-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by Helsingin yliopiston digitaalinen arkisto

Natural Language Engineering 1 (1): 1-22. Printed in the United Kingdom 1
© 2019 Cambridge University Press

Neural Morphosyntactic Tagging for Rusyn

Yves Scherrer, Achim Rabus

( Received 8 April 2019)

Abstract

The paper presents experiments on part-of-speech and full morphological tagging of the
Slavic minority language Rusyn. The proposed approach relies on transfer learning and
uses only annotated resources from related Slavic languages, namely Russian, Ukrainian,
Slovak, Polish, and Czech. It does not require any annotated Rusyn training data, nor
parallel data or bilingual dictionaries involving Rusyn. Compared to earlier work, we
improve tagging performance by using a neural network tagger and larger training data
from the neighboring Slavic languages. We experiment with various data preprocessing
and sampling strategies and evaluate the impact of multi-task learning strategies and
of pretrained word embeddings. Overall, while genre discrepancies between training and
test data have a negative impact, we improve full morphological tagging by 9% absolute
micro-averaged F1 as compared to previous research.

1 Introduction

Rusyn is a Slavic minority language predominantly spoken in the Carpathian area,
most notably in Transcarpathian Ukraine, Eastern Slovakia, and Poland, where
it is usually called Lemko. While Ukrainian is the Slavic standard language lin-
guistically closest to the Rusyn varieties, their linguistic status is disputed. Some
scholars claim that the Rusyn dialects are a part of the Ukrainian linguistic contin-
uum (Skrypnyk, 2013), others argue in favor of a separate linguistic and cultural
identity of the speakers of Rusyn (Plishkova, 2009; Magocsi, 2004). From a struc-
tural viewpoint, there are certain similarities with Ukrainian, e.g., with respect to
common sound changes on the one hand, e.g., East Slavic pleophony such as in
korova ‘cow’ or the rendering of Common Slavic jat’ as /i/ such as in lito ‘sum-
mer’. On the other hand, certain properties make the Rusyn varieties similar to
the adjacent West Slavic languages, i.e., Polish and Slovak. Examples include clitic
pronouns or past tense formation using forms of the auxiliary ‘to be’ (Boudovskaia,
2017; Rabus, 2019). Currently, the Rusyn varieties are under strong sociolinguistic
pressure from the neighboring umbrella languages Standard Ukrainian, Slovak, and
Polish. Instances of contact-induced transfer can thus be observed that make the
linguistic situation dynamic and complex (Rabus, 2015). The current dynamic ten-
dencies can be researched using the Corpus of Spoken Rusyn' comprising Rusyn

! Available at http://www.russinisch.uni-freiburg.de/corpus.
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data from Zakarpattia Ukraine, Eastern Slovakia, Southeastern Poland, and Hun-
gary.

From the viewpoint of NLP, Rusyn has to be classified as low-resource language.
No large or medium-sized manually annotated corpora that could serve as training
data exist, which means that one has to resort to transfer learning approaches, tak-
ing advantage of better-resourced similar Slavic languages. Still, even for Standard
Ukrainian, the language closest to the Rusyn varieties, the situation is far from
ideal, with the respective Universal Dependencies (version 2.2) treebank containing
only 100000 annotated tokens.

The approach proposed in this paper relies on resources from several neighboring
Slavic languages in order to create part-of-speech tagging and full morphological
tagging models for Rusyn. The practical goal of these experiments is to provide
reliable automatic annotation for the Corpus of Spoken Rusyn in order to facilitate
linguistic research. This paper extends our previous work (Scherrer & Rabus, 2017)
in several respects: we take advantage of expanded training corpora made available
through the Universal Dependencies project, replace the traditional CRF-based
tagging model by a state-of-the-art neural network tagging architecture, and evalu-
ate the usefulness of various strategies recently proposed in the context of transfer
learning, such as multi-task learning (using language prediction as the auxiliary
task) and cross-lingual word embeddings.

This paper is structured as follows. We start by reviewing the previous works
on Rusyn NLP and on transfer learning in general. In Section 3, we present the
data that are at our disposal and discuss issues related to the evaluation of tagging
performance in our transfer learning setup. Section 4 presents the proposed tagger
architecture in detail and compares its performance to traditional taggers. Section 5
deals with multi-task learning experiments, and Section 6 explores the impact of
pretrained word embeddings. Finally, we give an outlook on future perspectives.

