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Abstract 

 

Mining is one of the key industries in the world and mine water pollution is a serious threat to 

aquatic ecosystems. Historical monitoring data on the pollution history and impacts in aquatic 

ecosystems, however, are rarely available, so paleolimnological methods are required to explore the 

consequences of past pollution. We studied the history of cladoceran community dynamics in Lake 

Kirkkojärvi, southern Finland, including the periods before, during and after mining. We analyzed 

the geochemical composition and cladoceran subfossil remains in a 210Pb-dated sediment core to 

evaluate the magnitude, rate, and direction of cladoceran community changes through time. The 

cladoceran community was altered significantly by mining activity that occurred during the mid-

20th century. During more recent times, however, eutrophication effects have overridden the 

impacts of mining. After mining ceased, the cladoceran community underwent an abrupt regime 

shift towards taxa that reflect more eutrophic conditions. This change was caused by intensive 

farming activity and fertilizer use over the past few decades. The recent history of Lake Kirkkojärvi 

is a textbook example of a regime shift triggered by multiple human-caused stressors. Our findings 

also highlight the utility of cladocerans as bio-indicators in pollution research and illustrate the 

sensitivity of aquatic ecosystems to anthropogenic modification.  
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Introduction 

 

Industrial pollution is a major cause of degradation of freshwater ecosystems throughout the world. 

Fortunately, the information gained from past pollution cases can be used to better prepare for the 

future and improve environmental management practices. If long-term monitoring data are scarce or 

absent, however, the ecological impacts of past pollution are difficult to assess. Unfortunately, this 

is often the case, making it difficult to distinguish pollution impacts from other environmental 

changes. Paleolimnological methods, however, can be used to infer past environmental conditions, 

and provide information about the timing, direction, and magnitude of pollution effects. 

Cladocerans (water-fleas), an order of microscopic Crustacea, are widely used paleobioindicators 

(Jeppesen et al. 2001; Korhola and Rautio 2001). In addition to their utility as environmental bio-

indicators, the group is vital to the function of aquatic ecosystems, as they are a bridge for energy 

flow from primary producers to higher-level consumers in aquatic food webs (Sterner 2009).  

 Mining is one of the key industries in the world and can have strong negative impacts 

on the environment. Mining dam failures are a serious threat to ecosystems and human health, with 

recent examples in Brazil (Escobar 2015), Romania (Soldán et al. 2001), Spain (Feasby et al. 1999) 

and Italy (Alexander 1985). Mine tailings have also been shown to have negative impacts on lake 

ecosystems (Coard et al. 1983; Bozelli 1996; Garrido et al. 2003; Vandysh 2004). Even abandoned 

mines can cause environmental problems, decades after the termination of mining operations. For 

instance, acid mine drainage (AMD) is a serious problem related to abandoned mines (Kelly 1988; 

Johnson 2002). 

  Lake Kirkkojärvi, located in Viljakkala, southern Finland, has received contaminated 

effluent that originated from tailings produced by the Haveri copper and gold (Cu-Au) mine, which 

operated between 1938 and 1960. Previous paleolimnological studies identified historical changes 

in sediment geochemistry, protists, and diatom communities after the shutdown of the Haveri mine 

(Kihlman and Kauppila 2010). The delay in peak concentrations of metals in sediments was 

explained by the slow and gradual oxidation of mine tailings (Parviainen et al. 2012). The relatively 

low ecological impact of AMD (high concentrations of Cu, Zn, Ni, As) was attributed to the limited 

bioavailability of metals in the lake water. Whereas ecological changes coincided with high metal 

concentrations, the post-mining aquatic communities were influenced more by elevated nutrient 

concentrations than metal pollution (Kihlman and Kauppila 2010). 
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  Because of their position in the food web, zooplankters are vulnerable to shifts in food 

availability and predation. In particular, cladocerans have been used extensively in stress research 

(Suhett et al. 2015) and ecotoxicology studies (Sarma and Nandini 2006). Generally, cladocerans 

are sensitive to metal pollution (Brix et al. 2001; Von Der Ohe and Liess 2004). Shifts in the 

cladoceran community, however, may also reflect changes in predation (Nykänen et al. 2006), lake 

trophic status (Nevalainen and Luoto 2013), and water level (Korhola et al. 2000), which make 

cladocerans excellent bioindicators of the environmental history of lakes. Their preservation in 

sediments, rapid reproduction, short life cycles, small body size, and critical role in pelagic food 

webs make them the preferred zooplankton group in studies of ecological stress, particularly in the 

context of ongoing natural and human-induced changes in aquatic ecosystems. 

