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Abstract  

 

Cyanolichens are obligate symbioses between fungi and cyanobacteria. They occur in many types 

of environments ranging from Arctic tundra and semi-deserts to tropical rainforests. Possibly even 

a majority of their global species diversity has not yet been described. Symbiotic cyanobacteria 

provide both photosynthate and fixed nitrogen to the fungal host and the relative importance of 

these functions differs in different cyanolichens. The cyanobiont can either be the sole 

photosynthetic partner or a secondary symbiont in addition to a primary green algal photobiont. 

In addition, the cyanolichen thallus may incorporate a plethora of other microorganisms. The 

fungal symbionts in cyanolichens are almost exclusively ascomycetes. Nostoc is by far the most 

commonly encountered cyanobacterial genus. While the cyanobacterial symbionts are presently 

not readily identifiable to species, molecular methods work well on the generic level and offer 

practical means for identifying symbiotic cyanobacterial genotypes. The present diversity of lichen 

cyanobionts may partly reflect the evolutionary effects of their lichen-symbiotic way of life and 

dispersal.  
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1. Introduction  

 

Cyanobacteria are ancient monophyletic lineage of unicellular and multicellular prokaryotes that 

possess chlorophyll a and are capable of oxygenic photosynthesis. Prokaryotic fossils morphologi-

cally resembling modern cyanobacteria have been found from Archean deposits and it is generally 

believed that cyanobacterial photosynthesis raised oxygen levels in the atmosphere around 2.5–2.3 

billion years ago, hence establishing the basis for the evolution of aerobic respiration. Recent 

findings suggest that the non-photosynthetic ancestors of cyanobacteria were anaerobic, motile 

and obligately fermentative (Di Rienzi et al., 2014).  

The first appearance of multicellular cyanobacteria may have coincided with the beginning of 

the rise of atmospheric oxygen and three clades, representing the majority of extant cyanobacteria, 

which seem to have evolved soon after (Schirrmeister et al., 2011, 2012). Later, through 

endosymbiosis, some cyanobacteria evolved into the plastids of photoautotrophic eukaryotes about 

900 million years ago (Deusch, 2008; Shih and Matzke, 2013), and the nitrogen fixation of 

diazotrophic cyanobacteria continues to play a crucial role in the nutrient cycles of many aquatic 

and terrestrial ecosystems (Zehr, 2011; Elbert et al., 2012; Rousk et al., 2013).  

Thousands of species of lichen-forming fungi have cyanobacteria as photosynthetic symbionts and 

are therefore collectively referred to as “cyanolichens” (Rikkinen, 2002). Many of these, quite 

possibly even the majority, have not yet been described (e.g., Lumbsch et al., 2011; Lücking et al., 

2014; Moncada et al., 2014a, 2014b). Symbioses with cyanobacteria have been established 

repeatedly in different lineages of Fungi, and convergent evolution has often resulted in similar 

symbiotic morphologies in distantly related lineages (Muggia et al., 2011). The morphological and 

physiological characteristics of lichen symbioses tend to be highly specialized, and involve 

extensive molecular crosstalk between the symbionts (Chua et al., 2012; Junttila et al., 2013; 

Kampa et al., 2013; Wang et al., 2014).  

Within a cyanolichen thallus, the cyanobacterial symbiont or “cyanobiont” provides sugar 

(glucose) and/or fixed atmospheric nitrogen (as ammonium) to the fungal host or “mycobiont”. The 

mycobiont provides its symbiotic partners water, carbon dioxide, and a relatively stable 

environment that is relatively well protected from environmental extremes and predation (e.g., 

Rikkinen, 1995, 2002). 
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2. Morphology and Functional Organization  

 

On the basis of thallus structure, lichens have traditionally been divided into foliose, fruticose, and 

crustose species. This division is obviously artificial and convergent forms have evolved in many 

lichen lineages. Most cyanolichens are foliose, i.e., their growth is predominately horizontal, and 

the thallus is typically dorsiventral, flat, and lobate (Fig. 1a). Fruticose cyanolichens have upright, 

shrubby thalli with cylindrical lobes that are often attached to the substrate by a relatively narrow 

base (Fig. 1b). Crustose cyanolichens have relatively undifferentiated thalli and often grow tightly 

attached to the substrate (Fig. 1c).  