2 Previous work

To our knowledge, besides our own experiments, varieties of Rusyn have not been
the target of NLP experiments yet.? In our previous work on Rusyn morphosyntac-
tic tagging, we followed a twofold approach. First, we built a morphosyntactic dic-
tionary of Rusyn, applying bilingual lexicon induction techniques on corpora from
the East Slavic languages Russian and Ukrainian and on cyrillicized corpora from
the West Slavic languages Slovak and Polish (Rabus & Scherrer, 2017). Word forms
were matched by vowel-sensitive Levenshtein distance, manually written transfor-
mation rules and combinations of both. Second, we trained a tagger on the con-
catenation of annotated Russian, Ukrainian, Slovak, and Polish data taken from
the Universal Dependencies repository (Nivre et al., 2016). Besides cyrillicizing the

2 There have been plans on using machine translation tools to revitalize the
Lemko variant of Rusyn by creating a Lemko-to-English translation system
(https://www.mail-archive.com/moses-support@mit.edu/msg15849.html), but we
are not aware of any published results in this area.
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Slovak and Polish data and balancing the different sources, no further processing
was applied to these data for the base model (Scherrer & Rabus, 2017). We devised
three strategies for improving tagging accuracy: (1) adding the morphosyntactic
dictionary induced in the first experiments, (2) including word clusters trained
on the (yet unannotated) Corpus of Spoken Rusyn, and (3) “translating” some of
the words in the training data to Rusyn to make the training data more similar
to the test data. The underlying tagging model of all experiments was MarMoT
(Miiller, Schmid, & Schiitze, 2013), a CRF-based tagger particularly adapted for
full morphological tagging with large tagsets. Our best results with this approach
yielded 82.4% part-of-speech accuracy and 75.5% full morphological tagging accu-
racy. These results mark the baseline for the experiments that we report in this
paper.

The task of creating taggers for languages lacking manually annotated training
data has inspired a lot of research, which can be subsumed under the name trans-
fer learning: a model (or the annotated data required to train it) is transferred
from a high-resource language (HRL, or source language) to a low-resource lan-
guage (LRL, or target language). Besides the data transfer approach, introduced
by Yarowsky and Ngai (2001) and requiring large word-aligned parallel corpora,?
the most popular approach nowadays is the model transfer approach.

One of the first model transfer proposals, now known under the term relexicaliza-
tion, consists in training a tagger for a source language and “translating” the words
inside the trained tagging model to the target language. The translation lexicons
can be created with a hand-written morphological analyzer and a list of cognate
word pairs (Feldman, Hana, & Brew, 2006), extracted from a parallel corpus (Zeman
& Resnik, 2008), or induced from monolingual corpora (Scherrer, 2014). A variant
of this approach, delexicalization, proposed initially for parsing (Zeman & Resnik,
2008; McDonald, Petrov, & Hall, 2011), consists in replacing the word forms of the
source language by language-independent features, such that a tagger trained on
such a transformed version of the training corpus can be applied without change to
an identically transformed corpus of the target language. Téckstréom, McDonald,
and Uszkoreit (2012) adapt this idea to morphosyntactic tagging by replacing the
word forms by word class numbers; the latter are inferred using a clustering algo-
rithm and synchronized across the two languages through a parallel corpus. Zhang,
Gaddy, Barzilay, and Jaakkola (2016) use cross-lingual word embeddings (repre-
senting each word by a high-dimensional vector of real numbers, see below) instead
of cross-lingual word clusters (representing each word by a single integer number).

3 Recent work (Agi¢, Hovy, & Segaard, 2015; Plank & Agi¢, 2018, for instance) has
successfully applied the data transfer approach to large numbers of languages using
massively parallel datasets like the Bible. However, parallel corpora are hard to find for
minority languages like Rusyn since there is no large market for translations. We were
unable to obtain any translations from high-resource languages into varieties of Rusyn
in digital form. While a printed version of the Gospel in the Slovak Rusyn variety is
available, we were merely able to locate an online version of some Psalms, which, due to
them being in verses, would not be very helpful for transfer learning. It would therefore
be a challenging, but worthwhile endeavor for both computational and corpus linguists
to compile a Rusyn parallel corpus in close cooperation with the local Rusyn community.
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Yu, Marecek, Zabokrtsky, and Zeman (2016) replace the word forms by language-
independent features such as word length and word frequency classes, forgoing the
need for parallel data to synchronize features across languages.

