
1 
 

Fungal diversity of Macrotermes-Termitomyces nests in Tsavo, Kenya 

 

Jouko Rikkinen and Risto Vesala 

University of Helsinki, Department of Biosciences, P.O. Box 65, Helsinki, Finland 

 

 

 

1 INTRODUCTION 

 

Fungus-growing termites (subfamily Macrotermitinae, Termitidae) comprise one of three 

unrelated groups of insects that have evolved obligatory digestive exosymbioses with filamentous 

fungi. The other two groups are the fungus-growing ants (tribe Attini, Myrmicinae, Hymenoptera) 

and ambrosia beetles (subfamilies Scolytinae and Platypodinae, Curculionidae, Coleoptera), 

respectively. In ambrosia beetles fungus-cultivation has evolved independently several times 

within different lineages, whereas in termites and in ants the transitions to fungus-cultivation have 

occurred only once, thus resulting in monophyletic fungus-growing clades of host insects (Mueller 

et al. 2005).  

The fungal symbionts of all higher termites belong to the genus Termitomyces 

(Lyophyllaceae, Basidiomycota), which only includes obligately termite-symbiotic species (Aanen 

et al. 2002; Rouland-Lefevre et al. 2002). The fungal mycelia are grown in sponge-like combs built 

from termite-digested plant matter in the subterraneous galleries of termite nests (Wood and 

Thomas 1989). The insects actively regulate the microclimate of the fungal galleries in order to 

maintain favorable conditions for fungal growth (Korb 2003). Plant matter for the fungal combs is 

collected from the vicinity of the nest by foraging termites. The insects collect plant matter from 

the environment and deposit it into the fungus combs in the form of partly indigested fecal 

material. As a reciprocal service, the termites can feed on nitrogen-rich fungal hyphae and/or 

plant material  further decomposed by the fungal symbiont (Hyodo et al. 2003). 

The initial domestication of Termitomyces by termites is believed to have occurred in the 

rain forests of Africa at least 30 million years ago (Aanen and Eggleton 2005; Brandl et al. 2007; 

Nobre et al. 2011b). Since then both the termite hosts and the fungal symbionts have radiated into 

several lineages, and today the associations vary considerably in levels of reciprocal symbiont 

specificity (Aanen et al. 2002; Aanen et al. 2007). Several lineages of fungus-growing termites have 
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specialized to live in semi-arid shrubland and savanna environments, where they have become 

principal degraders of dead plant matter (Jones 1990; Jouquet et al. 2011). In some dry savanna 

ecosystems of East Africa up to 90% of all litter decomposition can take place within the 

subterranean chambers of fungus-growing termites (Buxton 1981).  

Fungus-growing termites culture the heterokaryotic mycelium of the fungal symbiont in 

specialized fungal combs within the galleries of their nests (De Fine Licht et al. 2005). Most 

Termitomyces species can occasionally produce fruiting bodies that release basidiospores into the 

environment (Johnson et al. 1981; Wood & Thomas 1989; De Fine Licht et al. 2005). Concurrently, 

most fungus-growing termites seem to rely on horizontal symbiont transmission in the acquisition 

of compatible fungal symbionts (Johnson et al. 1981; Sieber et al. 1983; Korb & Aanen 2003; De 

Fine Licht et al. 2006). Soon after dispersal, the firstborn foragers of a newly established termite 

colony are believed to acquire fungal symbionts from the environment, presumably as ingested 

basidiospores of compatible Termitomyces genotypes. There are two known exceptions: all 

species of the termite genus Microtermes and one species of Macrotermes (M. bellicosus) rely on 

uniparental vertical symbiont transmission, i.e., one of the winged alates (king or queen) 

transports a fungal inoculum from the maternal colony within its gut (Johnson 1981; Korb and 

Aanen 2003). The genetic composition of fungal symbionts indicates that occasional host-

symbiont switching also takes place in the termite species which mainly rely on horizontal 

transmission of symbionts (Nobre et al., 2011a). 

During their evolution the termite-fungus symbioses have effectively colonized most of sub-

Saharan Africa and also dispersed into tropical Asia. Among the termite hosts at least five 

independent dispersal events have occurred into Asia and one genus (Microtermes) has reached 

Madagascar (Aanen and Eggleton 2005; Nobre et al. 2010). Among the fungal symbionts similar 

range expansions seem to have occurred even more frequently, at least from the African mainland 

into Madagascar (Nobre et al. 2010; Nobre and Aanen, 2010). 

