples of Word2Vec’s capability in this
include computing the vector of word queen from king, man and woman vectors,

v(queen) ≈ v(king)− v(man) + v(woman)

and deriving capital vectors using countries e.g.

v(Rome) ≈ v(Paris)− v(France) + (Italy),

which tell that “queen” is similar to “woman” as “king” is to “man”, and that “Rome”
is to “Italy” as “Paris” is to “France”.

As a consequence of Word2Vec’s success, it has received multiple competitors includ-
ing GloVe [PSM14], SVD [LGD15] among others. In Word2Vec’s defence Vylomova
et al [VRCB15] show that Word2Vec is superior to other later methods in clustering
vectors to lexical relations. However, pre-trained Glove vectors have been slightly
more effective than Google’s Word2Vec embeddings2 trained on ca.100 billion words,
e.g. when used with Named Entity Recognition [CN15]. Thus, as the differences in
word embedding model performances are small and inconsistent, we consider only
the original model in this work.

Word2vec is a simple shallow neural network that consists of input layer, one hid-
den layer and an output layer. Although Word2Vec is considered an unsupervised
learner, it is trained in a supervised fashion by predicting documents’ textual con-
tent from a sliding window of text within the documents. There are two versions of
the model, Continuous Bag of Words (C-BoW) and Skip-gram, which differ by their
inputs and outputs. The differences between the versions are illustrated in Figure
6.

2https://code.google.com/archive/p/word2vec/
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Figure 6: Visualisation of Word2Vec C-BoW and Skip-gram model differences with
window of size four, where w(t±n) indicates a context word’s position in the window.

Rong [Ron14] explains the mathematical details of the Word2Vec model and how
it is optimised for fast training with large data. In this work, the two variations of
the model are depicted more briefly. For mathematical description of the model, the
network’s components are denoted as:

wt t:th word in the vocabulary

V size of the vocabulary

H
size of the hidden layer and thus, also size of resulting vector
embeddings

C maximum distance between context word and predicted word

ct ∈ R1×V
BoW of the training window, i.e. the context words
wt−C , ..., wt−1, wt+1, ..., wt+C

A ∈ RV×H
matrix representation of weights between the input and hid-
den layer of the model

at,bt ∈ RH×1 respective t:th column vectors of weight matrices A and B
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The C-BoW version of Word2Vec is trained via gradient descent to maximise the
probability of predicting a word that is taken out of its context, i.e. the surrounding
words of the predicted term. In C-BoW, the hidden layer’s output is the aver-
aged context words’ weights AT 1

C
ct and softmax function [Bis06], i.e. normalised

exponential function

xj =
exp(yj)∑K
k=1 exp(yk)

, (11)

is used on the final layer to force the model’s outputs into probabilities. This means
that, given a context window ct of a document d, the probability of observing a
word wt according to the model is

p(wt|ct) =
exp(

output layer weights︷︸︸︷
bTt

averaged hidden layer outputs for context words︷ ︸︸ ︷
AT 1

C
ct )∑V

t′=1 exp(b
T
t′A

T 1
C
ct)

. (12)

The network’s loss is defined as the logarithmic loss for the above probability

L = −log(p(wt|ct)), (13)

thus C-BoWmaximises the probability of predicting a word missing from its context.

C-BoW’s, alternative, Skip-Gram, can be considered a mirrored version of C-BoW,
as it attempts to maximise the probabilities of context-words for a given term.

The probability for a context word wt+i in Skip-Gram is defined as

p(wt+i|wt) =
exp(bTt+iat)∑V
t′=1 exp(b

T
t′at)

, (14)

and its loss

L =
∑

−C≤i≤C,i6=0

− log p(wt+i|wt) (15)

is the sum of context word probabilities’ logarithmic losses.

The word vectors for each word wt are obtained from a trained model for both C-
BoW and Skip-Gram by using the neural net weights corresponding to word wt as
the vector dimensions. Similarly to LDA, Word2Vec has its vector size provided
as a hyperparameter. In Word2Vec and its dervivatives, the resulting vector size
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is the same as the number of neurons in the neural net’s hidden layer. Word2Vec
incorporates additional hyperparameters that affect model performance, which in-
clude context word window size C and the number of times the model goes through
its training data to learn weights for word representation. We refer to these data
run-throughs as epochs.

Goldberg and Levy [GL14] analyse the model details further and discuss the reasons
behind Word2Vec being such a powerful model. Interestingly, Goldberg and Levy
rest their case at not knowing why the model works as well as it does. They argue
that, although Word2Vec’s performance is related to the well studied distributional
hypothesis [RG65, Sah08], which states that words often appearing in the same con-
text have similar meanings, the fact that Word2Vec’s goal is to distinguish between
good and bad context-pairs does not count as a formal explanation for the model’s
effectiveness, but is rather “hand-wavy”. Regardless of the lack in understanding the
linguistic reason for word embeddings’ excellence, using them where possible often
provides state-of-the-art results. Thus the models’ vectors have been used for a
wide variety of tasks such as query expansion [KSK16], text classification [ZSLL15],
sentiment analysis, question classification and answering [MBXS17].

We, however, are interested mostly in document representation. For this, we can
leverage word embeddings to construct embeddings for whole documents by simple
mathematical operations. The sum or average of a document’s word embedding
vectors of can be thought of as a vector representing the document. However, this
method is likely to no longer provide state-of-the-art results even for short texts
[BS16]. The word embedding averages should rather be used as baseline for more
intelligent document embedding techniques alongside the widely popular TF-IDF.
To support this, in a recent article [SWW+18], Wang et al. analyse averaged word
embeddings that they call simple word-embedding-based models (SWEM). They
show that using SWEMs should still be considered as a noteworthy baseline, since
in some tasks SWEMs produce better results than more complex models.

Another approach besides averaging, the concatenation of word vectors, may seem
intuitive, but the approach holds a lot of problems. Similarity metrics that require
same dimensionality for different sized texts, such as cosine similarity in eq. (1), are
bound to fail. To overcome this, the long documents could be cut or the short ones
padded with zero-dimensions, but this would make the metric sensitive to document
length. Discriminating documents by their word length is something that should be
avoided, since it does not account for semantic similarity; a brief overview of a story
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should be considered semantically similar to a long detailed version of the same
story. Additionally for long texts, computing similarity for vectors with extreme
common non-zero element counts can result in unacceptable computation times and
space requirement for information retrieval.

3.2.2 Doc2Vec

In 2014 the creators of Word2Vec, Le and Mikolov, presented a modified version
of their Word2Vec model, Paragraph vector [LM14], to make the word embedding
model embed whole texts rather than words. In the original paper, Mikolov et
al show that paragraph vector is better suited for embedding documents to fixed-
length vectors than averaging word vectors or LDA when the embeddings are used
for measuring similarity of Wikipedia articles. The paragraph vector model has
since then received the more popular name Doc2Vec, which is how we will refer to
the model.