 We applied paleolimnological methods to a 210Pb-dated sediment core from Lake 

Kirkkojärvi, Finland, to study the ecological impacts of the abandoned Haveri mine on the 

cladoceran community. We also evaluated whether recent shifts in the cladoceran community 

structure were a response to eutrophication or perhaps a shift at a higher trophic level than reported 

in a study by Kihlman and Kauppila (2010). Finally, we assessed the recovery dynamics of the 

cladoceran population after intense environmental stress. Our research contributes to the 

understanding of the ecological impacts of mining, and of abandoned mines, which are abundant 

worldwide, e.g. half a million in the U.S. alone (Fields 2003), and present serious threats to human 

health and the environment.  

 

Study site 

 

Lake Kirkkojärvi is a small (75 ha), relatively shallow (zmax = 8.5 m, zmean = 2.3 m) lake embayment 

of the Lake Kyrösjärvi system, located in Ylöjärvi, southern Finland (61.714837° N, 23.267732° E 

WGS84), at 83 m above sea level (a.s.l.) (Fig. 1).  Mean annual temperature in the area is ~4 °C, 

and annual precipitation is approximately 600 mm (Finnish Meteorological Institute 2015). The 

catchment area of Lake Kirkkojärvi consists mainly of agricultural fields and forests. Lake 

Kirkkojärvi is a turbid-water lake embayment, with nearly neutral pH (6.6-7.4) and mesotrophic 

nutrient status (Kihlman and Kauppila 2010). The different embayments of the Lake Kyrösjärvi 

system differ in their limnological characteristics. Lake Viljakkalanselkä (520 ha) is less nutrient-

rich (Kihlman and Kauppila 2010) and the water is more transparent than in Lake Kirkkojärvi. The 

water in the main body of Lake Kyrösjärvi (9000 ha), which is located west of Lake Kirkkojärvi, is 
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characterized by its yellow-brown color, a consequence of higher concentrations of humic 

substances (Fig. 1). The fish community of the lake system is relatively rich, hosting roach Rutilus 

rutilus, perch Perca fluviatilis, pike Esox lucius, bream Abrahamis brama, asp Aspius aspius, 

burbot Lota lota, crusian carp Carassius carassius, blue bream Abramis ballerus, vendace 

Coregonus albula, and European smelt Osmerus eperlanus. The lake system has been stocked with 

whitefish Coregonus lavaretus and pike perch Sander lucioperca (Pitkänen 2007) over the past 

three decades (Keskitalo 2014). 

 

Environmental history and mining pollution 

 

The first major human-induced changes in the recorded history of Lake Kirkkojärvi were deliberate 

reductions in lake levels during the 19th century (Vänni 1928), in an attempt to produce more arable 

land and minimize flood impacts. The previous shoreline, when the lake level was approximately 86 

m a.s.l., three meters higher than today, can be seen in old maps. In the early 19th century, Peltosaari 

and Inkula were islands (Calonius 1805; Fig. 1). Following the water-level modifications during the 

late 19th century, however, Inkula became attached to the mainland, and during the 1950s, waste 

from the Haveri mine connected Peltosaari Island to the mainland. The population in Viljakkala 

reached its peak (~3000) in the early 1950s (Kaskimies and Sinisalo 1973), which corresponds well 

to the peak years of the agricultural sector in Finland. The era of the “green revolution” after the 

Second World War was characterized by use of heavy agricultural machinery and industrial 

fertilizers. Problems associated with eutrophication are widespread in agricultural areas in Finland, 

and especially affect small and medium-sized lakes (European Environment Agency 2010). In Lake 

Kirkkojärvi and neighboring Lake Viljakkalanselkä, phosphorus concentrations have increased 

slightly over the past few decades (Kihlman and Kauppila 2010). 

