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ABSTRACT  

The need of accurate and reliable positioning and navigation units is becoming of paramount importance with the advent of new 
services and new paradigms for transportation systems. Among the multiple technologies and sensors that might be used for 
positioning, Global Navigation Satellite System (GNSS) can be considered as the core technology and a superior system capable to 
provide the user with estimates of his own position in a global reference frame. Unfortunately, received GNSS signals are extremely 
weak and thus vulnerable to non-intentional and intentional Radio Frequency Interference. In particular, the malicious intentional 
interference produced by jammers is proliferating and it is becoming a serious threat for GNSS receivers. The integration of GNSS 
and external sensors with complementary characteristics, is the key for overcoming the weaknesses and enhancing the strengths of 
each sub-system. In this paper, the design of an ultra-tight hybrid navigation system is proposed with the aim to enhance the 
robustness of the navigation system in presence of jamming. A GNSS unit has been integrated with external sensors, namely Inertial 
Navigation Systems, visual sensor and odometer. Exploiting the “record and replay” of real GNSS signal artificially augmented with 
jamming interference within the L1 GNSS bandwidth, the performance has been assessed in controlled scenarios. The results 
presented in this paper show that the multi-sensor integrated system can sustain the navigation even in presence of severe jamming, 
although such a strong interference completely masks the GNSS signal denying the navigation of a GNSS stand-alone system. 
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Moreover, the test procedures suitability of the record and replay approach for the jamming scenario generation and combination 
with real datasets are discussed and analyzed. 

 

1. INTRODUCTION  

The persistent growth of applications and services based on the user position estimation, together with the advent of new paradigms 
for transportation systems, is increasing the need of higher accuracy and reliability of the estimated position with respect to what is 
currently provided by commercial positioning platforms. Modern applications in the road field require different accuracy and 
continuity of the positioning and, therefore, different requirements are set for the Key Performance Indicator (KPI), depending on 
the specific application. The more accurate and reliable the positioning information, the more advanced the service it can support. 
Given this picture, Global Navigation Satellite System (GNSS) can be considered the core technology among the multiple 
technologies and sensors that might be used for positioning, since it is capable to provide the user with estimates of his own position 
in a global reference frame. In fact, most of the other systems and positioning technologies provide solutions that are relative to an 
absolute GNSS position. Unfortunately, received GNSS signals are extremely weak and thus vulnerable to non-intentional and 
intentional Radio Frequency Interference (RFI). Among these threats, the malicious intentional interference produced by jammers is 
dangerously proliferating both in number of reported events as well as in relevance, considering the strong chain effect on the 
applications relying on GNSS. These devices are capable of broadcasting disruptive signals overlapping a large part of the targeted 
GNSS frequency band thus preventing the operation of GNSS receivers in estimating their position [1]. Despite GNSS jammers are 
illegal in most countries, they can be easily purchased on-line and their rapid diffusion is becoming a serious threat to satellite 
navigation. 

These aspects raised the concerns for security, since GNSS receivers are expected to operate in more challenging environments with 
respect to the past, and thus there is the need to develop customized positioning algorithms specifically tailored to the user’s 
requirements. Within this context, one possible strategy to overcome the weaknesses of GNSS, is given by the integration of 
measurements from multiple sensors with complementary characteristics. The intelligent integration of heterogeneous data not only 
enhances the performance of the whole positioning system but, at the same time, limits the weaknesses of each individual sensor 
guaranteeing the user requirements in term of accuracy, cost, coverage, date rate, integrity and more. 

Nowadays there is a plethora of sensor technologies available, that can be coupled with GNSS, to reach a robust and reliable 
navigation solution. Based on the own different nature, each sensor can provide absolute or relative positioning. One of the most 
used complementary technology is represented by the inertial sensors. An Inertial Navigation System (INS), includes self-contained 
sensors such as  accelerometers and gyroscopes that measure the specific force and the angular rate, respectively [2]. They provide 
relative position independently from the environment but, unfortunately, they are affected by unbounded errors. Another sensor that 
can be used for positioning is the camera as a visual sensor. Since cameras are not affected by error sources deteriorating the 
measurements, which are typical of INS, they might be exploited to track the motion of the features from observed images in order 
to extract the information about the user motion [3]. Odometers can also retrieve information about the vehicle position by measuring 
its speed and thus giving information about the traveled distance [4]. In addition, Light Detection and Ranging (LIDAR) [5], Wi-Fi 
and mobile networks [6], Ultra-Wide Band (UWB) systems [7] are just some other examples of possible integration with GNSS 
receivers. A survey of the information sources and information fusion technologies used in current in-car navigation systems is 
presented in [4]. 