Like Word2Vec, Doc2Vec has also received enough attraction to have papers dedi-
cated to thorough analysis of the model. Lau et al provide [LB16] recommended hy-
perparameters as well as comparison to state-of-the-art document embedding meth-
ods and Lai et al show [DOL15] that Doc2Vec soundly beats LDA and averaged
word vectors in classifying Wikipedia articles to their respective categories.

Doc2Vec’s increased performance compared to Word2Vec is obtained by using a
document identifier in each context window when training the model. In the model’s
perspective, the document identifier acts as memory of the document’s topics during
training and is able represent missing context information the window words are
lacking.

The document identifier is applied to the model as one-hot encoded input in the
same manner as context words in a training window. Once Doc2Vec is trained,
the weights of its document ids are taken from the model and used to represent
the documents as their vector representations. Supposedly the weights capture
the semantic representation of a document the same way individual words’ weights
represent the meanings of words.

Like Word2Vec, Doc2Vec is a shallow neural network that includes two versions
of the algorithm. “Distributed memory” (DM) model resembles the C-BoW as it
outputs a single word from context, whereas the other model, “Distributed Bag of
Words” (D-BoW), outputs words using the document’s id as its only input and is
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more similar to Skip-Gram with its single input and multiple outputs. DM and
D-BoW differences are visualised in Figure 7.

Denoting the vector of model’s weights for a document d as d = aTd , the Doc2Vec
DM model is described mathematically as

p(wt|ct,d) =
exp(bTt (A

T 1
C
ct + d))∑V

t′=1 exp(b
T
t′(A

T 1
C
ct + d))

, (16)

which is identical to Word2Vec’s C-BoW except for the added document weights
and the weight matrix dimension A ∈ R(V+N)×H .

Accordingly, the probability for a context word wt+i in D-BoW is defined as

p(wt+i|wt,d) =
exp(bTt+i(at + d))∑V
t′=1 exp(b

T
t′(at + d))

. (17)

Figure 7: Doc2Vec DM and D-BoW models illustrated with an example window.

3.2.3 Doc2VecC

Doc2VecC [Che17] by Minmin Chen is another extension of Mikolov et al’s Word2Vec
algorithm that provides effective document representations for semantic relatedness
and document classification tasks. Interestingly, Doc2VecC is not an algorithm that
directly creates document embeddings, it rather attempts to modify word vectors
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in a way that the average of a document’s word vectors meaningfully represent the
semantics of said document.

Doc2VecC is motivated by Mikolov et al’s observation that averages or sums of
Word2Vec embeddings can contain a lot of semantic meaning from the whole set
of words. On grounds of this observation, Chen proposes that meaningful docu-
ment representations can be learnt by averaging word vectors during training. As
a comparison to Doc2Vec, which has a separate vector for representing a document
embedding during training, Doc2VecC uses the average of randomly sampled words
from the document as document’s context. This document context is then added
to the local context, i.e. context given by words in the training window, to aid in
inferring word probabilities during model training.

Chen refers to the random sampling of document context words as corruption and
states it is critical to both training speed and model performance. The corruption
is applied to document context, denoted as x̃, by setting the context dimensions x̃t
to 0 randomly with a probability q, given as a hyperparameter for the model. The
remaining dimensions are normalised to 1/Wd(1− q) times the dimension’s original
value x̃t, where Wd is the number of words in a document d. This gives a formal
definition for the corruption:

x̃t =

0,with probability q or word wt not in document d
xt

Wd(1−q)
, otherwise

. (18)

The probability for word wt in Doc2VecC is the same as in Word2Vec except for
added document context. The context enhanced word probabilities are

p(wt|ct, x̃) =
exp(bTt (

window context︷ ︸︸ ︷
AT 1

C
ct +

document context︷ ︸︸ ︷
1

D
AT x̃ ))∑V

t′=1 exp(b
T
t′(A

T 1
C
ct +

1
D
AT x̃))

(19)

for C-BoW and

p(wt+i|wt, x̃) =
exp(bTt+i(at +

1
D
AT x̃))∑V

t′=1 exp(b
T
t′(at +

1
D
AT x̃))

(20)

for Skip-Gram.

Although the modification toWord2Vec is rather minuscule, Chen shows that Doc2VecC
is able to surpass Doc2Vec’s performance in a sentiment analysis classification task.
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Additionally, the word vectors generated by Doc2VecC outperform Word2Vec in
the phrase analogy task devised by Mikolov et al in syntactic questions and most
semantic questions.

3.3 Ensembles

In addition to studying the presented models, ensembles of the models are evalu-
ated to investigate whether a combination of the algorithms outperforms any single
model. Kim et al [KSCK19] already showed recently that multi-co-training the mod-
els TF-IDF, LDA and Doc2Vec for topic classification yielded promising results.

Compared to Kim et al, we use a simple method to create ensembles of the models.
Our goal is to infer similarity values corresponding to human evaluation, and those
are computed from the embeddings. Thus, we can take averages over the models’
real valued predictions to create an ensemble model.

We test two ensembles, a Mean Ensemble, which weighs all the model predictions
equal, and a Linear Regression [SL12] ensemble, a model with optimised weights
based on ground truth similarity values.

Regression is a task for computer program to predict a numerical value based on some
input [GBC16]. Linear regression is regression model that assumes its inputs x ∈ Rn

are linearly related to an observed variable y ∈ R. In our case, x contains similarity
values for a document pair computed from embeddings given by the individual
models and y is a ground truth human assigned similarity value for the pair of case
law documents. As the relation between predicted similarities and human similarities
is assumed linear by the regression model, for each target y, it optimises weights
β ∈ Rn in the equation

y = x1β1 + ..+ xnβn + ε = xTβ + ε, (21)

where ε ∈ R is an error term denoting disturbance in the linear relation.

3.4 Text Embedding Similarity

As stated in the background section, ranking for information retrieval requires or-
dered values for document pairs. We use embedding models to represent case law
documents in vector space to enable ranking based on vector correlation. We use
two methods to extract a numerical similarity value from a pair of embeddings: di-
rect computation using cosine similarity in eq. (1) and a machine learning method
by Kiros et al [KZS+15] to learn a ranking from document embeddings and their
respective gold standard similarities.
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In the learning to rank method, similarity values for pairs of document vectors are
learned by logistic regression using gold standard values as learning targets. Logistic
regression, unlike its name suggests, is a classification model and not a regression
model. The model predicts a probability Pr(Y = 1) based on a linear combination
of the logistic regression’s vector of inputs3 x, weight vector β and logarithmic base
b:

Pr(Y = 1) =
1

1 + b−(β0+β1x1+β2x2+..+βnxn)
=

1

1 + b−(β
Tx)

=
bβ

Tx

1 + bβ
Tx
, (22)

thus resembling linear regression in eq. (21). With more than two classes to predict
and using the differentiationally convenient natural base e, logistic regression assigns
a probability Pr(Y = c) according to eq. (23) where c denotes the class in question,
and in our case, c ∈ {0, 1, .., 5}.

Pr(Y = c) =
eβ

T
c x∑

i e
βT
i x

(23)

Logistic regression inputs are represented as a single vector. Thus, to map a docu-
ment embedding pair of vectors u and v into a single vector, a concatenation of two
features of the vectors are selected to represent the pair, namely dot product u · v
and absolute difference |u− v|.