Industrial-scale copper (Cu) and gold (Au) mining began in Haveri in 1940. During 

the 1950s, annual production volumes reached 120,000 tonnes for total ore and 300 kg for Au 

(Kaskimies and Sinisalo 1973). The Haveri ore-processing facility used water to flush tailings 

downhill into the waste area located on the shore of Lake Kirkkojärvi (Hannu Uotila pers. 

commun.). In aerial photograph from 1950–54 (Pöyry 2015), mine waste can be seen entering the 

lake. This photographic evidence shows that the waste area was not yet dammed in 1950–1954, and 

the dam that exists today was constructed later. Despite the presence of the dam, multiple overflow 

incidents occurred (Hannu Uotila pers. commun.) and during the late 1950s, tailings were dumped 
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directly into the lake, outside the dam (Parviainen et al. 2012). The mine was closed in 1957, but 

low-volume mining continued until the end of 1960 (Kaskimies and Sinisalo 1973). Maintenance of 

the tailings area was terminated after the mine closure, and during the early years of the 1960s the 

north side of the tailings dam failed and was never repaired (Hannu Uotila pers. commun.).  

According to a previous paleolimnological study, highest metal concentrations in the 

sediment and the clearest changes in the diatom and protist communities occurred during the post-

mining period (1970s), caused by AMD, and later, by nutrient enrichment (Kihlman and Kauppila 

2010). In addition, according to the OIVA database (Finnish Environmental Institute), lakewater 

iron (Fe) and manganese (Mn) concentrations increased from the 1960s to the 1970s. The tailings 

dump is still leaking acid and metal-contaminated leachate into the bayhead of Lake Kirkkojärvi, 

but the current toxic impact is practically non-existent (Leppänen et al. 2017).  

 

Materials and methods 

Coring 

 

We retrieved a 44.5-cm-long, 6-cm-diameter sediment core from the central basin of Lake 

Kirkkojärvi, at a water depth of 8.5 meters, using an Uwitec corer (UWITEC, Mondsee, Austria; 

http://www.uwitec.at/html/frame.html; sediment), in May 2016 (Fig. 1). The sediment core was 

subsampled at 0.5-cm intervals, and samples were stored in plastic bags at 4 °C, within 3 hours of 

core retrieval.  

 

Sediment dating, geochemistry, and correlation 

 

Sediment dating was conducted in the Liverpool University Environmental Radioactivity 

Laboratory by radiometric (137Cs, 210Pb) measurement of freeze-dried subsamples, according to the 

methods described in Appleby et al. (1986, 1992). The age-depth model and sedimentation rate 

were determined using the corrected Constant Rate of Supply (CRS) Model, for which the 1986 

(Chernobyl) 137Cs peak is used as a reference depth (Appleby et al. 2001). The 210Pb activity was 

determined via its gamma emissions, and 226Ra by the -rays emitted by its daughter isotope 214Pb, 

following three weeks storage in sealed containers to allow radioactive equilibration. Sediment 
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water content was calculated by weight loss after freeze-drying. The acid-soluble concentration of 

Zn was analyzed in 21 samples at the Metropolilab Helsinki, which is an accredited (FINAS T058) 

testing laboratory. We also used previously analyzed geochemical data to assist in our analysis of 

the impacts of metal pollution (arsenic, cadmium, cobalt, chromium, copper, iron, nickel, lead, zinc, 

sulfur and molybdenum) and nutrient enrichment (diatom-inferred total phosphorus [DI-TP]) on 

Lake Kirkkojärvi. DI-TP data was digitized from Kihlman and Kauppila (2010) whereas for the 

metals data (Parviainen et al. 2012), the original values were used. We correlated our sediment core 

with the sediment cores recovered a decade ago by Kihlman and Kauppila (2010) and Parviainen et 

al. (2012), using the 137Cs and Zn stratigraphies.  

 

Cladoceran analysis 

 

Cladoceran sample preparation and analysis was conducted according to the guidelines in Korhola 

and Rautio (2001) and Kurek et al. (2010), whereas species identification and nomenclature were 

based mostly on Szeroczyñska and Sarmaja–Korjonen (2007). At least 144 individuals were 

identified in each sample. Number of individuals was based on the most numerous subfossil 

component. Relative abundances of each taxon were calculated. 