In recent years, following a general trend in machine learning and NLP initiated
by Collobert et al. (2011), tagger architectures based on neural networks have been
introduced successfully. A representative example of a neural tagger architecture is
described by Plank, Sggaard, and Goldberg (2016), which our own work relies on,
and which will be described in more detail later on. In this context, multilingual
models (e.g. Ammar, Mulcaire, Ballesteros, Dyer, and Smith (2016) for parsing)
have become a popular option for leveraging abundant data of related languages.
The general idea is that a single model is trained on the concatenation of training
corpora from several languages. For this approach to work, the representations of
the input data as well as the output labels must be unified across languages. The
resulting model can then not only be used to annotate data from any of the training
languages, but also for unseen languages whose word representations correspond to
the ones used during training. In many cases, although not obligatorily, it has
been found useful to inform the model about the language of each sentence it is
processing, so that it can better learn language-specific parameters.

Our previous work on Rusyn (Scherrer & Rabus, 2017) follows this multilingual
modeling approach, but relies on a traditional tagger architecture. Moreover, the
model is not given any language information during training. Cotterell and Heigold
(2017) present various experiments with multilingual neural network taggers. They
show that models trained on multiple languages often outperform single-language
models. However, all of their models include limited amounts (100 or 1000 tokens)
of annotated target language data. Also, the model trained on Slavic languages —
while performing considerably worse than the model trained on Romance languages
— exhibits an alphabet effect: usually, languages written in Cyrillic benefit most from
other languages written in Cyrillic script, and analogously for Latin script.

Cross-lingual word embeddings have become one of the most popular options
for representing (language-specific) word forms by language-independent features.
Word embeddings in general, trained on large raw text corpora, have been shown
to provide strong signals for a number of NLP tasks. When training multilingual
models, however, the word embeddings must be “synchronized” across languages,
i.e. projected onto the same vector space. This condition is not naturally fulfilled
if the embeddings are trained independently for each language. A large body of
recent research is dedicated to the problem of projecting the word embeddings
of one language onto the vector space of another one (for an overview, see e.g.
Ruder, Vuli¢, and Sggaard (2018)). Most approaches start with a seed dictionary
containing word pairs of both languages, but some variants merely rely on identical
tokens such as punctuation signs, numerals, or named entities (Artetxe, Labaka, &
Agirre, 2017). More relevant to our setting is the work by Sharoff (2018) on related
languages: he starts by automatically extracting a seed dictionary from Wikipedia
page titles and uses these entries to determine edit distance weights for the language
pair in question, assuming that most word pairs are cognates. Weighted Levenshtein
distance is then included as a factor in the word embedding projection algorithm.
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Corpus ID Language Training data Development /Test data
Sentences Tokens Sentences Tokens
CS-PDT Czech 68495 1173k 9270 159k
PL-LFG Polish 13774 105k 1745 13k
PL-SZ Polish 6100 63k 1027 10k
RU-GSD Russian 3850 76k 579 12k
RU-SynTagRus Russian 48814 870k 6584 118k
SK-SNK Slovak 8483 81k 1060 12k
UK-IU Ukrainian 4513 75k 577 10k
5k Multilingual 35000 489k
10k Multilingual 59950 805k 4039 59k
Test Rusyn — — 105 1051

Table 1. Sizes of the training and test corpora used in our exrperiments.

In this way, Sharoff (2018) creates a “Panslavonic” word embedding space for seven
Slavic languages, among which are Czech, Polish, Russian, Slovak and Ukrainian.

3 Data and evaluation
3.1 Training data selection and preprocessing

Following the approach outlined in Scherrer and Rabus (2017), our goal is to create
a tagger for Rusyn by relying entirely on annotated training data from related
Slavic languages. This goal is facilitated by the existence of large corpora annotated
according to the same guidelines within the Universal Dependencies (UD) project?.
The experiments reported here make use of the UD v2.2 editions of the corpora.
The sizes of the relevant corpora are summarized in the upper part of Table 1.5

It can be seen that the amount of training data varies a lot across languages.
Crucially, the largest training corpora stem from the languages least closely related
to Rusyn, namely Czech and Russian. In order to alleviate possible negative effects
of this skewed distribution, we create two balanced subsets for training (see central
part of Table 1):

1. The 5k subset contains the first 5000 sentences of each training corpus.® For
the smaller RU-GSD and UK-IU corpora, sentences are repeated to obtain
5 000-sentence sets.

2. The 10k subset contains the first 10000 sentences of each training corpus,
repeating sentences from SK-SNK and UK-IU, but not from PL-SZ and RU-
GSD.