Given a gold standard similarity set that consists of similarity values y ∈ [0, 5], in
order to be effective, the learning to rank classifier should predict similarity scores
similar to gold standard values. However, the logistic regression classifier predicts
probabilities for classes instead of numerical similarity values. Thus, similarly to
Kiros et al, we use a mapping described in eq. (24) from target similarities y to
logistic regression’s target vectors p ∈ [0, 1]6 using a vector of the possible integer
similarity ratings s = [0, .., 5] that satisfies y = sTp. The mapping was introduced
by Tai et al [TSM15] and is equivalent to setting the bycth value of p as one and
the rest of the vector values as zero.

pi =


y − byc, if i = byc+ 1

byc − y + 1, if i = byc

0, otherwise

(24)

Since y = sTp, predicted similarity values ŷ are obtained by multiplying the logistic
regression’s outputs p̂ with the vector of distinct similarities s, i.e. ŷ = sT p̂.

3A fixed variable x0 = 1 is prepended to inputs x in order to use the more concise matrix
representation in eqs. (22) and (23).
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4 Data

Algorithms and models can be considered tools, and there hardly exists a tool that
works well for every task. It is crucial to understand the data one is working with,
as well as the models that process the data.

This section describes the data used in this work and how the data is preprocessed
for the embedding models.

4.1 Finnish Case Law

The data used in this work is a corpus, i.e a collection of structured texts, of Finnish
case law documents. At the time of writing this section and model evaluation,
the Finnish case law corpus consists of 13053 judgements from 1980 to 2019. The
texts are in XML-format and are provided by the Finnish Ministry of Justice. The
language of the texts is Finnish, which is an agglutinative language. This provides
challenge for text embedding models, since words often appear in multiple forms in
agglutinative languages.

The effects of the Finnish language having a high quantity of inflected words, com-
pared to e.g. English, can be seen from Table 1. The count of distinct terms in the
corpus totals up to more than 5% of the total word count and the distinct term count
with inflections as separate terms is over double the term count when inflections are
disregarded. As a reference, the King James Version of the Bible4, including the
book titles, consists of 821 130 terms with only 12 798 of them distinct, or 17 330
when verse identifiers such as “22:20” are included.

Number of documents 13 053
Total term count of corpus 17 154 739

Distinct term count of corpus 899 488 (342 668)
Average term count in a document 1314
Median term count in a document 659

Maximum term count in a document 84224
Minimum term count in a document 25

Table 1: Finnish case law corpus statistics. The distinct count in parenthesis indi-
cates the count when words have been reduced to their dictionary form i.e. lemma-
tised.

4http://www.gutenberg.org/cache/epub/10/pg10.txt
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Even with the different passages considered as distinct terms, King James Bible’s
distinct term count amounts only to 2.1% of its total term count. The term counts
for FinLex data and the reference text are computed from tokenised texts in lower
case with punctuation removed. All numerical data, such as Bible passages or ECLI-
identifiers are counted as ordinary terms.

A redeeming quality within our case law data, in terms of expected model per-
formance for similarity computation, is that the case law contains several aspects
alleviating the models’ task. Foremostly, each text contains the laws that are ap-
plied in giving a legal decision. Judgements having one or more laws in common
inherently convey that they are in a certain way similar to each other, and these
laws are depicted in only two possible forms, either abbreviated or in full form.
Another aspect is that the case law terminology is quite narrow, as is it written
by juridical personnel, and chiefly for juridical personnel. This makes the case law
corpus somewhat simpler dataset compared to e.g. news or scientific articles, where
there exist far more varying terminologies spanning a vast amount of different topics
and writers with distinct styles of writing.

4.2 Preprocessing

As stated in the introduction, texts need to be normalised to some standard form
before applying algorithms to process them. Our models use vectors of words as
inputs, wherefore we tokenise the case law documents into word tokens by splitting
the text by whitespace characters. Regarding model input, all our text embedding
models consider distinct character combinations in a token completely different from
each other. Thus, inflected word forms are likely to provide challenges for the models.
In addition, natural language texts contain punctuation and stopwords which carry
little or no semantic meaning by themselves. Thus, they may be nothing but a
hindrance for algorithms oblivious to word ordering.

In order to diminish word inflections’ and hindering terms’ effects on embedding
models, we normalise words by stripping punctuation, removing stopwords, lemma-
tising words and expanding abbreviations. Additionally, automatic query expansion
is performed on BoW models to reduce problems caused by synonymous words.
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4.2.1 Punctuation and stopwords

Punctuation is removed from the tokenised words by stripping punctuation marks
from the beginning and the end of a word. Therefore, “cat.” would become “cat”,
“ ‘knowledge’ ” becomes “knowledge” and other tokens with punctuation in the mid-
dle, such “0.123” or “linja-auto” (a bus, as in public transport vehicle) would be left
as is.

For stopword removal, we filter out stopwords using a list of predefined stopwords
of the Finnish language. We use the Natural Language Toolkit’s [LB02] Finnish
stopword set as our predefined stopwords for preprocessing the Finnish case law
data.

4.2.2 Abbreviations

The law texts contain abbreviations at some times for certain key terms, while not
always. In most cases, the key terms are abbreviated rather simply, e.g. “momentti”
(section) has a shorthand “mom”, and “laki” (law), is reduced to its initial “l”. In
order to make our embedding models consider full versions of the law terms the
same as abbreviated, the abbreviations are expanded by simple regular expressions
targeting the word “mom” and anything ending in “l”.

Word “mom” does not exist in Finnish, and words ending in “l” are rare, with
expanded versions of them not confusable with laws. Thus, the simple law term
disabbreviation can be deemed a safe operation. Other abbreviation expansions are
not considered due to them being rather rigorous to implement without possibly
doing more harm than good. As an example “Asetus” (decree) is abbreviated as “A”
and “A” is also used for anonymised names, which implies that information about
the word context is required to assign the expansion to correct terms.

In addition to expanding abbreviations, the laws and their subsections are com-
bined to enable easy differentiation between law sections and subsections for the
models. For instance, “law x section y subsection” is converted to “law-x law-section-
x-subsection-y
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4.2.3 Lemmatisation

Two applications that support Finnish have been available online since year 2016:
LAS [Mäk16] and FinnPos [SRLK16]. Both of the lemmatisers leverage OmorFi, a
freely available open source lexical database for the Finnish language [Pir15]. From
the two, LAS was chosen to be used to lemmatise case law for this project.

These lemmatisation applications are evidently not perfect, which is likely to diffi-
culty in automatically distinguish between two identical words in terms of spelling.
As an example, “voi” is both an third-person present form of “voida” (Engl. to be
able) and also the base-form of the noun “voi” (Engl. butter). When glancing at
LAS lemmatiser results, it can be seen that it leaves the word “voi” as is, even when
it is used as a verb. Another clearly erroneous example is the word “niistä”, an
inflection of the pronoun “ne” (Engl. they) being interpreted as the imperative form
of “niistää” (Engl. to blow ones nose).