 

Numerical analysis 

 

We used principal components analysis (PCA) to assess patterns in the cladoceran assemblages 

through time, and to present changes in sedimentary metal concentrations. Skewed community data 

were square root transformed, and the metal concentration data from Parviainen et al. (2012) were 

log transformed prior to analysis. For each sample, we calculated the Shannon diversity index (H’) 

and species richness using the rarefaction procedure (Birks and Line 1992). We used the 

constrained optimal sum of squares with untransformed percentage data (Birks and Gordon 1985) 

and associated broken-stick model (Bennett 1996) to identify statistically distinct zones in the 

cladoceran biostratigraphy. PCA, Shannon H, and rarefaction were conducted using PAST statistics 

3.06 (Hammer 2001), and zoning was done using the program ZONE 1.2 (Lotter and Juggins 1991). 

Locally weighted smoothing (LOESS) was applied to both the metal (Parviainen et al. 2012) and 

DI-TP data (Kihlman and Kauppila 2010). 
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Results 

Sediment geochemistry 

 

Total 210Pb activity decreased gradually with increasing depth in the sediment until 20 cm, followed 

by a rapid decline to 25 cm, where 210Pb reached background levels. Sediments below 25 cm appear 

to have a different mineralogical composition, as indicated by lower 226Ra activity than sediments 

above 25 cm. Sedimentation rate increased from a mean value of 0.53 cm yr-1 during the 1980s to 

0.73 cm yr-1 in post-2000 samples. The highest 137Cs peak occurs at 18.0–18.5 cm. The water 

content data indicated the presence of a dense sediment layer at 21.5–26.0 cm, and a pronounced Zn 

peak was observed at a depth of 21.5 cm (Fig. 2).   

 

Cladoceran communities 

 

Cladoceran remains were numerous and relatively well preserved throughout the core. A total of 32 

taxa were identified from 32 samples. The average species richness was 14.8 (SD 2.3) and the 

average diversity was 1.37 (SD 0.3). The most abundant taxon was Eubosmina longispina (Leydig 

1860) (64.2 %, SD 11.4), followed by Bosmina longirostris (O.F. Müller 1785) (11.3 %, SD 10.9), 

Chydorus sphaericus (O.F. Müller 1785) (5.3 %, SD 2.6), Alona affinis (Baird 1843) (2.6 %, SD 

1.1), and Daphnia spp. (O.F. Müller 1785) (2.0 %, SD 2.8). The majority of the most abundant 

species exhibit changes in the record, however some species, e.g. Alonella nana (Baird 1843) and 

Leptodora kindtii (Focke 1844), do not show clear stratigraphic changes. Results are summarized in 

Figs. 3 and 4, and detailed species data are presented in Electronic Supplementary Material [ESM] 

(Table 1). Zonation analysis divided the cladoceran stratigraphy into three statistically significant 

zones (ZIII, ZII and ZI; Fig. 3), and the grouping is also clearly visible in the PCA biplot (Fig. 4). 

The highest loading in PCA  axis 1 was detected for B. longirostris.  
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ZIII 44.5-32.5 cm (late 19th-early 20th century)  

 

Samples in ZIII (Fig. 3) are grouped in the top left quadrant of the PCA biplot (Fig. 4). The 

planktonic community is dominated by relatively large species such as E. longispina, Daphnia spp. 

and Eubosmina coregoni (Baird 1857). The species composition is relatively stable, but exhibits 

decreasing relative abundance of E. coregoni towards the top of the zone. Monospilus dispar (Sars 

1862), Limnosida frontosa (Sars 1862) and Rhyncotalona falcata (Sars 1903) are the most abundant 

littoral species. Average species richness and diversity were 14.1 and 1.41, respectively. The 

proportion of planktonic taxa increases slightly in ZIII (Fig. 3). 

 

ZII 30.5-23.5 cm (early 20th century to early 1970s) 

 

Samples in ZII (Fig. 3) exhibit the lowest levels of diversity and species richness, and the 

proportion of planktonic taxa declines at the top of ZII. Samples plotted in the bottom left quadrant 

of the PCA biplot (Fig. 4). Remains of planktonic E. longispina are dominant. Chydorus sphaericus 

exhibits increasing relative abundance in ZII (Fig. 3) and the predatory Bythotrephes longimanus 

(Leydig 1860) is present only in ZII (ESM Table 1). In contrast, many other species are present 

only rarely, or even disappear from the record (e.g. Polyphemus pediculus (Linnaeus 1761), E. 

coregoni, Daphnia spp., Alonella excisa (Fischer 1854), Alona quadranqularis (O.F. Müller 1785), 

Alonopsis elongata (Sars 1861) and Disparalona rostrata (Koch 1841)) (ESM Table 1). Average 

species richness was 12.7 and diversity was 0.92 (Fig. 3). 