Depending on the level of information exchanged between GNSS and the other components in the integrated system, they can be 
integrated according to different strategies, commonly referred as loose, tight and ultra-tight (or deep) integration. The terms Loosely 
Coupled (LC), Tightly Coupled (TC) and Ultra-Tightly Coupled (U-TC) are used hereafter to refer to loose, tight and ultra-tight 
approach, respectively. These solutions basically differ in the degree of integration of the systems, i.e. for the nature of the 
information extracted from the systems and used in the hybridization process, as well as for the architecture of the interactions 
between the systems. LC and TC methods are quite consolidated in the scientific literature. Interested readers can found useful 
material in [8]-[10]. Similar to vector tracking receiver, U-TC receivers are characterized by the fact that the channels are not tracked 
individually and independently (i.e. scalar tracking), but they are aided from the navigation filter. By following this approach, once 
a good Position, Velocity and Time (PVT) solution is available, satellite signals can be continuously tracked even under weak signal 
conditions. More in details, in case of a GNSS/INS UTC system, the PVT solution is obtained from the GNSS module assisted by 
the INS and the navigation filter’s outputs are also used to compensate the errors affecting the INS and to update the Numerical 
Control Oscillators (NCO) in each tracked channel of the GNSS module. 



In traditional U-TC GPS/INS systems the mutual assistance between GPS and INS is strengthened so that the signal tracking ability 
is much improved [12]. However, the performance of a conventional GNSS/INS U-TC system tends to degrade in challenging 
environments, such as in case of jamming, or high dynamic maneuvers. When low-end Inertial Measurement Units (IMUs) based on 
MEMS sensors are employed, the performance degradation will be even more severe. To solve this problem, two possible options 
can be adopted to reinforce the U-TC system: the first one is to use an adaptive Kalman filter (AKF), as done in [13], where the 
covariance matrixes of process noise (i.e., Q) and measurement noise (i.e., R) of the KF are continuously adapted according to the 
estimated noise characteristics of the surrounding environment. The second approach does not change the design of the KF but it 
reinforces the traditional U-TC with measurements coming from additional sensors (e.g. visual camera, odometer, LIDAR, etc.). In 
this paper, we have adopted the second approach where the GNSS module has been coupled with the following sensors: INS, 
odometer and a monocular visual camera. 

This paper therefore aims at improving the accuracy and availability of a fully autonomous GNSS/INS based navigation solution by 
adding low-cost sensors such as monocular camera and odometer. The added value of this research, thus, lies in the integration of 
the aforementioned sensors, performed at the deepest level, as well as in the fact that adding a camera as a vision sensor mitigates 
the short-term stability of the INS. 

Three key contributions are addressed herein the paper: first the proposed camera/odometer/IMU/GNSS integration architecture 
complements each of the sensors and potentially overcomes the disadvantage of traditional GNSS/IMU integration. Second, although 
significant effort has been spent on developing visual odometry and attitude algorithms (in particular through a monocular camera), 
the efficiency and performance regarding image frame rate has yet to be evaluated. Eventually, the integrated system is validated by 
using a live dataset differently from  most of the previous works on the ultra-tight integration,  that tested their algorithm only via 
simulation [11-13]. 

Indeed, this paper represents a further extension to our previous research works [14] related to the ultra-tight integration of 
GNSS/INS/vision investigated for jamming mitigation in a static scenario and to [15], where such integration was only preliminary 
investigated in a dynamic scenario.  

This paper is organized as follows. After this introduction, the next section describes the process used to determine the motion and 
orientation of the receiver by analyzing the associated camera images, followed by the mathematical description of the navigation 
filter, which is in charge of blending the measurements coming from the aforementioned sensors. The feedback estimation from the 
navigation filter to the code and carrier NCOs is also explained. Afterwards, the general description of the hardware used in the data 
collection is presented, with emphasis to the artificial generation of jamming. The performance results are then summarized for 
different power level of the jamming signals and, eventually, some conclusions are drawn. 

 

2. PROPOSED ULTRA-TIGHT INTEGRATION SCHEME 

The first part of the section provides a description of the measurements coming from a camera while the descriptions of measurements 
coming from INS [2] and odometer [4] are omitted since they are considered well known and state of art. Then, the second part of 
the section deals with the mathematical aspects concerning the design of the navigation filter (according to the proposed U-TC 
integration) that makes the hybridized receiver more robust to jamming attacks. 