Based on symbiont composition, cyanolichens can be divided into two artificial groups: bipartite 

and tripartite cyanolichens (Fig. 2a). In most bipartite lichens, the cyanobiont forms a more or less 

continuous layer immediately below the upper cortex of the thallus (Fig. 2b). The thalli of tripartite 

cyanolichens, on the other hand, house both green algal and cyanobacterial photobionts (Fig. 2c). 

In these symbioses, the cyanobacteria tend to represent a small proportion of total photobiont 

biomass and are usually restricted to special structures called cephalodia (Figs. 1b and 3a–3d). 

However, there are also some tripartite lichens in which the fungus has two “primary” photosyn-

thetic photobionts both contributing substantially to the photosynthesis of the same thallus (e.g., 

Henskens et al., 2012). In addition, some green algal lichens establish ephemeral associations with 

neigh-boring cyanobacteria or cyanolichens, presumably in order to access a supply of fixed nitrogen 

(Poelt and Mayhofer, 1988; Rambold and Triebel, 1992). The mycobionts of some tripartite lichens 

can produce different thallus morphologies in symbiosis with compatible green algae and 

cyanobacteria, respectively. Chimeroid lichens with green algae and cyanobacteria as primary 

photobionts in different parts of the same thallus are called photosymbiodemes. The two differ-ent 

morphotypes may either combine into a compound thallus or live separate lives (James and 

Henssen, 1976; Brodo and Richardson, 1979; Tønsberg and Holtan-Hartwig, 1983; Goffinet and 

Bayer, 1997; Heiðmarsson et al., 1997; Paulsrud et al., 1998; Stenroos et al., 2003; Aptroot and 

Schumm, 2009; Magain et al., 2012; Moncada et al., 2013; Magain and Sérusiaux, 2014).  

Lichen-symbiotic cyanobacteria can deliver both photosynthate and/or fixed nitrogen to their 

fungal partners. The relative importance of these two activities varies between bi- and tripartite 

lichens. The cyanobionts of bipartite lichens tend to show lower heterocyst frequencies and lower 

rates of nitrogen fixation than those of tripartite species. In tripartite cyanolichens, the cyanobionts 
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typically exhibit relatively high rates of nitrogen fixation, while the green algal photobiont typically 

delivers most of the photosynthate (e.g., Nash, 2008).  

While lichens have traditionally been perceived as pairwise interactions between one fungal host 

and one or two photosynthetic symbionts, many of them actually involve several photobiont species 

and can also incorporate a plethora of other microorganisms. Recent studies have shown that 

lichens host diverse and specialized communities of non-phototrophic bacteria, which are likely to 

play important roles in the symbiosis (Grube et al., 2009; Hodkinson and Lutzoni, 2009; Bates et al., 

2011; Hodkinson et al., 2012; Sigurbjörnsdóttir et al., 2014). Also the diversity of obligately 

lichenicolous fungi is remarkable, both on lichen surfaces and hidden within the inner layers of the 

thalli (Lawrey and Diederich, 2011; U’Ren et al., 2012; Werth et al., 2013).  

Most cyanolichen symbioses are obligate in the sense that the fungal hosts cannot survive 

without their photosynthetic partners and the cyanobionts do not seem to commonly establish 

independent free-living populations outside lichen thalli. In many cases, the cyanobionts are 

vertically transmitted within specialized vegetative propagules and maintained through host 

generations, insuring a close and long-term symbiosis (e.g., Rikkinen, 2003). 