Here we provide a short overview of what is presently known about fungal diversity within 

the mounds of fungus-growing termites. The focus is on new findings from the Tsavo ecosystem in 

southern Kenya, where the landscape is peppered by innumerable Macrotermes nests dispersed 

within expanses of dry tropical shrubland (Fig. 1). 
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2 DIVERSITY OF TERMITOMYCES AND MACROTERMES 

 

While only about 40 species are currently accepted in the genus Termitomyces (MycoBank; Index 

Fungorum; Kirk et al. 2010), the wealth of DNA data accumulated during the past 15 years clearly 

indicate that their species diversity is much higher. Interestingly, most DNA sequences obtained 

directly from fungal galleries of termite nests do not correspond with those sequenced from the 

fruiting bodies of ‘classical’ Termitomyces species. As one consequence, GenBank presently 

contains numerous fungal ITS sequences obtained from the nests of different Macrotermes 

species identified as ‘unnamed Termitomyces’. Similar problems are familiar from other fungal 

groups in which classical taxonomic concepts have been based solely on fungal fruiting-bodies. 

While there thus are many unresolved problems in the taxonomy of Termitomyces, the DNA 

data so far accumulated clearly indicates that the Termitomyces symbionts of Macrotermes 

species include several species-level operational taxonomic units (OTUs) which all belong to one 

monophyletic group (Aanen et al. 2002; Osiemo et al. 2010; Vesala et al. unpubl.). Fungal 

genotypes can now be reliably identified from haploid and dikaryotic hyphae and also from the 

asexual conidia formed in fungus combs or within termite guts. Several Termitomyces genotypes 

have been repeatedly identified from termite nests, but as previously described, most of them 

have not been linked to type specimens or other voucher material of classical Termitomyces 

species. Phylogenetic analyses combining DNA data from herbarium specimens and environmental 

isolates indicate that several undescribed species exist. Furthermore, some classical Termitomyces 

species (e.g. Termitomyces clypeatus and T. microcarpus) may represent complexes of several 

cryptic taxa (Aanen et al. 2002; Froslev et al. 2003). 

Macrotermes is one of the 11 genera of fungus-growing termites and the ecologically most 

important genus in many dry savanna areas in East Africa. At least 47 Macrotermes species are 

currently recognized, 13 in Africa and 34 in Asia (Kambhampati & Eggleton 2000). However, as in 

the symbiotic fungi, several cryptic species are believed to exist at least in Africa (Brandl et al. 

2007). Most African Macrotermes species live in relatively open savanna and semi-desert 

environments.  However, two closely related species, M. muelleri and M. nobilis, are restricted to 

forest habitats in central Africa (Ruelle 1970; Aanen and Eggleton 2005). Interestingly the fungal 

symbionts of these two species also belong to separate linages which do not associate with any 

species of savanna termites.  Is this true evidence of coevolution or do only these specific pairs of 

termites and fungi happen to co-occur in shady forest habitats? 
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The southernmost Macrotermes species in Africa is M. natalensis, which seems to only 

associate with a single Termitomyces species (Aanen et al. 2007). Again one may ask whether this 

is evidence of high symbiont specificity, or is the selected fungal symbiont the only one that can 

survive in the relatively cool climate of South Africa. Concurrent adaptation via selection of cold 

tolerant fungal symbionts has been described from leafcutter ants at the northern limits of their 

distribution in North America (Mueller et al. 2011). 

 

 

3 PATTERNS OF SYMBIONT SPECIFICITY IN MACROTERMES NESTS IN TSAVO 

 

Symbiosis between the fungus-growing termites and their fungal symbionts is symmetrical in the 

sense that both the hosts and symbionts consist of single monophyletic lineages that are not known 

to include any groups that would have reversed to a non-symbiotic state (Aanen et al. 2002; Nobre 

et al., 2011c). Both lineages have radiated into several clades showing different levels of interaction 

specificity with each other. These range from strict co-evolutionary relationships, where a certain 

termite genus always associates with one monophyletic clade of Termitomyces symbionts, to more 

promiscuous relationships, where species of several different termite genera associate with what 

appear to be the same fungi. The later type of situation is known from the termite genera 

Microtermes, Ancistrotermes, and Synacanthotermes, which all seem to share the same 

Termitomyces lineage (Aanen et al. 2002; Aanen et al. 2007).  