2.1. Monocular Camera as a Visual Sensor 

Imaging sensors are widely used for navigation due to the possibility to extract not only spatial information, but also geometric 
relations between the camera and the real world. The estimation of the ego-motion of a body using the information contained in the 
images acquired by a camera, known as Visual Odometry (VO), incrementally estimates the camera pose by observing the changes 
that motion induces on the images, i.e. correspondent features. This motion provides relative positioning information, i.e. speed and 
attitude of the user [3], and it is represented by a three-dimensional rigid transformation between subsequent frames, which is 
composed by rotation and translation. 

This relation is equivalent up to a scale factor, which means solving the distance between the camera center and the 3D object scene. 
Usually, this scale factor is computed by using two cameras (stereo-camera), provided that their baseline is known [18]. However, 
the distance between the two cameras affects the accuracy of the motion estimation obtained from images. The farther the two 
cameras are from each other the better the accuracy is. Although monocular camera suffers from a phenomenon called scale 
ambiguity (due to the unknown depth of an object), it might also be exploited to retrieve information about the distance of the objects 
being photographed. 



In our implementation, the visual sensor is a monocular camera due to its low prize and small size. The scale ambiguity problem is 
solved by using the concepts of visual gyroscope and visual odometer, presented in [19]. 

Visual Gyroscope 

The visual gyroscope monitors the attitude of the camera by tracking the motion of virtual features in consecutive images called 
vanishing points, which can be considered as the image point where the lines parallel in the scene appear to intersect. A graphical 
representation is reported in Figure 1 as an example, where the vanishing point is estimated within an urban environment.  

 

 
Figure 1: Example of vanishing points representation, determined in urban environment. Horizontal 
(turquoise) and along the direction of propagation (blue) lines. Central vanishing point (red dot). 

 

The vanishing point in the propagation direction (z-axis) is called the central vanishing point. The three vanishing point locations are 
defined by the camera orientation with respect to the scene and the camera intrinsic parameters. This relation is described with  

 𝐕 = 𝐊𝐑  

where 𝐕 is the vanishing point location matrix %𝐯', 𝐯), 𝐯*+,	𝐑 is the camera rotation matrix and 𝐊 is the calibration matrix containing 
the camera intrinsic parameters, i.e. the focal length (𝑓',𝑓)), the principal point (𝑢, 𝑣), and skew coefficient 𝑆. The central vanishing 
point 𝐯*, presented in homogenous coordinates as (𝑥, 𝑦,1), where the 𝑥 and 𝑦 are the pixel coordinate, can be written as 

 
𝐯* = 3

𝑓' 𝑠𝑖𝑛 𝜃 + 𝑢 𝑐𝑜𝑠 𝜙 𝑐𝑜𝑠 𝜃
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Therefore, the heading change (𝜃) and pitch (𝜙) can be finally obtained as 

 𝜃 = arcsin E
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𝑓'

F  

 
𝜙 = arcsinG
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−𝑓) cos 𝜃

H 
 

The logic behind the selection of the central vanishing point is a voting scheme. Basically, any vanishing point candidate is voted for 
all the intersection points of lines found. Eventually, the one getting most of the votes is selected as the correct one. A detailed 
explanation can be found in [19]. Moreover, in order to evaluate the accuracy of the estimated vanishing point, the concept of Line 
Dilution Of Precision (LDOP) is used. It basically consists of a dilution of precision value demonstrating the geometry of the lines 
used for calculating the position of the vanishing point. A large LDOP value, leads to large uncertainty of the vanishing point location 
which can be weighted accordingly into the navigation filter. This concept is explained in detail in [19]. 

Visual Odometer 



The visual odometer measures the user translation between consecutive images. The relation between two points found from a plane 
in consecutive images, from an image point 𝐱J to an image point 𝐱JK, is called homography and can be written as [3] 

 𝐱JK = 𝐑𝐱J + 𝐭/Z  

where 𝐊	is the camera calibration matrix,	𝐑 is camera rotation matrix, 𝐭 is the translation of the camera origin and Z is the depth of 
the point. 