4 http://universaldependencies.org/
5 We only use the development sets of these languages, not the test sets.
5 For the sake of replicability, we do not randomly sample the sentences.
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CS Nejzajimavéjsi dotazy najdete zodpovézené pravidelné na této strance .
Heitzaimasiitimum qoTa3bl HaiigeTe 30/ITOBI3eHe TPaBHUIETHI HA TETO CTPAHIIE .

PL Uswiadomita sobie , ze kilkadziesiat sekund to cate wieki .
VebBsiiomuta cobe , ¥Ke KUJIKaI3eCIT CEKYHJI TO IaJle BEKH .

SK Dalsie kroky §vaj¢iarskej sudkyne povedu do Belehradu .
Jsiiire KpOKbI MIBaiIMapcKeii CyJIKbIHe TOBeLy 110 bejerpay .

Fig. 1. Examples of transliterations for Czech, Polish and Slovak.

As we do not have a dedicated Rusyn development set and do not want to further
split the small test set (presented below) into two pieces, we create a balanced
multilingual development set by concatenating the 577 first sentences of the seven
development sets (see central part of Table 1). Note however that this development
set is very different from the real Rusyn test set and therefore a poor indicator of
the expected system performance on Rusyn.

Following the comparatively poor results obtained by Cotterell and Heigold
(2017) for languages written in different scripts, we decided to convert the Czech,
Polish and Slovak parts of the multilingual training and development corpora to
Cyrillic script, as in our earlier work (see Figure 1). During this process, we applied
certain transformation rules in order to “rusynify” our training data (e.g., transform
Polish ¢ to Cyrillic m» or Polish ¢ to Cyrillic y or s, respectively, which is in line
with well-known historical phonological processes). No preprocessing is applied to
the (Ukrainian, Russian and Rusyn) corpora originally written in Cyrillic script.

The morphological annotation guidelines in UD are supposed to be applied
equally across all languages. However, in practice, this goal is not quite achieved.
We identified a number of inconsistencies in the corpora cited above. These in-
consistencies partly stem from the presence or absence of optional features, from
distinctions that were not present in the original datasets before their conversion to
UD, and from proper linguistic differences between the languages in question. We
reduced the most frequent and most regular inconsistencies through the application
of the following harmonization rules:

e All participles are assigned the VERB part-of-speech regardless of their gram-
matical function.

e The Polish three-way animacy distinction of masculine nouns
(Hum/Nhum/Inan or Mascl/Masc2/Masc3) is reduced to a two-way
distinction (Anim/Inan).

e The distinction between Ptan (pluralia tantum) and Plur (plural) is only
made in the Ukrainian corpus; we collapse both labels to Plur.

e The Ukrainian corpus distinguishes between semantic and grammatical ani-
macy. We only keep the grammatical animacy labels, as this is done in the
other corpora.

A large number of features are only annotated in the Czech corpus, e.g. style,
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named entity type, punctuation type, typographical mistakes, etc. We re-
moved these features, as they do not relate to inflectional morphology.

3.2 Test data

The last row of Table 1 shows the size of the Rusyn test set that is used for evalua-
tion of the different models presented here. It corresponds to a manually annotated
Rusyn file consisting of a spoken narrative by a speaker of one Rusyn variety spo-
ken in Transcarpathia, Ukraine, with 1051 tokens.” This poses certain issues, the
most problematic being the discrepancy between the genres of training and test
data. While our concatenated UD training data consist of written text, the style
and syntax of our test data significantly deviates from those of the training data.
Naturally, this results in loss of accuracy that can be ascribed to genre discrep-
ancy. One way to alleviate this issue would be to use test data more similar to the
training data, i.e. data adhering to the written Rusyn norm as codified (Koporova,
2015). However, since our main practical goal is to develop tagging resources for
the Corpus of Spoken Rusyn, we resolved to stick with the oral genre of our Rusyn
test data.

3.3 FEwvaluation

The evaluation of a part-of-speech tagger is quite straightforward: for each word,
one single part-of-speech is predicted, and this prediction is either correct or wrong,
such that the accuracy measure is adequate for this purpose. For full morphological
tagging however, the situation is more complicated, as each word is associated with
a set of feature-value pairs whose size is determined by the part-of-speech tag pre-
dicted at the same time. A typical morphological tag according to UD conventions
looks as follows:

POS=NOUN/Animacy=Inan/Case=Acc|/Gender=Masc/Number=Plur

A sensible evaluation measure should give partial credit for partial matches and
should take into account situations where the number of predicted features does
not match the number of gold features. Accuracy measured on the full labels is too
harsh for these cases. Therefore, most recent work reports averages over per-feature
Fl-scores, either macro-averages (Buys & Botha, 2016; Cotterell & Heigold, 2017)
or micro-averages (Pinter, Guthrie, & Eisenstein, 2017). We report micro-averages
here and include the part-of-speech tag predictions in the averages.