Experiments by De Fine Licht et al. (2007) revealed that Macrotermes natalensis was not able 

to survive with the fungal symbiont of Odontotermes badius. However, when combining the later 

termite with the fungal symbiont of the former host, no reduction in survival was detected. These 

and similar results demonstrate that there is considerable variation in the levels of symbiont 

specificity between different termite species and different genera. Most patterns of symbiont 

specificity so far detected have been on the generic level, while different species of the same termite 

genus are frequently able to share and switch fungal symbionts (Aanen et al. 2007). 

Association between Macrotermes and Termitomyces are characterized by relatively strict co-

evolutionary linkages between the hosts and their symbionts. Several studies and all sequence data 

so far published suggest that all Macrotermes species always associate with only one monophyletic 

group of Termitomyces species that does not associate with other groups of termites (Aanen et al. 

2002; Rouland-Lefevre et al. 2002; Froslev et al. 2003; Osiemo et al. 2010; Makonde et al. 2013). 
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However, at least in East Africa several different Macrotermes species depend on what appears to 

represent a common pool of Termitomyces symbionts (Osiemo et al 2010; Vesala et al. unpubl.). 

Our recent studies indicate that at least eight different Termitomyces species occur in Macrotermes 

nests in Africa. The full diversity of the fungal symbionts may be much higher, as fungal symbionts 

with restricted ranges may exist and can only be detected through comprehensive sampling.  

Some Macrotermes-associated Termitomyces species seem to be widely distributed and have 

for example been identified from termite nests in both equatorial East Africa and South Africa. Their 

diversity appears to be highest near the equator, which is consistent with the presumed ancestral 

range and rain forest origin (Aanen and Eggleton 2005). Since their early origin in Africa, some 

species have successfully dispersed into Asia and presently occur in for example Thailand, Vietnam 

and Malaysia. A phylogeny constructed from all ITS sequences of Macrotermes associated 

Termitomyces available in GenBank indicates that there have been two independent migrations 

from Africa into Asia (Fig. 2). At least three migrations into Asia and some into Madagascar have 

taken place in other Termitomyces lineages (Aanen & Eggleton 2005; Nobre et al. 2010). 

Our studies in Tsavo have revealed that two Macrotermes species (M. cf. subhyalinus and M. 

cf. michaelseni) and three Termitomyces species (sp. A, B and C) are present in the termite mounds 

of this region (Vesala et al. unpubl.). In full congruence with earlier observations (Aanen et al. 2002; 

Katoh et al. 2002; Moriya et al. 2005; Aanen et al. 2009; Makonde et al. 2013) only one 

Termitomyces species has always been found in each nest, but even closely adjacent nests of the 

same termite species in a seemingly uniform environment may house different fungal species (Fig. 

3). Termitomyces species A dominates in all study sites in Tsavo (Fig. 3). Interestingly, the same 

fungus has previously been identified in several other studies of fungal diversity in Macrotermes 

nests (De Fine Licht et al. 2005; De Fine Licht et al. 2006; Osiemo et al. 2010; Nobre et al. 2011a, 

2011b). In fact, this apparently undescribed Termitomyces species seems to be the most common 

Termitomyces-symbiont of Macrotermes nests in sub-Saharan Africa (e.g. Senegal, Ivory Coast, 

Kenya, and South Africa). It can clearly associate with several different hosts (M. subhyalinus, M. 

michaelseni, M. jeanneli, M. natalensis, M. bellicosus, and M. herus).  

Temperature and moisture availability, as reflected by zonal climates are by far the most 

important factors that affect the global distribution of fungi (Tedersoo et al. 2014). The same factors 

also largely delimit the overall distribution of termites, which are essentially a tropical group and 

virtually absent above or below 45°N and 45°S latitudes (Eggleton 2000). In Sub-Saharan Africa 

distances from the equator range from 0 to 4000 kilometers and consequently also the climates of 
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different semi-arid habitats within the region are quite different. Against this background the 

apparently almost pan-African distribution of one Termitomyces species is surprising, even if taken 

into account the relatively stable termal conditions within the fungal galleries of Macrotermes nests. 