In our implementation, the distance Z from the camera to the object is resolved by using a special configuration of the camera. In this 
context, the camera is facing the road with an attitude resolved with visual gyroscope and known height of the camera. In particular, 
the object has coordinates (X,	Y, Z) and it is projected into image point (x, y, z). 𝜙 is the pitch of the camera whereas β is the angle 
between the principal ray of the camera and the ray from the camera to the object using the image point y and the focal length 𝑓). ℎ 
is the height of the camera with respect to the ground. Following the mathematical derivation in [19], the depth Z of the object is 
estimated as 

 Z =
ℎ cos𝛽

sin(𝜙 + 𝛽) 
 

Z can be finally used to find the final expression of the translation 𝐭. 

 

2.2. Navigation Filter Design  

The block diagram of the whole system is shown in Figure 2. The central navigation filter is an error state EKF that accepts the 
GNSS inputs from the signal tracking channels, which is able to process both GPS and Galileo signals. The other inputs are given 
by the other aforementioned sensors: INS, visual sensor and odometer. On the other hand, the central navigation filter outputs the 
corrections for the INS and the predicted pseudoranges and pseudoranges-rate in order to update the NCOs. 

 

Figure 2: Block diagram of the proposed multi-sensor U-TC GNSS receiver. 



The details of the navigation filter, implemented according to an EKF scheme, used within the architecture in Figure 2, are 
presented in the following. 

State-space model 

The state-space model, expressed in the discrete-time domain, can be written as 

 Δ𝐱[n]  =  %Δ𝐩^[n] _,   Δ𝐯^[n] _,  Δ𝝍^[n] _,   𝐛𝐚
c[n] _,  𝐛𝐠

c[n] _,    Δ𝝉[n] ,  Δ𝑣f[n]  +
_
  ∈  𝑅𝟙𝟠,𝟙 (1) 

where the superscripts e,b indicates ECEF frame and body frame, respectively. The state vector stores the following components: 

• Δ𝐩𝐞[n]   ∈  𝑅𝟛,𝟙 is the corrections vector to be applied to the nominal body position at the time instant n, expressed in the 
ECEF frame; 

• Δ𝐯m[n]   ∈  R𝟛,𝟙 is the corrections vector to be applied to the nominal body velocity at the time instant n, expressed in the 
ECEF frame; 

• Δ𝛙m[n]   ∈  R𝟛,𝟙 is the vector of misalignment angles along each axis (attitude corrections) at the time instant n, expressed 
in the ECEF frame; 

• 𝐛p
c[n]   ∈  R𝟛,𝟙 is the vector of the biases of the accelerometers at the time instant n, expressed in the body frame; 

• 𝐛q
c[n]   ∈  R𝟛,𝟙 is the vector of the biases of the gyroscopes at the time instant n, expressed in the body frame; 

• Δ𝛕[n]   ∈  𝑅𝟚,𝟙 is the receiver clock bias for GPS and Galileo expressed in meters; 
• Δvu[n]   ∈  R𝟙,𝟙 is the receiver clock drift expressed in meters per second. 

State transition matrix 

The state transition matrix 𝚽[𝑛] of the discrete-time state-space model can be defined as: 

 

𝚽[𝑛] =

⎣
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⎥
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⎥
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∈ R𝟙𝟠,𝟙𝟠 (2) 

where 𝑇� is the sampling interval, 𝑵^ is the tensor of gravity gradients, 𝛀�m^  is the Earth rotation rate,	𝐅^ is  the skew symmetric matrix 
of the accelerometers measurements, 𝐂cm is the rotation matrix from the body frame to the Earth frame, 𝐃 is the time-constant diagonal 
matrix that defines a first-state Gauss-Markov model. 

The discrete-time state-space model is written as: 

 Δ𝐱[n + 1] = 𝚽[n]Δ𝐱[n] + 𝚪[n]𝛈[n] (3) 

with the definition of the model noise vector as 𝐰[𝑛] = 𝚪[𝑛]𝜼[𝑛] 

 𝛈[n] = �𝛈p[n]�,  𝛈q[n]�,  𝛈pp[n]�,  𝛈qq[n]�,  𝛕[n]�,  υu[n]�
�
∈ R𝟙𝟝,𝟙 (4) 
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  ∈  R𝟙𝟠,𝟙𝟝 (5) 



where 𝜼𝒂 is a driving noise term acting on the accelerometers in the body frame, 𝜼𝒈 is a driving noise term acting on the gyroscopes 
in the body frame, 𝜼𝒂𝒂 is the driving noise for the accelerometers biases, 𝜼𝒈𝒈 is the driving noise for the gyroscopes biases. 