The most obvious problems in the lemmatiser performance seems to be solvable
through context based Part of Speech (POS) tagging, which would allow, e.g., verbs
to be distinguished from pronouns more precisely. However, this would require an
efficient automatic POS-tagger and improving existing lemmatisers is out of scope
for this work.

4.2.4 Automatic query expansion

Automatic query expansion (AQE) is a common method used to improve informa-
tion retrieval by adding related words to queries [Eft96, AD17]. Word frequency
based methods on their own would have no way of understanding that two texts
are similar in semantic sense if they have no words in common. This is problematic
since the texts can nevertheless be semantically nearly identical when containing
synonyms. The sentence “A chicken crossed the road” has little difference in seman-
tic meaning with “The hen walked across the street”. But regarding term frequency,
there is nothing in common apart from a single stopword in the sentences.

While query expansion’s potential benefits are rather easy to comprehend as it allows
querying by synonyms, query expansion may be useless or even harmful if words are
carelessly mapped together. Specifying an optimal level of similarity that accounts
for synonymity is a challenge in itself. It is widely agreed among linguists that true
synonyms do not exist [Urd93], there can only be near synonyms. Words appear in
different contexts with varying frequency and appearing in a certain context alone
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can slightly change the meaning of a word in the sense of connotation, familiarity
and appropriateness. Moreover, as Carpineto et al. describe in their survey [CR12],
automatic query expansion is required foremostly in short queries where there might
not be many words to describe the information need. In our case, the queries are long
on average and case law has a certain terminology. This minimises what Carpineto
et al call “the most critical language issue”, i.e. a term mismatch problem, where
users and IR systems use different vocabularies.

We test query expansion using three Finnish ontologies containing semantically
linked words to add synonyms, hypernyms and hyponyms, i.e. near equivalent,
broader and narrower terms, to our case law documents. Query expansion is per-
formed as weighted expansion with weights being one for original words, half for
synonyms and one fourth for hypernyms. The ontologies from which term relations
were retrieved are OIKO5, an ontology of Finnish legal terms, and a Finnish ontol-
ogy collection KOKO6. KOKO includes Yleinen Suomalainen Ontologia7 [HVK+05]
(general Finnish ontology), which is an ontology of the Finnish language based on
the Finnish thesaurus Yleinen Suomalainen Asiasanasto8.

Query expansion is applied by manipulating BoW frequencies, which is not plausible
for the neural net models. Therefore, query expansion is tested only on the BoW
models, TF-IDF and LDA, and not on Word2Vec nor its extensions. Terms in
documents are lemmatised for query expansion, since the ontology word labels used
for searching related terms are in their base form.

5https://finto.fi/oiko/en/
6https://finto.fi/koko/en/
7https://finto.fi/yso/en/
8http://finto.fi/ysa/fi/
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5 Evaluation methods

IR system performance evaluation considers two aspects, efficiency and effectiveness
[BCC]. Efficiency is measured by query execution time or space requirements, which
are both straightforward to assess. Effectiveness, i.e. the quality or relevance of
query results, on the other hand, is a far more complex matter to evaluate, as it
requires human judgement. Regardless of the difficulty in assessing effectiveness, it
is of utmost importance, as it does not make sense to use a model for ranking query
results if there are no means to tell whether the model performs well or not.

A rather obvious method for effectiveness evaluation is to take a glance at the
outputs of a model and decide how good the results are using one’s own intuition.
For instance, one might take the top ten similar results to a query and examine
the order and relevance to the query document or term. This procedure could then
be repeated for all models that require assessment. However, in order to have a
numerical score for the models, even with only 5 different queries and examining the
top ten results, there would have to be 5∗10∗modelcount comparisons. As similarity
assessment by human examination is rather tedious work, especially when dealing
with large documents, automation is needed to properly assess similarity-computing
algorithms with reasonable resources.

In order to perform accurate automatic evaluation for ranking, a ground truth with
which to compare a model’s results is required. Models for retrieval system eval-
uation without a ground truth have been proposed [SNC01, WC03, Spo07], but
empirical studies [SL10] show that they are unreliable when evaluating a single IR
System.

A ground truth set consisting of human assigned document similarity labels is re-
ferred to as a gold standard set. A gold standard similarity value is a ground
truth semantic similarity score assigned by humans. With semantic similarity being
difficult for humans, and keeping in mind that humans make plenty of mistakes,
similarity gold standards are far from perfect. However, as its name “gold standard”
suggests, it is the best thing available.

While being optimal ground truth data, gold standard similarity scores are strenu-
ous to obtain as they need to be manually assigned. Shi et al [SLW10] state that the
creation of relevance judgements, i.e. similarity scores, consumes the most time and
human resources in the creation of an information retrieval system. This section
describes our document embedding model evaluation for IR ranking with two meth-
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ods, topic classification and correlation with a gold standard label set. In addition,
we present our gold standard set and explain how it was acquired.

5.1 Topic classification

Due to the workload required to generate a gold standard set, we investigate an
alternative approach which does not require manual labelling of document similari-
ties for our Finnish case law corpus. In order to skip using hand-labelled similarity
values for evaluation, we use substitutes for the similarity values as ground truth val-
ues. To be of use, the substitute values require at least two properties. Firstly, they
need to be something that can be reasonably assumed to have a correlating model
performance with the similarities. Secondly, the substitute ground truth should be
automatically extractable to get rid of the tedious manual labelling.

We select topics, i.e. semantic spaces, which are included in the case law as key-
words as our suitable substitute. Both topic classification and semantic similarity
computation require understanding of text semantics. If the case document em-
beddings contain information that allow them to be classified into topics effectively,
they can be assumed to also contain information that enables computing reasonable
similarities between documents. On the other hand, if the embeddings are poorly
designed for topic classification, the model that produced the embeddings is unlikely
to perform well in estimating document similarity.

The number of distinct keywords in the case law data is ca. 16 000. Keeping all of the
keywords would make the topic classification label set extremely large considering
that a document may have multiple keywords. Additionally, a significant proportion
of the keywords appear only in one or a few documents, which makes the rare
keywords unreasonably difficult to be learned from the data. Thus, a minimum
keyword appearance count of 15 is chosen to reduce the label space to a more
convenient size. Consequently, we remove all documents from the evaluation data
set which do not contain any accepted keywords. With the minimum keyword count
restriction, the label space is reduced to one fiftieth of the original. This speeds up
the training, makes it less memory intensive and increases the chances for a classifier
to learn all the correct topics for embeddings.

To evaluate that a trained document embedding model’s performance is general-
isable, we split the remaining documents alongside their labels to training set and
test set at ratio 80:20. Our document embedding models, excluding TF-IDF, contain
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hyperparameters, i.e. user defined parameters used for learning model parameters,
which need to be tuned for optimal performance. Thus, we select a range for each
tunable hyperparameter and train the embedding models with different hyperparam-
eter combinations in order to find out the best combinations for topic classification.
We obtain a range for a selected hyperparameter by fixing other hyperparameter
values and evaluating the model with increasing and or decreasing values of the
selected hyperparameter until there is no improvement. Starting hyperparameters
for range selection were picked from the readily available implementations of the
document embedding models. In addition to hyperparameter tuning, we similarly
tune the preprocessing steps stopword removal, lemmatisation and query expansion
alongside the hyperparameters by separate training for each preprocessing combi-
nation.