 
 
3. Symbiont Diversity  

 

Cyanobacteria occur abundantly in aquatic environments and almost in all types of terrestrial 

ecosystems. A small minority of them form symbiotic associations with eukaryotic organisms such 

as lichen-symbiotic fungi. Among the Fungi, cyanobacteria form symbioses almost exclusively with 

ascomycetes (Ascomycota), especially with Lecanoromycetes (Miadlikowska et al., 2014) and 

Lichinomycetes (Schultz et al., 2001). Comparable symbioses with other types of fungi are rare, with 

the prominent exceptions of Dictyonema (Fig. 4d) and related basidiomycetes (Dal-Forno et al., 

2013; Lücking et al., 2014) and the glomeromycete Geosiphon (Kluge et al., 2002). Only about 10% 

of presently known lichen-forming fungi associate with cyanobacteria. The others establish their 

symbioses with green algae (Chlorophyta), especially with trebouxiophytes (Škaloud and Peksa, 

2010; Ruprecht et al., 2012; Muggia et al., 2013; Dal Grande et al., 2014; Sadowska-Deś et al., 2014) 

and species of Trentepohliales (López-Bautista, 2006; Rindi et al., 2009), or more rarely with other 

types of eukaryotic algae (Thüs et al., 2011).  
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At present, lichen-symbiotic cyanobacteria cannot usually be identified to clearly delimited 

species. This is partly due to fundamental problems in the species level taxonomy of cyanobacteria. 

From early 19th century to the late 20th century, many genera and species of “blue-green algae” 

were described on the basis of morphology and life-history traits (e.g., Geitler, 1932). While 

cyanobacteria are now known to belong to Eubacteria, cyanobacterial taxa can still be described 

following two sets of rules, i.e., those of the Botanical and the Bacteriological Code of Nomenclature, 

respectively (Oren, 2004, 2011; Oren and Tindall, 2005; Komárek, 2006, 2010a, 2011). At the genus 

level the standardized molecular method currently used for identifying cyanobacteria is 16S rRNA 

gene sequencing. While many traditional Geitlerian genera are confirmed, the species cannot 

usually be delimited on the basis of 16S rRNA sequences alone (Komárek, 2010b). An additional 

problem is that the phenotypic and genotypic features of many symbiotic cyanobacteria are 

drastically modified in symbiosis (e.g., Ran et al., 2010).  

While the species level taxonomy of symbiotic cyanobacteria remains a challenge, DNA methods 

now offer a practical way for accurately identifying cyanobacterial genotypes from both fresh lichen 

specimens (Rikkinen, 2013) and old herbarium material (Palinska et al., 2006). As yet, the genotypic 

identity of the cyanobiont has only been determined from a minute fraction of all cyanolichen 

species. This refers not only to the cyanobionts of rare, inconspicuous, or cryptic taxa, but also to 

those of many common and widely distributed species.  

Nostoc is by far the most commonly encountered genus of cyanobacteria in lichen symbioses 

(Rikkinen, 2013). Many Nostoc genotypes are symbiotic, either serving as a source of fixed carbon 

and nitrogen, as in cyanolichens (Figs. 4a and 4b), or solely as a source of nitrogen, as in plant 

symbioses. Also other nostocalean and stigonematalean genera, like the recently circumscribed 

Rhizonema (Lücking et al., 2009, 2013; Dal-Forno, 2013), are known to include lichen cyanobionts 

(Figs. 4c and 4d). For example, Calothrix, Dichothrix, and Stigonema are thought to include lichen-

symbiotic forms (e.g., Tschermak-Woess, 1988, Voytsekhovich et al., 2011a, 2011b), but their 

occurrences remain to be confirmed by molecular methods (Komárek, 2010b). Lichenomycetes are 

believed to associate with Gleocapsa, Anacystis, and other genera distantly related to nostocalean 

and stigonematalean cyanobacteria (Tschermak-Woess, 1988; Voytsekhovich et al., 2011a, 2011b). 

Also their identities remain to be confirmed and studied with molecular methods.  

Many recent studies have firmly established that lichen-symbiontic Nostoc genotypes are closely 

related to plant symbiotic and free-living forms of the same genus (Rikkinen, 2013). They have 

shown that the mycobionts of cyanolichens tend to be highly selective with respect to their 
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cyanobionts (e.g., O’Brien et al., 2013; Miadlikowska, 2014b; Magain and Sérusiaux, 2014). In most 

cases only one or a few closely related cyanobacterial genotypes serve as the appropriate symbiotic 

partner for individual fungal taxa, while all bipartite cyanolichen species so far analyzed have had 

only one cyanobiont genotype within each thallus, some of them can house different cyanobionts 

in different thalli. Furthermore, some cyanobacterial genotypes are shared by several unrelated 

fungal species. This shared specificity may give rise to facilitative interactions between different 

cyanolichens. For example, the establishment of an ascospore-dispersed cyanolichen may be 

effectively facilitated by the prior establishment of another species that distributes the shared 

cyanobiont within its symbiotic propagules. In any case, the unequal availability of appropriate 

cyanobionts is likely to explain many interesting patterns of cyanolichen species occurrence 

(Rikkinen, 1995, 2003, 2013).  