 

ZI 22-0 cm (early 1970s to 2016) 

 

The samples in ZI (Fig. 3) are situated on the right side of the PCA biplot (Fig. 4). This zone is 

characterized by a pronounced increase of relative abundance of B. longirostris and simultaneous 

decrease of E. longispina. Also, E. coreogni appears again in Lake Kivijärvi, and some littoral 

species such as D. rostrata, Acroperus harpae (Baird 1835), and Pleuroxus unicatus (Baird 1850) 

increase in relative abundance (Fig. 3; ESM Table 1). Average species richness was 14.9, and 

diversity was 1.53 (Fig. 3). 
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Discussion  

Sediment geochemistry 

 

The largest 137Cs peak (1971 Bq/kg) at 18-18.5 cm indicates the 1986 Chernobyl reactor accident 

(Appleby et al. 1991) as the lake sediments in the region are characterized by very high 137Cs 

concentrations at 1986 (Ilus et al. 1993).  The secondary peak at 8 cm, driven by one data point 

only, is considered insignificant. Such features are common and may be caused by numerous 

processes in the catchment (Ilus and Saxén 2005). Because the 210Pb activity reaches background at 

24 cm, the dates below this depth are unreliable. We do not know whether the sediments below 25 

cm were deposited in the early 19th century, prior to the first water level manipulation. Low water 

content at depths between 21.5 and 26.0 cm could be related to the presence of mined materials that 

have different water retention properties. The Zn peak at the top of the dense sediment layer (21.5 

cm) and the 137Cs record are in good agreement with the results of Kihlman and Kauppila (2010) 

and Parviainen et al. (2012), suggesting similar geochemical stratigraphies. In our sediment core, 

highest metal concentrations are at about 20-22 cm depth and mark the timing of the high-

magnitude AMD. Absence of 210Pb and 137Cs in the dense sediment section (21.5-26.0) suggests 

presence of tailings material, which originated from the mined rock and was not exposed to 

atmospheric radionuclide fallout. Similar dilution phenomena have been detected before in lake 

sediments impacted by mining (Couillard et al. 2004; McDonald and Urban 2007). The mined 

material was probably transported to the lake before the dam was constructed (1940–1954). It may, 

however, have originated from direct dumping (1950–1960) or the dam failure ca. 1960. The rate of 

sedimentation for the dense section, however, is unknown. Diagenetic redistribution of elements 

(Outridge and Wang 2016) and elemental transport via pore water (Boudreau et al. 2013) cannot be 

ruled out. Corresponding, distinct metal peaks, however, were also detected in adjacent Lake 

Viljakkalanselkä (Parviainen et al. 2012), where the dense section was absent. 
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Cladoceran communities 

ZIII 44.5-32.5 cm (late 19th-early 20th century)  

The species present in Lake Kirkkojärvi are common taxa, typically found in Finnish lakes 

(Nevalainen et al. 2013) and water bodies throughout Europe (Bjerring et al. 2009). In the samples 

of ZIII, the low variation in cladoceran diversity and species richness suggest relatively stable 

conditions throughout this period. The clearest directional change is the declining relative 

abundance of E. coregoni. This may reflect the lake level manipulation, because E. coregoni is the 

only strictly pelagic species in the sediment samples (Walseng et al. 2006). It is possible that loss of 

the southern connection between Lake Kyrösjärvi and Lake Kirkkojärvi during the 19th century 

restricted migration from the substantially larger body of water (Lake Kyrösjärvi). Changes in 

waterways are known to cause large changes in cladoceran communities (Kerfoot et al. 1999). The 

proportion of planktonic taxa, however, increases in ZIII, which contradicts the hypothesis of water 

level decline (Korhola et al. 2000; Nevalainen et al. 2011). Another possible explanation could be 

changes in predation dynamics. Because other large-bodied species (Daphnia spp., L. frontosa, P. 

pediculus, L. kindtii) do not exhibit distinct shifts in proportional abundance, a change in predation 

dynamics is unlikely.  