Termitomyces species C was less frequent in Tsavo, but nevertheless found from several 

Macrotermes nest in many habitats studied (Fig. 3). Also this symbiont has been identified in many 

previous studies (Rouland-Lefevre et al. 2002; Guedegbe et al. 2009b; Osiemo et al. 2010; Nobre et 

al. 2011a, 2011b; Makonde et al. 2013). This Termitomyces species seems to be widely distributed 

in sub-Saharan Africa, but only in equatorial regions. Maybe this fungus requires constant warmth 

or is intolerant of low temperatures. Also it has been found in the nests of several different 

Macrotermes species (M. subhyalinus, M. michaelseni, M. jeanneli, and M. bellicosus).  

Termitomyces species B was only found from some nests at one site (Fig. 3). Since identical 

fungi have not previously been reported this fungus may have a more restricted distribution and/or 

ecology. One can predict that many localized Termitomyces species will be found in the future when 

systematic sampling of Macrotermes nests proceeds to new regions and habitat types. 

As shown by Figure 3 there was considerable variation in Termitomyces diversity between 

sampled habitats. Some of this variation might be explained by dispersal history and by site specific 

differences in vegetation cover, soil properties and many other ecological factors. However, at 

present we can only demonstrate that interesting and potentially significant diversity patterns exist 

– the experimental work required to explain these patterns has only barely begun. 

 It is not yet certain whether the fungal galleries of all Macrotermes nests always represent 

true monocultures or whether more than one Termitomyces genotype could sometimes exist within 

the fungal galleries. The general mechanism leading to a single-strain Termitomyces monoculture 

within a termite colony is based on positively frequency-dependent propagation (Aanen 2006; 

Aanen et al. 2009). In this process the dominance of one Termitomyces genotype is continuously 

reinforced by the biased selection of nursing termites that feed on and presumably also 

preferentially propagate the most productive Termitomyces genotype. Thus, while the first fungal 

gallery of a young termite colony might at first contain several competing Termitomyces genotypes, 

the most productive symbiont is selected for preferential propagation and becomes dominant.  But 

does this always mean that the other genotypes are totally exterminated from the system – as a 

total dependence on a monoculture always involves some inherent risks?  Second-generation 

sequencing methods may soon help to reveal whether the fungal combs of Macrotermes species 

can sometimes contain several minor symbionts. Such diversity might even be maintained by the 
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termite hosts in order to cope with temporal changes in food quality or other environmental factors 

which could shift the ecological equilibrium within fungal combs. 

 

 

4 OTHER FUNGI IN TERMITE NESTS 

 

Although Termitomyces always dominates a healthy termite colony also other fungi can be 

identified from the fungus combs. These can include common molds (e.g. Aspergillus and 

Penicillium species) and yeasts (e.g. Candida and Pichia species) that are likely accidentally 

introduced from the environment by foraging termites. Such fungi seem to generally only be 

present as spores and not as growing colonies (Thomas 1987a, 1987b; Wood and Thomas 1989; 

Guedegbe et al. 2009b; Mathew et al. 2012). Also, Hypocrea (anamorphs Trichoderma spp.) and 

Pseudoxylaria, both belonging to Sordariomycetes (Ascomycota) have been repeatedly found from 

fungal combs of different Macrotermitinae genera (Batra and Batra 1966, 1979; Wood and 

Thomas 1989; Mathew et al. 2012).  

In healthy fungus combs the non-Termitomyces fungi generally comprise only a very minor 

portion of the total fungal biomass (Moriya et al. 2005), but in the absence of actively nursing 

termites the Termitomyces symbiont may be rapidly overgrown by such fungi. Species of 

Pseudoxylaria are particularly aggressive and may rapidly take over fungus gardens (Batra and 

Batra 1979; Wood and Thomas 1989; Visser et al. 2009). At least 20 species of Pseudoxylaria form 

a monophyletic group which only includes termite-associated species (Rogers et al. 2005; Ju and 

Hsieh 2007; Guedegbe et al. 2009a; Visser et al. 2009; Hsieh et al. 2010). However, the different 

species do not seem to be restricted to live only in the nests of particular termite hosts (Visser et 

al. 2009).  