The embedding models are trained using the training set and then the test doc-
uments are embedded by the trained model. With all documents embedded, the
embeddings can be classified into topics. As our goal is to distinguish which docu-
ment embedding model is the best, it is not critical to optimise the performance of
the topic classifier model. Thus, we chose perceptron, a neural network consisting
of a single neuron, to classify embedding vectors into topics. Perceptron was chosen
based on training time and performance from several models with readily available
implementation. The other tested models include support vector machines, logistic
regression and gradient boosted decision trees.

Perceptron, having only one output node, is a binary classification model and doc-
uments may belong to more than one topic, wherefore a binary classifier cannot be
directly applied for a multi-class prediction problem. Therefore, we apply one-vs-rest
classification [BWG10], to use perceptron as a multi-label classifier. In one-vs-rest,
a single binary classifier is assigned for each target class so that the binary classifier
generates a class probability for all the classes separately. We use the same train-test
split for the topic classifier as with the document embedding models.

For algorithm performance measures, we opt for relevance measures computed from
true positive (TP), false negative (FN) and false positive (FP) prediction counts. We
use three common measures that provide information on model accuracy: precision
and recall in eq. (25) and their harmonic mean known as F1-score in eq. (26), which
have been previously used by e.g. Quercia et al [QAC12] for topic classification
evaluation.

precision =
TP

TP + FP
, recall =

TP

TP + FN
(25)
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F1 =
2× precision× recall
precision+ recall

(26)

To note a possible problem for our topic classification method, the keyword label
set contains some inconsistencies. As an example, cases ECLI:FI:KKO:2012:39,
ECLI:FI:KKO:1989:1510 and
ECLI:FI:KKO:2004:12011 are all three about crimes involving driving a car, yet
they have no keywords in common. This can affect negatively the usefulness of
topic classification for IR ranking evaluation.

5.2 Gold standard correlation

Topic classification as a substitute for similarity ranking is slightly far-fetched and
the two have a risk of not being sufficiently correlated. Additionally, the topic
classification with our corpus has its own flaws, wherefore spending time to create
a ground truth similarity set with human evaluation may be deemed well spent.

Assuming there is a gold standard set of similarity scores available to use for evalu-
ation, one can use correlation measures to assess automatically derived similarities.
As an example, the SemEval International Workshop12 has used linear correlation
measures, namely Spearman rank order correlation and Pearson correlation to evalu-
ate the relatedness between gold standard similarity annotations and algorithmically
acquired text similarities.

The Pearson correlation [Sta13], also known as linear correlation and product mo-
ment correlation, is a rather straightforward correlation measure. Given two vectors
or populations, e.g. gold standard and predicted similarities, it is the quotient of
their covariance and standard deviation’s product. The Pearson correlation is often
denoted with the symbol r and formally written as

rx,y =
cov(x,y)

σxσy
=

∑
i(xi − x)(yi − y)√∑
i(xi − x)2(yi − y)2

, (27)

where x and y stand for the populations that are compared and x,y their respective
means.

The Spearman rank order correlation is defined as Pearson correlation for ranks, with
ranks being the numerical ordering for the values of a population. The Spearman

9https://data.finlex.fi/ecli/kko/2012/3.html
10https://data.finlex.fi/ecli/kko/1989/15.html
11https://data.finlex.fi/ecli/kko/2004/120.html
12http://alt.qcri.org/semeval2019/



39

correlation is thus

rrank(x),rank(y) =
cov(rank(x), rank(y))

σrank(x), σrank(y)
, (28)

where rank() is a ranking function that reduces a vector’s values to their ordinal
numbers. For instance, rank([0.2, 0.21, 0.1, 0.99]) 7→ [2, 3, 1, 4].

Spearman correlation is intuitively suited to the ranking task, as it measures rank
correlations, but it does not consider the distance between two differently ranked
values as Pearson correlation does. For the SemEval workshop for similarity evalu-
ation in year 2014 [ABC+14], Agirre et al argue that Pearson has more informative
value than Spearman, since Pearson takes into account both value and rank differ-
ences, whereas Spearman rank correlation does not consider the value differences.
Agirre et al also performed analysis indicating that Pearson is better suited for gold
standard comparison than Spearman.

Additionally, Hauke et al state that one must be careful not to overinterpret Spear-
man rank order correlation values [HK11] by showing that positive Spearman and
negative Pearson correlation can co-occur. Due to the differences between the two
popular correlation measures we use both metrics to provide insight on ranking
correlation.

With the correlation measures being possibly inconsistent with each other, we in-
clude a simple non-correlation measure, mean squared error (MSE) in eq. (29)
between target values y ∈ Rm and predicted values ŷ ∈ Rm to give additional
insight on model performances.

MSE =
1

m

m∑
i

(yi − ŷi)2 (29)

Before computing MSE, the scores are standardised to unit variance and zero mean
for MSE to give intuitive values. Otherwise MSE would vary depending on differ-
ences in the models’ embedding spaces.

As with topic classification, we train embedding models individually for each hyper-
parameter-preprocessing combination. However, for comparison against gold stan-
dard, we use all documents in the Finnish case law data set to train our embedding
models in order for the embeddings to be as good as possible. We then compute
similarity for document embedding pairs with two methods that are described in
section 3.4. We evaluate these methods separately for each document embedding
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model by computing Pearson correlation, Spearman rank correlation and MSE us-
ing gold standard labels. Additionally, for our linear regression ensemble, which
learns weights for each model based on gold standard similarities, we apply 5-fold
cross-validation to ensure that the ensemble’s weights are generalisable beyond the
gold standard set. 5-fold cross-validation, i.e. splitting data into 5 sets and using
each in turn as a test set and the rest as training set, is also performed for the mean
ensemble and individual models for comparison.

5.3 Hand-labelling similarity values

In order to evaluate computed similarity values with correlation to gold standard
similarities and to use our learning to rank with logistic regression, we need gold
standard ground truth similarities. Hang Li [L+09], in his book “Learning to Rank
for Information Retrieval and Natural Language Processing”, states that there are
two common ways of creating this kind of ground truth data. One is to extract
preferences from click-through data of people’s Internet usage. This method, how-
ever, is out of question, since there is not click-through data available for our specific
case of finding relevant Finnish case law documents with full document queries. The
remaining method is to use humans to explicitly define similarities, i.e. labelling sim-
ilarity values manually. This, as previously discussed, can be very time-consuming.

Besides being time-intensive, acquiring reliable similarity annotations is not always
straightforward. When judging document similarity, it might not be obvious for
an annotator how to label the similarities for documents well, no matter how re-
fined their expertise. Additionally, people can have different opinions on similarity.
Therefore, it is reasonable to devise an intelligent system that is easy to use, which
leverages preferably more than one annotator to acquire similarity labels for a gold
standard set.