 

ZII 30.5-23.5 cm (early 20th century to early 1970s) 

 

In ZII, a change in the lake ecosystem is clearly visible in the Shannon index values and the species 

relative abundance data (Fig. 3), and is also observed in the PCA bi-plot as a pronounced 

community shift (Fig. 4). In addition, the relative abundance of the resilient C. sphaericus 

(Bradbury and Megard 1972; Belyaeva and Deneke 2007; Stankovic et al. 2011) increases at the top 

of the zone whereas the abundance of E. longispina declines. This further indicates deteriorating 

conditions. The decline in the proportion of planktonic species at a depth of 27 to 24 cm in the core 

is a result of the declining abundance of E. longispina and of the disappearance of Daphnia and E. 

coregoni. Mine water has been noted to decrease cladoceran productivity (Kerfoot et al. 1999; Doig 

et al. 2015), species diversity (Holopainen et al. 2008; Winegardner et al. 2017), and the stability of 

brood size and community density (Bozelli 1996). In contrast to some paleolimnological studies 

that reported a dramatic collapse of the cladoceran community simultaneously with distinct metal 

peaks in the sediment record (Thienpont et al. 2016), the impact in Lake Kirkkojärvi is probably 
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related to increased input of mineral matter more than a decade before the onset of polymetal AMD. 

The DI-TP exhibits minor nutrient enrichment, which may also have affected the cladoceran 

community, but it is not possible to differentiate this from the effects of tailings pollution.  

The lowest diversity and richness values are in the depth interval 23.5–27.5 cm, which 

coincides with the lowest water content in the sediments. According to geochemical data 

(Parviainen et al. 2012), this sediment section is characterized by an elevated concentration of 

mineral matter and also minor, but evident, enrichment of some metals. This section most likely 

originated from mining activities, namely from the deposition of mine waste during the mining, 

which is also visible in aerial photographs but also from transport of the tailings which were 

dumped outside the dam. Deposits at 27.5 cm probably date to the 1940s or 1950s. Although the 

impact of the metals on the lake ecosystem was probably minor, the role of mineral matter may 

have been of greater importance. The harmful impacts of solids on cladoceran assemblages have 

been widely documented (EIFAC 1964; Bilotta and Brazier 2008), and the negative effects of 

turbidity from tailings have also been noted (Garrido et al. 2003). It is likely that high amounts of 

particles interfere with cladoceran feeding efficiency (Arruda et al. 1983; Kirk 1992). In Lake 

Kirkkojärvi, the tailings grain size is 1-850 µm and the silt fraction being most abundant 

(Parviainen 2009). The decreasing relative abundance of M. dispar and R. falcata, which prefer, but 

are not restricted to sandy bottoms (Hoffman 1987), may be a result of habitat loss caused by 

siltation. Despite the fact that aerial photographs suggest an increased flush of mine waste into the 

lake, no numerical data regarding the amount of suspended solids or turbidity in Lake Kirkkojärvi 

during the 1940s or 1950s are available.  

Another explanation for the deterioration of the cladoceran community can be related 

to changes in predation dynamics. Data regarding historical changes in the fish community, 

however, are not available, and the size structure of the cladoceran community does not indicate 

any clear shifts in predation pressure. Moreover, cladocerans have high dispersal potential (Louette 

and de Meester 2005; Frisch et al. 2012), and the cladoceran community of Lake Kirkkojärvi (as 

well as fish and predator invertebrate populations) probably received migrants from adjacent waters 

(Lake Viljakkalanselkä and Lake Kyrösjärvi), which may have damped the ecological changes.  
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ZI 22 cm to present (early 1970s to 2016) 

 

Even though mining-related metal pollution has been shown to inflict serious damage to cladoceran 

communities (Doig et al. 2015; Winegardner et al. 2017), the depth of contamination peaks at 

around 21.5 cm, is characterized by relatively rich and diverse community (Figs. 3 and 4), reflecting 

a less degraded ecosystem. According to Kihlman and Kauppila (2010), the metals may not have 

been in bio-available form during the sedimentation process, and the impact on biota may thus have 

been minor. Similar results regarding sediment contamination and unharmed zooplankton 

communities in the vicinity of abandoned mines have been noted elsewhere (Ciszewski et al. 2013). 