Measurements equation 

The observation vector has been augmented with the measurements coming from visual sensor and odometer (i.e. 𝐳m¢£[n]), and can 
be written as 

 Δ𝐳[n] = ¤Δ𝐳¥¦§§
[n]

Δ𝐳m¢£[n]
¨   ∈ R𝟚¦©ª«¬𝟡,𝟙 (6) 

Δ𝐳®¯°°[𝑛] includes both (i) the pseudorange residuals (i.e. 𝜺²�³´^[𝑛] produced by the code discriminators), and (ii) the difference 
between the  GNSS measured pseudorange rates �̇�[𝑛] and the estimated ones (�̇�·[𝑛]) computed through the INS measurements. Thus, 
in formulae, Δ𝐳®¯°°[𝑛] can be written as 

 Δ𝐳¥¦§§[n] = �𝜺²�³´^[n]�,  %�̇�[n]� − �̇�·[n]�+�
�
  ∈  R𝟚¦©ª«,𝟙 (7) 

 

Δ𝐳m¢£[n] is defined as 

 Δ𝐳m¢£[n] = 𝚯¹[n] − 𝚯º¦§[n]  ∈  R𝟡,𝟙 (8) 

where the vectors 𝚯¹[n] and 𝚯º¦§[𝑛] are stated as in (9)-(10) and expressed in the ECEF frame 

 𝚯¹[n] = [𝝍¹»¼½^ [𝑛]_,  𝐯¾»¼½^ [𝑛]_, 𝐯¾¿À¿m [𝑛]_]�  ∈  R𝟡,𝟙 (9) 

 𝚯º¦§[n] = [𝝍Á¯°
^ [n]�,  𝐯Á¯°^ [n]�,  𝐯Á¯°^ [n]�]�  ∈  R𝟡,𝟙 (10) 

where 

• 𝝍¹»¼½^ [n] is the vector of attitude Euler angles estimated by the visual gyroscope; 
• 𝐯¾»¼½^ [n] is the vector of velocity estimated by the visual odometer; 
• 𝐯¾¿À¿m [n] is the vector velocity estimated by the odometer; 
• 𝝍Á¯°

^ [n] is the vector of attitude Euler angles estimated by the INS, as described in [2]; 
• 𝐯Á¯°^ [n] is the vector of velocity estimated by the INS, as in [2]. 

 

H matrix definition 

The matrix 𝐇[n], that relates the measurements vector with the states, has been augmented with the measurements coming from 
visual sensor and odometer (𝐇m¢£[n]), and can be written as 

 𝐇[n] = ¤𝐇¥¦§§
[n]

𝐇m¢£[n]
¨    ∈  R𝟚¦©ª«¬𝟡,𝟙𝟠 (11) 

where the component 𝐇¥¦§§[n]  can be written as in (12) 

 
𝐇𝑮𝑵𝑺𝑺[n] = Å

−𝐮m[n] 𝟎¦©ª«×{ 𝟎¦©ª«×{ 𝟎¦©ª«×{ 𝟎¦©ª«×{ 𝟏¦©ª«×� 𝟎¦©ª«×�
𝟎¦©ª«×{ −𝐮m[n] 𝟎¦©ª«×{ 𝟎¦©ª«×{ 𝟎¦©ª«×{ 𝟎¦©ª«×� 𝟎¦©ª«×�

Ç    ∈  𝑅𝟚¯ÈÉÊ,𝟙𝟠 (12) 

where 𝐮m[n] is the line-of-sight vector from the receiver to the satellite. 

The additional component 𝐇m¢£[n] is related to the additional sensors and it can be expressed as 



 𝐇m¢£[n] = ¤𝐇Ë�Ì
[n]

𝐇¿À¿[n]
¨   ∈  R𝟡,𝟙𝟠 (13) 

where 

1. 𝐇Ë�Ì[n] can be written as 

 𝐇Ë�Ì[n] = ¤
𝟎{ 𝟎{ 𝐈{ 𝟎{ 𝟎{ 𝟎{×� 𝟎{×�

𝐃Í¿Ì[n] 𝐈𝟑 𝟎𝟑 𝟎{ 𝟎{ 𝟎{×� 𝟎{×�
¨     ∈  R𝟞,𝟙𝟠 (14) 

and 𝐃Í¿Ì[n], according to [14] is equal to 

 
𝐃Í¿Ì[𝑛] = 3

Δ𝑣'[𝑛]𝑐𝑜𝑠(𝜃[𝑛])𝑇𝑐 0 0
0 Δ𝑣)[𝑛]𝑠𝑖𝑛(𝜃[𝑛])𝑇𝑐 0
0 0 Δ𝑣*[𝑛]𝑇𝑐

B    ∈  𝑅𝟛,𝟛 (15) 

where θ[n] is the yaw estimated by the INS; Δ𝑣',),*,are the difference between the velocity estimated by the IMU and the 
visual odometer, expressed in the ECEF frame. 