In SemEval-2012 Task 6: A Pilot on Semantic Textual Similarity [ADCGA12],
Agirre et al used a scalar scale from 0 to 5 with explanations for each value, e.g. “(2)
Not equivalent, but share some things” and “(1) Not equivalent, but are on the same
topic”. They annotated the data themselves and state that the pairwise Pearson
correlation among the annotators was between 84% to 87% and that each annotator
agreed with less than 90% of the other annotators’ average scores.

For a subsequent year’s task [ACD+13], Agirre et al used crowd sourcing to obtain
the annotations in addition to the task organisers’ own gold standards. They used
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a similar 6 value scale for the semantic similarity and provided the annotators a
detailed instruction on how to score the texts. The crowd sourced annotators were
tested by comparing their results to the organisers’ gold standard and the worst
performers’ annotations were dropped. Regardless of the crowd source pruning, the
Pearson correlation between human assigned similarities ranged from 62% to 87%.
This shows that crowd sourcing, while it is efficient, will make it difficult to achieve
good ground truths for machine learning models. Agirre et al’s experiments show
that there is room for improvement in making gold standards for textual similarity,
but more importantly, they emphasise the importance of having more than one
annotator. If the annotators do not agree with each others’ semantic evaluation,
the average of many annotators’ scores is likely less biased than having merely one
annotator’s opinion on the similarities.

Nevertheless, in order to obtain a gold standard semantic similarity evaluation set, an
annotator is required to compare pairs of documents and assess their similarity. To
alleviate this process, we incorporate comparing and evaluating case law similarity
within our self-built case law finder web application. The evaluation within the
application is made possible by having an optional sign up and login, which allows
a user to evaluate the similarity of any result for a query document. Having a
login required for evaluation allows selecting verified evaluators from others, as well
as excluding completely incoherent evaluations, i.e. random or seemingly dishonest
submissions. The application is described in more detail in appendix A.

Inspired by the SemEval’s system, we use a 0 to 5 scale for similarity, minimally
tailored for the Finlex case law corpus:

• 5 - Almost identical.

• 4 - Similar topics and content.

• 3 - Multiple shared topics.

• 2 - At least one common topic.

• 1 - Some common elements.

• 0 - Completely different.

While this similarity system does not deal with the aforementioned multiple forms of
similarity problem, being based chiefly on topic similarity, its simplicity is beneficial
in order to make submitting similarity ratings an easy task.
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Figure 8: Rating similarity in the Finnish case law finder application. Green tick
indicates a query-result pair similarity has been rated.

Submitted ratings contain a timestamp, user id and document ids, to enable the
usage of average user-given similarities for document pairs as a gold standard for
evaluation.

The final similarity rating set obtained using the application’s submission include
138 distinct ratings in total with pairs from various topics. Due to difficulty in
acquiring expert labels (likely a result of lack of advertising or not providing a
materialistic reward for rating), 129 of the labels are assigned by myself, while 9 are
given by a volunteering law student.

With the gold standard being constructed mostly by a single person and not someone
more familiar with case law, or better yet, multiple such people, our ground truth for
evaluating Finnish case law ranking leaves plenty of room for improvement. However,
in our defence, 2017 SemEval task [CDA+17] in multi-lingual text similarity, uses
250 pairs for each language, which are either constructed by a single expert or
non-experts via crowd-sourcing. Additionally, regarding our gold standard set size,
Campr et al [CJ15] had three annotators manually label only 150 pairs of summaries
in order to compare the accuracy of various similarity computation models.
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6 Results

This section describes the results of our document embedding model evaluation. As
explained in more detail in section 5, we evaluate ranking for information retrieval
by two methods, topic classification and similarity correlation with gold standard
set.

We evaluate document embedding models separately for different hyperparameter-
preprocessing combinations for both our evaluation methods. This enables us to
see which hyperparameters are optimal for our task and whether the same model
settings should be used for the two evaluation methods. We use accuracy measures,
namely precision, recall and F1-score in eqs. (25) and (26) as our measures for topic
classification. Whereas for similarity correlation with gold standards, we use Pearson
correlation, Spearman rank order correlation and mean squared error (MSE) in eqs.
(27), (28) and (29).

6.1 Topic classification using keywords

The best topic classification results per model can be seen in Table 2. The table
shows that the traditional TF-IDF embeddings performed the best, closely followed
by neural network model embeddings. LDA, while being a topic model by definition,
performed significantly worse than the other models in providing embeddings for
classifying keywords to topics.

Model Precision Recall F1-score
TF-IDF 0.63 0.53 0.54
LDA 0.41 0.23 0.27

Word2Vec 0.55 0.46 0.49
Doc2Vec 0.54 0.56 0.53
Doc2VecC 0.60 0.48 0.51

Table 2: Best topic classification results for each tested model. Note that the values
for precision, recall and F1-score are averages weighed by true instance count for
each label. This can cause F1-score to be lower than both precision or recall as
harmonic mean of two values weighs the lower value more heavily.

For TF-IDF, there was no hyperparameters to tune and for LDA we tuned only the
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number of latent topics, which determines the size of LDA’s embeddings. On the
other hand, neural network methods had multiple hyperparameters to tune. Inves-
tigating around the default hyperparameters for the embedding model implementa-
tions, the best F1-scores for models were produced by hyperparameters displayed in
Table 3.

Model embedding size model variant window size RSR
LDA 500 - - -

Word2Vec 900 C-BoW 10 -
Doc2Vec 100 / 300 D-BoW 5 / 10 -
Doc2VecC 500 / 700 C-BoW 10 0.0125

Table 3: Optimal hyperparameters for machine learning models in topic classifi-
cation. The slash symbol “/” between two options denotes the options resulting
in equal performance for model evaluation. RSR is the random sampling rate for
context words in Doc2VecC model.

The best scores for preprocessing steps we tested are presented in Table 4. The
hyperparameters for the best score for a given preprocessing step varied, but only
slightly. We find that each preprocessing method is either of little use or ineffec-
tive for the embedding models with LDA as exception. LDA benefited from each
preprocessing step and greatly from lemmatisation and query expansion.

Model b b, ns b, lem b, lem, ns b, lem, qe
TF-IDF 0.54 0.54 0.53 0.53 0.53
LDA 0.15 0.17 0.22 0.23 0.27

Word2Vec 0.46 0.48 0.49 0.49 -
Doc2Vec 0.52 0.53 0.52 0.53 -
Doc2VecC 0.48 0.51 0.51 0.51 -

Table 4: F1-scores of test set evaluation for models and preprocessing methods in
topic classification. Title shorthands are: b=basic preprocessing, ns=no stopwords,
lem=lemmatised, qe=query expansion. The F1-scores are obtained using best model
hyperparameters for each preprocessing method. Basic preprocessing includes to-
kenisation, punctuation removal and abbreviation expansion.
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6.2 Gold standard correlation

Contrary to results in topic classification, we found texts should not be lemmatised
for training with LDA as an exception. However, lemmatising texts before em-
bedding them improved model performance significantly for all models apart from
the worst performing model, Word2Vec. Additionally, unlike in topic classification,
Doc2Vec and LDA perform the best from individual models. With the gold standard
correlation method, we also evaluated two ensemble models. These outperform all
of the individual models as can be seen in Table 5, which includes measurements
for lemmatised and unlemmatised texts. As with topic classification, LDA benefited
from query expansion for training data while TF-IDF was unaffected.