The cladoceran community in Lake Kirkkojärvi did not, however, return to its original composition, 

i.e. that of ZIII. A similar phenomenon has been reported with respect to earlier cases of industrial 

pollution (Valois et al. 2011; Dupuis et al. 2015). In Lake Kirkkojärvi, the contemporary cladoceran 

community is characterized by a high relative abundance of B. longirostris and C. sphaericus, 

which are regarded as indicators of nutrient-enriched aquatic ecosystems (Boucherle and Zullig 

1983; Hoffman 1987; Nevalainen and Luoto 2013). The rapid proportional increase of B. 

longirostris is simultaneous to Zn peak but the species is regarded as sensitive to heavy metal 

pollution (Koivisto et al. 1992; Bossuyt and Janssen 2005) suggesting low bioavailability of toxic 

metals in Lake Kirkkojärvi. The fact that the proportional abundance of B. longirostris stays 

relatively unchanged despite the declining AMD suggests that the heavy metal peak is not the main 

driver of the B. longirostirs abuncance. According to Kihlman and Kauppila (2010) many 

planktonic diatom species exhibit elevated abundances in the post 1970s samples. This improved 

food availability for planktonic B. longirostris may partly explain the success of this species during 

the past decades.  

Chydorus sphaericus is a resilient species (Zawisza et al. 2007; Sienkiewicz and 

Gasiorowski 2016) that is capable of utilizing many types of food resources (Ahlgren et al. 1990) 

and tolerates a wide range of environmental conditions, such as low pH (Belyaeva and Deneke 

2007). Thus, it is not surprising that C. sphaericus is present in Lake Kirkkojärvi, even though it has 

been affected by inputs of mine tailings, AMD, and nutrient enrichment. In addition, the increasing 

dominance of littoral species (e.g. A. harpae, D. rostrata, and P. unicatus) may indicate increased 

availability of habitats created by greater macrophyte cover. Even though predators may induce 

changes in zooplankton communities, e.g. via size-selective predation (Brooks and Dodson 1965), 

the cladoceran community changes in Lake Kirkkojärvi cannot be attributed to predation alone, 

because the community changes are not similar across species with similar sizes or habitats. 
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Moreover, evidence from diatom and protist communities also indicates eutrophication in Lake 

Kirkkojärvi during recent decades. Namely, arcellacean Cucurbitella tricuspis and diatoms such as 

Aulacoseira ambigua, Asterionella formosa, and Fragilaria crotonensis, which are regarded as 

meso- to eutrophic species (Anderson et al. 1995; Saros et al. 2005; Manoylov et al. 2009), have 

increased in relative abundance in Lake Kirkkojärvi, and in Lake Viljakkalanselkä, during the past 

few decades (Kihlman and Kauppila 2010). Similar trends in the trophic status of both water bodies 

suggest that the underlying mechanism for eutrophication is related to regional changes such as 

intensified agriculture, rather than mining impact, especially as it is known that after ca. 1950, 

intensive use of artificial fertilizers caused widespread eutrophication in freshwaters (Räsänen et al. 

2006). 

 

The cladoceran community shift in Lake Kirkkojärvi 

 

Fish have the potential to cause major changes in zooplankton communities (Brooks and Dodson 

1965; Stenson 1976), but in Lake Kirkkojärvi, the cladoceran community change occurred a decade 

earlier than the reported fish introductions. In addition, fish were not introduced to the Kirkkojärvi 

embayment, but only to the Kyrösjärvi main basin.  

According to Kihlman and Kauppila (2010), phosphorus concentrations in Lake 

Kirkkojärvi have increased during the past few decades, and the most pronounced change occurred 

during the mining period. The initial reason for the noticeable, but relatively minor diatom-inferred 

phosphorus enrichment (from ~16 to ~20 μg L-1) is difficult to explain, but it was probably related 

to increased human impact in the catchment. The human population of Viljakkala was highest 

during the 1950s, corresponding to the time at which there was an increase in the use of artificial 

agricultural fertilizers and a concurrent impact in the trophic status of freshwater ecosystems in 

general (Räsänen et al. 2006). Minor phosphorus enrichment was also detected in neighboring Lake 

Viljakkalanselkä (Kihlman and Kauppila 2010), but the modern cladoceran community there 

resembles the community structure of ZIII (Leppänen et al. 2017).  

In Lake Kirkkojärvi, the reason for the observed pronounced shift in the cladoceran 

community may be related to reduced ecosystem resilience caused by the mining impact in ZII 

(23.5-30.5 cm). High species richness strengthens the zooplankton population stability (Downing et 

al. 2014) and facilitates ecosystem resilience (Downing and Leibold 2010), whereas reduced 
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resilience tends to increase the likelihood of regime shifts in aquatic ecosystems (Folke et al. 2004). 