2. 𝐇¿À¿[n] can be written as 

 𝐇¿À¿[n] = [𝟎{ −𝐈{ −�̀�Á¯°^ [n] 𝟎𝟑 𝟎𝟑 𝟎𝟑×𝟐 𝟎𝟑×𝟏]  ∈  R𝟛,𝟙𝟠 (16) 

where �̀�Á¯°^ [𝑛] is the skew matrix of the velocity estimated by the IMU, expressed in the ECEF frame. 

 

2.3. NCOs update 

The feedbacks from the central navigation filter to the NCOs are computed from the prediction of the code rate and Doppler frequency 
which is derived from the inertial system corrected through the bias estimates of the EKF, as shown by the block diagram in Figure 
2. The code frequency can be computed in the discrete domain as [17]: 

 
𝐟Ó�³´^[𝑛] = Å𝑓�³´^ −

𝑓�³´^
𝑐

Δ𝝆Õ[𝑛]
𝑇�

Ç
_

  ∈  𝑅¯ÈÉÊ,𝟙 (17) 

where 𝑓�³´^ is the nominal code frequency, expressed in Hz; c is the speed of light, expressed in m/s; 𝑇� is the sampling interval, 
expressed in s; Δ𝝆Õ[𝑛] = 𝝆Õ[𝑛] − 𝝆Õ[𝑛 − 1] is vector of difference between the pseudoranges, estimated by the central navigation 
filter at instant n and n-1, expressed in meters. 

On the other hand, the carrier frequency can be computed as [17]: 

 
𝐟Ó�Ö××[𝑛] = 3𝑓ÁØ −

𝑓�Ö××
𝑐

�̇�Ú[𝑛]
𝑇�

+
𝑓�Ö××
𝑐 Δ𝑣f[𝑛]B

_

  ∈  𝑅¯ÈÉÊ,𝟙 (18) 

where 𝑓ÁØ is the intermediate frequency of the signal, expressed in Hz; 𝑓�Ö×× is the carrier frequency of the signal, expressed in Hz; 
�̇�Ú[𝑛] is the vector of the pseudorange rates, estimated by the central navigation filter at instant n, expressed in m/s; Δ𝑣f[𝑛] is the 
receiver clock drift, expresses in meters per second. 

 

3. PERFORMANCE ASSESSMENT IN A JAMMED SCENARIO 

This Section includes the performance assessment of the multi-sensor hybridized receiver, done in scenarios characterized by the 
presence of jamming interference. Moreover, the performance of U-TC navigation solution has been compared with the one obtained 



by considering TC architectures of the hybridized receiver, in order to evaluate the real improvements of U-TC with respect to TC 
under weak GNSS signal conditions. 

 

3.1. Test Scenario Description and HW Setup 

The scenario used for the performance assessment is characterized by good visibility of the GNSS signals since they are not blocked 
by high buildings and they are not affected by severe multipath. The data collection was performed on May 19, 2017 on a parking 
within the campus of Politecnico di Torino, Italy. A snapshot of the described environment is illustrated in Figure 3 (left).  

The system setup used for recording the data is shown in Figure 3 (right) showing the kart where the sensors are mounted. The GNSS 
recording system consists of a USRP B210 [22], synchronized to a Rubidium frequency standard, and used to record the digital 
samples of the GNSS signal. It is configured by using the parameters listed in Table 1. GNSS navigation data are logged by a 
consumer-grade receiver [23] and its velocity components eventually exploited for emulating the odometer. A consumer-grade 
MEMS IMU XSens MTi-G-700 [24] logs the specific forces and the angular measurements. The camera used for visual sensor 
measurements is a GoPro Hero5 Session [25]. The power supply for the recording system is provided by an external battery. 

 

  
Figure 3: 2D trajectory, Torino, Italy, Image from Google Earth (left). Kart used during the data collection (right). 

 

Table 1: USRP B210 configuration parameters. 