Regarding stopword removal, we found initially mixing results for its usefulness.
However, after keeping the stopwords “yli” (over) and “ei” (no) in the texts while
removing other stopwords, we found that stopword removal was beneficial for all
models.

Model Pearson Spearman MSE
TF-IDF 0.57 (0.42) 0.56 (0.50) 0.85 (1.17)
LDA 0.62 (0.46) 0.60 (0.48) 0.76 (1.07)

Word2Vec 0.42 (0.54) 0.41 (0.52) 1.16 (0.93)
Doc2Vec 0.64 (0.48) 0.64 (0.46) 0.71 (1.03)
Doc2VecC 0.56 (0.53) 0.53 (0.52) 0.89 (0.94)

Mean ensemble 0.70 (0.62) 0.69 (0.62) 0.61 (0.76)
LinReg ensemble 0.75 (0.70) 0.74 (0.70) 0.5 (0.6)

Table 5: Best correlations and mean squared error between gold standard similarities
and embeddings’ cosine similarity values for tested hyperparameters and preprocess-
ing steps. Results for embeddings from lemmatised texts are without brackets and
ones without lemmatisation in round brackets.

The best hyperparameters per model are depicted in Table 6. Comparing these to
the best hyperparameters for topic classification in Table 3, we see that there is cor-
relation with the results, but also differences in embedding sizes. LDA performs best
in similarity correlation with less latent topics than in topic classification, whereas
Doc2Vec benefits from a bigger vector size.
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TF-IDF LDA Doc2Vec Doc2VecC Word2Vec
0.16 0.12 0.66 0.06 0.00

Table 7: Model weights for best performing ensemble

Model embedding size model variant window size RSR
LDA 300 - - -

Word2Vec 900 C-BoW 10 -
Doc2Vec 500 D-BoW 5 / 10 -
Doc2VecC 700 C-BoW 10 0.0125

Table 6: Optimal hyperparameters for machine learning models. The slash symbol
“/” between two options denotes the options resulting in equal performance for model
evaluation. RSR denotes the random sampling rate for context words in Doc2VecC
model.

As our best performing model is linear regression ensemble, which computes weights
for each individual model, we further analysed the weights, to see which model’s are
deemed the most important by the regression. By examining the regression weights
in Table 7, we find that Doc2Vec is by far the most weighed model contributing
to over half of the ensemble’s predicted similarity. On the other hand, the other
neural net models seem less important with Word2Vec contributing nothing to the
ensemble and Doc2Vec less than TF-IDF or LDA.

Besides using cosine similarity to extract similarity from document embeddings, we
tested using logistic regression to learn similarities using ground truth values. The
results can be seen in Table 8, which shows that the correlations for test sets are
remarkably lower than the ones computed using cosine similarity. Most training
set results improve upon cosine similarity and especially the ones for ensembles
indicating that our learning to rank model has potential with the Finnish case law
corpus if given more similarity targets to train with.
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Model Pearson Spearman MSE
TF-IDF 0.24 [0.62] (0.47) 0.27 [0.67] (0.37) 1.52 [0.76] (1.06)
LDA 0.17 [0.54] (0.58) 0.14 [0.56] (0.51) 1.66 [0.92] (0.83)

Word2Vec 0.25 [0.62] (0.44) 0.13 [0.67] (0.40) 1.50 [0.72] (1.13)
Doc2Vec 0.31 [0.69] (0.58) 0.36 [0.74] (0.58) 1.38 [0.62] (0.84)
Doc2VecC 0.40 [0.50] (0.59) 0.25 [0.47] (0.51) 1.20 [1.01] (0.81)

Mean Ensemble 0.41 [0.78] (0.68) 0.39 [0.81] (0.65) 1.18 [0.44] (0.64)
LinReg Ensemble 0.44 [0.81] (0.68) 0.36 [0.83] (0.65) 1.13 [0.38] (0.64)

Table 8: Average correlations and mean squared error between gold standard simi-
larities and embeddings’ learned similarity values for 5-fold cross validation. Cross-
validation training average is shown in square brackets and cosine similarity average
for test sets is shown in round brackets for comparison.
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7 Conclusions and Future Work

We have evaluated five models’ performance in ranking for Finnish case law retrieval,
namely, the performance of TF-IDF, LDA, Word2Vec, Doc2Vec and Doc2VecC.
Additionally two ensembles of the models were evaluated. Two different evaluation
methods were reviewed, topic classification and similarity correlation against a self-
provided gold standard similarity set.

Returning to our research questions, we found that the neural network Doc2Vec’s
embeddings outperform those of LDA and TF-IDF for use in Finnish case law rank-
ing. However, Doc2VecC’s performance is worse than LDA and also slightly worse
than TF-IDF. Averaged Word2Vec’s embeddings was the most useless embedding
model of the tested models. For model combinations, the evaluation results show
that a linear regression weighted combination of presented models fairs best for
ranking the case law documents. Additionally, we find that a mean ensemble of
the models beats all the individual models and that the weighted ensemble outper-
forms the individuals models significantly. As per inspecting the regression model’s
weights, Doc2Vec gave the most weighted similarities, which is not unexpected as
it also is the best individual model. However, Word2Vec carried no weight and is
thus redundant for our case law retrieval. Regardless of Word2Vec’s performance,
our results show that neural networks can perform better than TF-IDF and LDA
for Finnish case law retrieval. Moreover, we found that a combination of all models
except Word2Vec is the most useful for our retrieval setting.

Regarding our tests with preprocessing methods, we see that the case law texts
should be lemmatised only for trained models (apart from LDA) with stopwords
removed during model training. Rather interestingly, only LDA benefits from lem-
matisation for model training data. The probabilistic model’s performance is also
boosted with synonym and hypernym query expansion making it the second best
individual model behind the neural network Doc2Vec. Additionally, we found that
removing the stopwords “yli” (over) and “ei” (no) was harmful for ranking with em-
beddings. This confirms that stopword removal should be performed carefully as
discussed in section 2.2.1.

The correlation between our human-assigned similarities and those from our best
model is highly promising. We reach 0.75 for both Pearson and Spearman rank
order correlations, which is more than might be for human evaluator’s similarity
assignments amongst themselves [ABC+14]. Our gold standard similarity set would,
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however, require more annotators and annotated document pairs to give a robust
indication of human-like similarity assignment performance for the tested models.
We also tested a learning to rank method for computing similarities from document
embeddings, however, the results are not in its favour. It seems that our gold
standard similarity set is not large enough for logistic regression to give generalisable
results that could compete against cosine similarity in extracting similarity values
between document embeddings.