The precise ecological role of termite-associated Pseudoxylaria species is still insufficiently 

understood. According to Visser et al. (2011) the ascomycetes and Termitomyces compete for the 

same resources and the ascomycete seems to have developed a reduced level of antagonism 

towards Termitomyces compared to free-living species of Xylariaceae. In any case, the species of 

termite-associated Pseudoxylaria seem to have specialized to exploit the partly digested plant 

material of fungus combs. In healthy nests their growth seems to be effectively suppressed, and 

they seem thus to be latent opportunistic saprotrophs waiting for the moment when the nest is 

abandoned by termites (Visser et al. 2011).  
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The mechanisms of how termites control the growth of Pseudoxylaria are not precisely 

known. However, termites, like other fungus-growing insects, must obviously have ways to reduce 

the growth of unwanted micro-organisms in the fungus gardens. These involve direct actions like 

mechanical weeding and many indirect effects via controlled temperature, humidity, and CO2 

concentration of fungal chambers, and the moisture content and pH of the comb substrate (Batra 

and Batra 1979; Thomas 1987c; Wood and Thomas 1989; Mueller et al. 2005; Mathew et al. 2012).  

Two peptides with antifungal properties have been identified from the salivary glands of the 

fungus-growing termite Pseudacanthotermes spininger (Lamberty et al. 2001). Mathew et al. 

(2012) also noticed that some Bacillus species isolated from the fungal combs and guts of termite 

Odontotermes formosanus inhibited growth of the potentially harmful fungus Trichoderma 

harzianum, and did not have the same effect on Termitomyces. Concurrently, some Bacillus strains 

isolated from Macrotermes natalensis nests produce a substance that inhibits the growth of 

Pseudoxylaria and several other fungi isolated from termite combs, but does not affect 

Termitomyces (Um et al. 2013). Analogous insect-fungus-bacteria interactions are well known 

from the nests of fungus-growing ants, where certain Actinobacteria inhibit the growth of 

Escovopsis, a specialized parasitic ascomycete that lives in the fungus gardens of the ants (Currie 

et al. 1999). Actinobacterial strains with fungicidal effects have also been isolated from 

Macrotermitinae nests, but their potential role as defensive agents in the fungal combs has not 

yet been elucidated (Visser et al. 2012). 

 

 

5 CONCLUSIONS 

 

The fungal symbionts of all higher termites belong to the basidiomycete genus Termitomyces, 

which only includes obligate termite-symbionts. DNA data indicate that the Termitomyces 

symbionts of all species of the termite genus Macrotermes belong to one monophyletic lineage 

that is not shared by other groups of fungus-growing termites. The symbiont genotypes identified 

directly from termite nests do not correspond with ‘classical’ Termitomyces species described on 

the basis of fruiting bodies. This indicates that these fungi only rarely produce fruiting bodies and 

that their dispersal is thus unlikely to mainly occur via basidiospores. In addition to the 

Termitomyces symbionts also other fungi can occur in termite nests. They are effectively 

controlled in active nests but can rapidly overtake the fungal combs in the absence of termites. 
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The mechanisms how pathogenic fungi are suppressed are not well known, but certain bacterial 

symbionts may play an important role in this process.   
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Figure 1. The Macrotermes–Termitomyces symbiosis. A. Macrotermes subhyalinus nest with open 

ventilation shafts. B. Macrotermes michaelseni nest with closed ventilation shafts. C. Termite 

workers repairing nest wall. D. Fungal comb with nodules (small white spheres). E. Close-up of 

nodules. F. Two minor soldiers and immature workers on fungal comb. Since immatures and 

soldiers are unable to feed themselves, workers must feed them. G. Major soldier and nymphs on 

fungal comb. H. Fungal rhizomorphs (likely Pseudoxylaria) growing among dead termite soldiers in 

recently abandoned Macrotermes nest. 
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Figure 2. Maximum likelihood tree of Termitomyces ITS sequences identified from the nests of 

Macrotermes species. The tree is based on all sequences available in GenBank and new data 

from the Tsavo ecosystem. Sequences within all lineages show > 99 % similarity, except those of 

the Malaysian lineage (upper red box) in which the similarity is between 97 and 98 %. The three 

Termitomyces species found from Macrotermes nests in Tsavo are marked with colored circles 

(A–C). 
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Figure 3. Distribution of three different Termitomyces species (A–C) identified from the active 

nests of Macrotermes subhyalinus (circles) and Macrotermes michaelseni (squares) at four study 

areas in Tsavo, Kenya. The black dots show the distribution of inactive (dead) Macrotermes nests 

and the green dots indicate active Macrotermes nests that were not sampled for DNA. The green 

background indicates woody vegetation, while the white background represents grassland or bare 

ground. 

 