Configuration 
parameter Value 

𝑓ÁØ 0 Hz (baseband) 

𝑓½ 10 MHz 

Sampling Type I and Q 



Quantization 16 bits 

Interface USB 

Reference Rubidium 

 

3.2. Generation of Jammed Scenarios 

The Record and Replay approach has been exploited in order to create realistic jammed scenarios. Such a technique relies on the 
reconstruction of the RF signal from the recorded scenario at Intermediate Frequency (IF). As a result, it allows to create a synthetic 
but realistic scenario in a controlled environment. This methodology puts together the benefits of having a realistic scenario as a 
baseline and the possibility to have under control the interference power level. Moreover, it enables the possibility of capturing a 
specific event from the real world and then replay as many times as desired under exactly the same conditions, for deeper and refined 
analyses. Interested readers can find more details on [20-21] where the topic is discussed thoroughly supported by the presentation 
of experimental results. 

The setup used to inject the jamming signals into the pre-recorded GNSS data, is depicted in Figure 4. The USRP B210 [22] is used 
to record the digital samples of the GNSS signal as well as to playback them set according to the parameters listed in Table 1. The 
signal 𝑦ÁØ[𝑛] is up-converted back to RF, obtaining the replica 𝑦JÛØ(𝑡), thanks to the choice of the parameters that grants the fidelity 
of the scenario during the recording phase, and then combined with the interfering jamming signal 𝑖(𝑡). As a result, the interfered 
signal 𝑦¾¾ÛØ(𝑡), is fed to the recording system, creating the digital version 𝑦¾¾ÁØ[𝑛] and stored on a memory. 

 

 
Figure 4: Record and Replay used for the generation of the interfered signal 𝑦¾¾ÛØ(𝑡) obtained mixing 𝑖(𝑡) and 𝑦JÛØ(𝑡). Block 

diagram. 

In order to emulate jamming signals with different signal strengths, the power emitted by the jammer is controlled using a variable 
hardware attenuator. Three different scenario datasets are created, each characterized by different level of attenuation equal to -30 
dB, -20 dB and -10 dB, and denoted respectively as jamLight, jamMedium and jamStrong. The power spectral density of the received 
signals, for all the experiments, is shown in Figure 5 (left). The C/N0 as estimated by the GNSS software receiver, considering GPS 
PRN31, is shown in Figure 5 (right). In the interference-free portion of the signal, the four estimated perfectly overlap, and this is an 
implicit proof that the replay and new recording phase have not significantly altered the information of the originally recorded signal. 
Once the interference is injected, it is possible to see the impact of the interfering signal on the measured C/N0. Considering the 
experiment in which the GNSS signal is affected by jamming signal with the strongest power (purple line), it is possible to observe 
a drop of the C/N0 of about 20 dB-Hz. 

 



 
 

Figure 5: Estimation of PSD (left) and C/N0 (right) for different jamming power signal strengths. 

 

3.3. Positioning Results 

The assessment of the performance evaluation of the U-TC multi-sensor integration (i.e. INS, camera and odometer) is carried out 
by considering the Horizontal Positioning Accuracy (HPE). The position solutions are reported in Figure 6 and Figure 7 showing the 
2D trajectory and the HPE plotted over time, respectively. The statistical assessments of the position solution accuracy together with 
the availability are summarized in Table 2. 

Table 2: Positioning performance assessment in case of multi-sensor fusion 
 Jam free Jam light Jam medium Jam strong 

 TC U-TC TC U-TC TC U-TC TC U-TC 

mean(HPE) (m) 2.09 3.40 7.05 3.32 - 3.98 - 6.78 

max(HPE) (m) 4.45 4.62 14.85 4.17 - 5.04 - 18.04 

50th percentile of HPE (m) 2.21 3.51 9.39 3.30 - 3.97 - 4.08 

75th percentile of HPE (m) 3.00 3.91 11.65 3.57 - 4.17 - 10.42 

95th percentile of HPE (m) 3.88 4.28 13.76 3.85 - 4.55 - 17.19 

Availability (%) 100 100 100 100 0 100 0 100 

 

By analyzing the statistical HPE in Table 2, the first remark is that U-TC integration is the only strategy capable to give a position 
solution in strongly degraded GNSS signal environments for the 100% of the simulation time, even if with different accuracy 
performance along the track. This result can be deduced by observing the HPE of U-TC jamStrong (black curve) in Figure 7: it shows 
a value of about 0.5 m in the portion of the trajectory that is interference-free; then it starts increasing once the jamming is injected, 
with the same rate as jamLight and jamMedium and for about 130 s. Eventually, it reaches the maximum value of HPE (i.e. equal to 
18.04 m) at the end of the trajectory but no loss of lock in the tracking stage is detected. On the contrary, a TC-only solution fails to 
provide a valid PVT solution in case of jamMedium and jamStrong. 