Whereas the nutrient status of Lake Kirkkojärvi had been shifting towards a more eutrophic state 

for a long period of time, the mining impact during ZII greatly reduced the resilience, which led to 

the observed community change. Many post-mining communities reflect a trend toward a more 

nutrient-rich system, among them the protists, diatoms, and cladocerans in Lake Kirkkojärvi. This 

indicates that a regime shift propagated through multiple trophic levels. The Lake Kirkkojärvi 

regime change resembles a type of regime shift, defined by Randsalu-Wendrup et al. (2016), where 

an abrupt change in environmental conditions triggered a direct response in the ecosystem. 

 

Conclusions 

 

In contrast to studies of AMD impact on primary producers (diatoms, protists), the cladoceran 

community of Lake Kirkkojärvi was clearly impacted by mining activity at the site. Subsequent 

changes in species composition, however, are in good agreement with the evidence from diatoms 

and protists that suggest post-mining eutrophication of the lake. We argue that the change in the 

cladoceran community was triggered by devastating, but relatively short-term impacts of mine 

pollution. These effects caused the cladoceran community to become less resilient, and thus more 

susceptible to pronounced change in species composition. 

 The need for minerals and metals is great in contemporary societies, and the mining 

industry is seeking environmentally friendly and economically viable techniques to meet these 

needs. Our results present important information regarding pollution impact assessment. In 

particular, our study highlights the utility of cladocerans as early warning indicators, and supports 

the importance of using multiple sediment variables in paleolimnological pollution research. 

Moreover, this study is an example of how anthropogenic pressures can transform a simple case of 

lake pollution into a multiple-stressor problem, via recent eutrophication. 
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Figure captions 

 

Fig. 1 A. Location of the Haveri (inverted mine symbol) mine and the tailings area (gray), sampling 

site (red cross), and the approximate shoreline (dotted) of Lake Kirkkojärvi during the early 19th 

century, before mining and lowering of the water level, and the current shoreline. Notice the dam 

structures (thick black lines). B. Location of Lake Kirkkojärvi. The data for the map were 

downloaded from the National Land Survey of Finland open data databank 

(http://www.maanmittauslaitos.fi/en/e-services/open-data-file-download-service) under the open 

data CC 4.0 license (https://creativecommons.org/licenses/by/4.0/), and customized in ArcMap, 

Version 10.3.1 (http://desktop.arcgis.com/en/arcmap/) and in Corel Draw X8, version 18.0 

(http://www.coreldraw.com/en/product/graphic-design-software/) 

 

Fig 2. Water content, acid-soluble zinc (Zn), 210Pb and 137Cs activities, sedimentation rate, LOESS 

smoothed curves (span 0.7) for diatom-inferred total phosphorus (DI-TP) and axis 1 values from the 

metals dataset PCA. Horizontal lines indicate cladoceran zone boundaries. * Data from Kihlman 

and Kauppila (2010), ** Data from Parviainen et al. (2012) 

 

Fig 3. Cladoceran stratigraphy, proportion of pelagic taxa (E. longispina, E. coregoni, Eubosmina 

spp., B. longirostris, Daphnia spp., P. pediculus, L. kindtii, L. frontosa, B. longimanus), species 

richness and Shannon diversity. Y-axis represents sediment depth and corresponding date (C.E.), 

and X -axis represents relative abundance (%). Horizontal lines indicate zones ZI, ZII and ZIII. 

Only taxa that had relative abundances >2% in any of the samples are included. The species are 

ordered by increasing abundance, from lower left to top right. Complete species data are available 

in ESM Table 1 
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Fig 4. PCA plot. Filled circles indicate samples, accompanied by sample depth. Dotted line follows 

the record in stratigraphic order for clear interpretation of community change. Species arrows for 10 

species that exhibited the largest loadings on PCA axis 1 and 2 are shown. Samples belonging to the 

same zones are enclosed in ellipses and identified by ZI, ZII, and ZIII. Variance explained: Axis 1, 

53.5 % and eigenvalue of 6.4; Axis 2, 11.5 % and eigenvalue of 1.4 

 

 

 

 

 

 

 

 