Considering our final research question about topic classification evaluation for IR
ranking, we find that it is rather unreliable based on the differences in evaluation
results compared to the more authoritative evaluation measure for ranking, i.e.,
correlation with gold standard similarities. However, it should be noted, that neither
our gold standard set nor the keywords for topic classification targets are optimal,
which leaves room for errors in the evaluation. Thus, while the differences between
the two methods are too notable to ignore, further investigation using more refined
evaluation targets as well as using other datasets would provide more definitive
results.

In addition to model comparison for ranking and assessing topic classification as
an evaluation method for information retrieval, we present an information retrieval
application for Finnish case law. The application enables users to query the Finnish
case law efficiently with full texts by allowing direct text input and uploading from
a file. As a consequence of query text preprocessing and the embedding based result
ranking, free natural texts queries work rather well in the application, although this
performance is not tested by any numerical measure but only by reviewing such
queries’ results manually. The created application is briefly described in appendix
A.

As for future work concerning ranking improvement with neural network models,
Che et al introduce ELMo [CLW+18], a new state-of-the-art word embedding model
that, contrary to our models, as well as other popular methods, encodes words with
a sentence as an input instead of just the word. In other words, the model’s word
representations are a function of a whole sentence. This has the benefit of having
different embeddings for homonyms, i.e. words with the same form but distinct
meanings, so that the model can disambiguate between such terms.

In their paper, Che et al test the performance of their ELMo vectors in six different
NLP tasks and improve the results in each task by adding ELMo to models previ-
ously used in the tasks. This shows that the ELMo generated embeddings capture
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semantic information better than the other word representations that were used in
the tested NLP task models. Besides simply testing averaged ELMo embedding’s
capabilities for ranking, Doc2VecC’s idea of adding random context words during
training can be tested with ELMo to see whether it could help provide better doc-
ument averages as happened with Word2Vec. While ELMo is a model much more
complicated than Word2Vec, adding context words can be done by manipulating
the model inputs. However, ELMo is sensitive to word ordering in sentences, which
might provide challenges in adding context words.

Another task for the future is to evaluate for ranking the Word Mover’s Distance
(WMD) [KSKW15] model, which provides a similarity metric for documents by
leveraging predefined word vectors. True to its name, WMD computes a similarity
value for a document pair from distances between vector’s that correspond to the
documents’ words with the following assumption: The less the two documents’
vectors have to be manipulated to become the same, the higher the document pair’s
similarity value.

A freely available WMD model was tested, but it resulted being far too slow for
information retrieval purposes. In preliminary testing, computing distance, i.e. sim-
ilarity, between two documents took up to several minutes for small word vectors
of 100 elements. However, in 2017 Atasu et al presented a Linear-Complexity Re-
laxed Word’s Mover’s Distance (LC-RWDM) [APD+17, AM19], an efficient version
of Kusner et al’s WMD. LC-RWDM improves the original WMD’s quadratic time-
complexity O(W 2

d ) by applying several heuristic optimisation techniques resulting
in a linear time complexity model. With an implementation of LC-RWMD, com-
puting document distances could be feasible for an IR application. This would also
provide an interesting way to evaluate different word embedding models, including
the aforementioned ELMo, for ranking.
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A Case Law Finder Application

We present a web application leveraging the text embedding models studied in this
work to allow effective full-document search of Finnish case law. The application is
made available online13 for free use. We briefly describe the created application’s
main components, architecture and user interface.

The application’s data is stored in a relational database with a table for documents
to include document texts, metadata and an integer document id, which corresponds
to a document’s index in training data for embedding models. The database also
includes tables for users and similarity ratings to enable users to rate document pair
similarities within the application. The chief goal of the application is to enable
efficient and precise search with full texts. However, text documents come in various
formats. For instance, a user might have a case law text in paper or PDF. Since
papers can be photographed and PDFs may contain text as image, we include object
character recognition (OCR) in the application to extract text from image files.

Tesseract OCR [Smi07], an open source OCR system that has a well performing pre-
trained model for Finnish text, good documentation and the possibility of retraining
the model further, was chosen for the task. Although having a model for Finnish out-
of-the-box, Tesseract OCR was not directly implemented into the software. Instead,
it was first retrained to include letters “Å”, “å” and the section sign “§”, which were
not included in the Tesseract OCR’s readily available Finnish text model.

Within the web application, a user is able to input a text document with which to
query FinLex case law. This text document may be uploaded to the application’s
search form from a file, or it can be directly written to the form as text. Supported
file formats for uploading documents are plain text, XML, PDF, and with Tesser-
act OCR, image formats, e.g. JPEG or PNG. The search form also allows a user
to choose the algorithm that ranks the documents, since ranking with some algo-
rithms may work better than others for certain topics, or depending on what kind
of relatedness is preferred.

13https://data.finlex.fi/document-search



Figure 9: Semantic FinLex case law finder application document search.

Once a document is submitted in document search form, it is sent to the application
back-end where the magic happens. The backend provides a simple API for retriev-
ing case law documents. A query document is sent to the API via a HTTP/POST
request where an embedding model is specified in the requested URI. An optional
parameter n is provided to limit the number of retrieved documents, since sending
the results via HTTP causes a bottleneck in retrieval time.

A received query document is preprocessed to the same format as models’ training
data and the formatted query text is given to the model as input. The model
transforms its input into a vector, and cosine similarity values are computed between
the query’s vector representation and all database’s case law documents’ vector
representations. Then, all document ids are sorted by the computed similarities
and the top n ranked documents are retrieved from the database and returned in
JSON-format. The query retrieval and processing is illustrated as a graph in Figure
10.



Figure 10: Semantic FinLex case law finder application architecture.

The ranked case law is shown to the user as a list of expandable panels with the
case law identifier and keywords as a panel’s title. Similarity rating is shown by
default to give insight on how the similarities change. This allows the user to see
from the values whether there are likely relevant results left to view. Besides the
actual document text, the result items contain a button for quickly querying case
law related to a result document. This is intended as a helpful measure when a user
does not have a certain query document, but rather wants to search the case law
corpus exploratively.

Figure 11: Semantic FinLex case law finder application document search results.

The created application and its models are intended to work as generally as possible.
While the application is created for the specific domain of Finnish case law, there
is little besides the trained models that restricts the application to be used with
other corpora. Only regex abbreviation expansion, ties the textual context to the



Finnish language or juridical terminology. This suggests that the performance is
generalisable to texts from other linguistic domains as well as other languages.

The models in the application leverage lemmatisation as it was deemed beneficial in
model evaluation. Since lemmatisation normalises effectively word inflections, it can
make queries of natural sentences less challenging for machines. Thus, we performed
an additional test on our working application with short natural language queries
to see how it would manage the task although the models are optimised for full
document search. A working example is the query “törmäsin autoon” (I collided into
a car). Without lemmatisation, the inflected word “törmäsin” (I collided) would be
non-existent in the training data. Thus, even the neural net models would not be
able to infer that the user is inquiring about collisions. As the result of our additional
experiment we find that using the example query returns cases concerning cars and
traffic accidents. However, we did not perform any extensive testing for short natural
language queries as this was not our primary objective.