 



 
Figure 6: 2D trajectories for TC and U-TC integration algorithms. The red dot corresponds to the time when the jamming 

signals are injected. 

 

 
Figure 7: HPE over time for TC and U-TC integration algorithms. The red bar corresponds to the time when the jamming 

signals are injected. 

 

In order to figure out and evaluate the benefits of having multi-sensors data, we have also run the software receiver without using 
the measurements coming from the camera and the odometer. In this case, both the TC and U-TC solution are obtained through 
GNSS and INS measurements only. With this receiver’s configuration, the HPE results are summarized in Table 3. 



 

Table 3: Positioning performance assessment in case of GNSS/INS-only fusion 
 Jam free Jam light Jam medium Jam strong 

 TC U-TC TC U-TC TC U-TC TC U-TC 

mean(HPE) (m) 0.74 2.52 32.85 4.94 - 18.07 - - 

max(HPE) (m) 1.96 3.91 80.81 9,47 - 34.40 - - 

50th percentile of HPE (m) 0.67 2.69 40.81 4.92 - 18.01 - - 

75th percentile of HPE (m) 0.91 2.96 57.22 7.44 - 29.32 - - 

95th percentile of HPE (m) 1.39 3.77 74.71 9.17 - 33.52 - - 

Availability (%) 100 100 100 100 0 100 0 0 

 

By comparing the results shown in Table 2 and Table 3 and related to different hybrid receiver’s configurations, it is evident the 
benefits of having a multi-sensor system, with respect to a GNSS/INS-only integration. The improvement in terms of performance, 
obtained through a multi-sensor receiver, gets more evident as the power strength of the jamming increases. In case of U-TC 
integration, the position performance is remarkably improved in case of both jamMedium and jamLight. In fact, the 95th percentile 
of the HPE is improved from 9.17 m (GNSS/INS) to 3.85 m (multi-sensor) for jamLight and from 33.52 m (GNSS/INS) to 4.55 m 
(multi-sensor) for jamMedium. Moreover, in case of jamStrong the U-TC GNSS/INS system is not able to provide a valid PVT while, 
adding more sensors, we are able to keep in-lock the tracking of the GNSS signals and to obtain a positioning solution. 

The same can be said about the TC integration. In fact, the benefits of multi-sensor with respect to the GNSS/INS integration are 
consistent in case of jamLight. The 95th percentile of the HPE, it is decreased from 74.71 m (GNSS/INS jamLight) to 13.76 m (multi-
sensor jamLight). As expected, both the two configurations of the receiver fail to work in case of jamMedium and jamStrong 

 

4. CONCLUSIONS 

Aiming at taking advantage of the existing onboard technologies for ground vehicle navigation in challenging environments, this 
paper has developed an integrated camera/odometer/IMU/GNSS system based on the EKF design, according to an ultra-tightly 
coupled architecture. 

Based on the EKF design, the proposed integrated system is able to provide 18-state navigation solutions. Our implementation has 
been validated through an outdoor test which provided raw GNSS data, visual measurements and IMU data as well as data from an 
odometer. In order to emulate jamming signals with different signal strengths, three different scenario datasets are created by using 
the Record and Replay approach, each characterized by different level of attenuation equal to -30 dB, -20 dB and -10 dB, and denoted 
respectively as jamLight, jamMedium and jamStrong. In scenarios affected by jamming interference, one possible countermeasure is 
offered by the intelligent integration of measurements from multiple sensors with complementary nature. Such hybrid positioning 
systems may be resilient to the jammer thus increasing the overall robustness. However, among the described integration strategies, 
the loose and tight coupling approaches do not provide a real mitigation solution against the jamming threat. In fact, it can prevent 
the GNSS receiver to provide observables’ measurements and to compute the position fix. On the other hand, the ultra-tight coupling 
integration enables the tracking of signal with low C/N0 enhancing the system’s robustness to interference. 

As far as the U-TC architecture is concerned, the camera/odometer/IMU/GNSS integration has outperformed the U-TC GNSS/INS 
scheme which has yielded no navigation solutions in case of jamStrong.  

Due to the great number of sensors available nowadays (e.g. LiDAR, UWB, modern thermal cameras) they could be potentially 
exploited in the fusion algorithm as future work. Among the additional sources of information that can be fused, it is worth 
mentioning the recent results obtained by cooperative techniques that allows to have estimation of the baseline between vehicles, 
just using GNSS measurements. 
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