 

 

4. Ecological Perspectives  

 

Cyanolichens occur in many types of terrestrial environments ranging from Arctic tundra and semi-

deserts to tropical rainforests. Whereas green algal lichens can achieve positive net gas exchange 

when exposed to high atmospheric humidity alone, a corresponding effect in cyanolichens requires 

direct exposure to liquid water. Their diversity tends to be highest in humid and relatively cool 

climates characteristic of many tropical mountains (Fig. 5a) and maritime regions of higher latitudes 

(Fig. 5b). In the temperate zone, many epiphytic species are restricted to old growth forests and 

have been adversely affected by logging as well as acid precipitation and human-induced changes 

in air quality. Under favorable conditions, cyanolichens contribute significantly to epiphyte biomass 

and the nitrogen cycle of the ecosystem (e.g., Elbert et al., 2012). Recently, Hodkinson et al. (2014) 

demonstrated the presence and transcription of genes encoding enzymes for two different nitrogen 

fixation pathways (molybdenum- and vanadium dependent systems) in lichen-associated Nostoc. 

Such flexibility may be very significant for lichens, which often grow on nutrient-poor substrates and 

get most of their mineral nutrition through aerial deposition (Fig. 5e). Some cyanolichens are 

important components of biological soil crusts in savannas, semi-deserts, deserts, and disturbed 

sites, where they help to stabilize the soil and contribute to its fertility (Pietrasiak et al., 2013; Büdel 

et al., 2014). In some regions their diversity is seriously threatened by overgrazing and climate 

change.  
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One emerging theme in cyanolichens is the possible role of toxic cyanobacterial metabolites in 

the ecology of cyanolichens. Recent studies have demonstrated that some lichen-symbiotic 

cyanobacteria produce significant amounts of microcystin and other toxic peptides in situ (Oksanen 

et al., 2004; Kaasalainen et al., 2009, 2012, 2013). Microcystins are more familiar from 

cyanobacterial blooms in aquatic ecosystems, where they have caused animal poisonings around 

the world. In terrestrial ecosystems, cyanolichens represent a potential source of hepatotoxins for 

grazers. Many molluscs and arthropods, but also mammals feed on lichens (Fig. 5d) and mollusc 

grazing has been identified as the limiting ecological factor for cyanolichens in some humid forest 

ecosystems (e.g., Gauslaa, 2008). Many lichen-forming fungi produce toxic secondary substances as 

a defense against herbivores. It is possible that the cyanobionts of some lichens contribute to the 

defense by producing toxic compounds.  

Kaasalainen et al. (2012) proposed that the high diversity of microcystin variants and related 

genes in lichen-symbiotic cyanobacteria could partly reflect the effects of their lichen-symbiotic way 

of life and dispersal. When packaged into propagules of symbiotically dispersing lichens, the 

population size of the cyanobionts is reduced and they invariably experience a severe genetic bottle-

neck. At the same time, the close symbiotic association with the fungal partner can promote the 

evolution of different traits from those commonly seen in free-living cyanobacteria (e.g., Ran et al., 

2010). The recurrent bottlenecks and other population-shaping-effects may have been important in 

generating the genetic and chemical diversity, now seen in the cyanobacterial symbionts of lichens. 

 
 
5. Conclusions  

 

We are still only beginning to understand the complex network of biological interactions and 

evolutionary processes in which symbiotic cyanobacteria and their fungal partners evolve. Many 

recent findings indicate that we have been crudely underestimating the biological diversity hidden 

within cyanolichens and other lichen symbioses. DNA techniques offer practical methods for 

studying the genetic diversity of symbiotic cyanobacteria in situ, and for making accurate 

comparisons between lichen cyanobionts and their non-symbiotic relatives. In the future, we can 

expect many intriguing new results concerning the cyanobionts of previously ignored lichen lineages 

and unexplored ecological settings. They can significantly improve our understanding of the biology 

lichens and of symbiosis as a whole.  
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Figure 1. Cyanolichen growth forms. (a) Foliose bipartite cyanolichen (Pseudocyphellaria sp., Peltigerales). 

The cyanobacterial symbiont (Nostoc) forms a continuous layer just below the upper cortex of the lichen 

thallus. (b) Fruticose tripartite cyanolichen (Stereocaulon sp., Lecanorales). The cyanobacterial symbiont 

(Rhizonema) is housed in wart-like cephalodia, while the green algal symbiont forms the photobiont layer. 

(c) Crustose bipartite cyanolichen (Psoroma hypnorum, Peltigerales). The cyanobacterial symbiont (Nostoc) 

forms a continuous layer just below the upper cortex of the lichen thallus. The brown disks are fungal 

apothecia (fruiting-bodies). 
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Figure 2. Bipartite and tripartite cyanolichens. (a) A diversity of bipartite and tripartite cyanolichens on 

tree trunk in tropical moist montane forest. (b) Bipartite cyanolichen (Peltigera sp., Peltigerales) with 

cyanobacterial symbionts (Nostoc) in a layer just below the upper cortex of the stratified thallus. (c) 

Tripartite cyanolichen (Pseudocyphellaria sp., Peltigerales) with cyanobacterial symbionts (Nostoc) in 

cephalodia hidden inside the green algal thallus. 
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Figure 3. Cephalodia of tripartite cyanolichens. (a) Cephalodia with Nostoc on the upper surface of 

Nephroma arcticum (Peltigerales). The internal cephalodia are clearly visible through the upper cortex 

of the hydrated thallus. (b) Small external cephalodia with Nostoc on the upper surface of Peltigera 

aphthosa (Peltigerales). (c) Large external cephalodia with Nostoc on the upper surface of Placopsis 

species (Trapeliales). (d) Large sack-like cephalodia with Rhizonema on the main branches of 

Stereocaulon ramulosum (Lecanorales). 
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Figure 4. Cyanobacterial diversity in cyanolichens. (a) Gelatinous cyanolichen (Leptogium sp.) 

with symbiotic cyanobacteria (Nostoc) symbionts in non-stratified thallus; the brown disks are 

apothecia of the fungal symbiont. (b) The Nostoc cyanobionts of the same lichen photographed 

through the thin upper cortex of the hydrated thallus. The large clear cells are nitrogen-fixing 

heterocysts and the small translucent structures are fungal hyphae in optical cross-section. (c) 

Epiphytic species of Coccocarpia (Peltigerales, Ascomycota) with Rhizonema cyanobiont. (d) 

Epiphytic species of Dictyonema (Agaricales, Basidiomycota) with Rhizonema cyanobiont. 
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Figure 5. Habitat types rich in cyanolichen species. (a) Tropical moist montane forest on Mont Humboldt 

in New Caledonia; many cyanolichens (e.g., Peltigera, Pseudocyphellaria, Sticta, and Coccocarpia species) 

grow as epiphytes and among terricolous bryophytes. (b) Basal trunk of Populus tremula in boreal old-

growth forest in central Finland; several Peltigera species grow on terricolous bryophytes while epiphytic 



18 
 

species of other genera (e.g., Lobaria and Nephroma spe-cies) are mainly confined to the basal trunks of 

deciduous trees. (c) Epiphytic cyanolichens contribute to nitrogen-fixation in many moist forest 

ecosystems. (d) Molluscs grazing on the upper cortex and photobiont layer of the cyanolichen have 

revealed the bright yellow medulla of the lichen. The medulla is unpalatable because of accumulation of 

toxic secondary metabolites produced by the fungus. (e) In tropical rainforests, small Coccocarpia species 

can grow on angiosperm leaves together with many folicolous liverworts, crustose lichens and fungi. 