A further complication arises from the incomplete annotation of the Rusyn test
corpus. For example, all training corpora annotate adjectives and adverbs with the
Degree feature, but this feature is not annotated in the test set. We do not want
to penalize a tagger for predicting a value of this feature, since it may very well
be correct. This situation can be remedied in two ways, either by removing such

7 We would like to thank Elena Boudovskaia for kindly sharing parts of her manually
annotated data with us. We converted the original annotation to the UD conventions
for use as a gold standard.
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features from the training data, or by ignoring them during evaluation. After initial
experiments, we chose the latter approach, as the additional predictions may still
be useful in the context of the annotation of larger corpora. Concretely, we define
the set of annotated features for each part-of-speech and mask all other features
during evaluation.®

Cotterell and Heigold (2017) convincingly demonstrate that using related lan-
guages for transfer learning yields considerably higher results within the Romance
family than within the Slavic family: Within the Romance family, the language
pair performing worst is Catalan used for tagging Portuguese (|D;| = 1000) with
89.0%, and the best is Portuguese and a combination of all Romance language used
for tagging Spanish (|D;| = 1000) with 94.2%. Within the Slavic language family,
however, the language pair with worst performance is Russian to be used for tag-
ging Ukrainian (|D;| = 1000) with 72.7%, while the pair with best performance is
Polish used for tagging Russian (|D;| = 1000) with 84.2%. Obviously, the rich mor-
phology and relatively free word order specific to the Slavic languages that results
in a larger tagset yields an at least 10% lower performance as compared with the
Romance language family even for language pairs where the alphabet effect does
not apply. This has to be taken into account when assessing tagging performance.
As mentioned above, the detrimental effect of the discrepancy between the genre
of training and test data has to be taken into account as well.

4 Character-level LSTM taggers for Rusyn
4.1 Model architecture

Plank et al. (2016) describe a classic neural tagger architecture. In this architecture,
each token is encoded as a multi-dimensional vector, and the token vectors are fed
into a bidirectional recurrent neural network consisting of LSTM cells. The LSTM
states of each word are then linked to an output layer, which predicts the part-of-
speech tag of the word. All parts of this neural network are trained jointly, such
that the recurrent hidden layer is able to capture the relations between adjacent
words. Note that in this architecture, and in contrast to traditional HMM-based or
CRF-based taggers, the tags are predicted greedily for each token; the choice of a
tag therefore does not depend on the tag choices made for the surrounding words.
This may in principle lead to inconsistent tagging within a sentence, but the rich
contextual information represented in the LSTM prevents such inconsistencies to

8 The following list enumerates, for each part-of-speech tag, the features that are included
in the evaluation, all others being masked:

ADJ: Animacy, Case, Gender, Number, Poss

AUX: Aspect, Mood, Number, Person, Tense, VerbForm

DET: Animacy, Case, Gender, Number, Person, Poss

NOUN: Animacy, Case, Gender, Number

NUM: Animacy, Case, Gender, NumType, Number

PRON: Animacy, Case, Gender, Number, Person, PronType, Reflex

PROPN: Animacy, Case, Number

VERB: Aspect, Case, Gender, Mood, Number, Person, Tense, Variant, VerbForm, Voice
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a certain extent. Neural network taggers including a CRF-based output layer have
also been proposed (Lample, Ballesteros, Subramanian, Kawakami, & Dyer, 2016;
Malaviya, Gormley, & Neubig, 2018).

There are essentially two ways of representing words as vectors. Intuitively, these
vectors can either represent the phonological and morphological structure of the
words (their character sequence) or the distributions of the words in sentential
context. The latter type is typically referred to as word embeddings; we call the
former character embeddings — somewhat abusively, as a more precise term would
be character-level word embeddings. The term character-level tagger is used for
tagging architectures that use character embeddings (exclusively or not).

Word embeddings consider each token as a distinct entity. They are naturally
inferred on the input layer by the tagger during training, but they can also be
trained separately using a large raw corpus. There are three potential advantages of
pre-training: larger vocabulary coverage (i.e., lower out-of-vocabulary rates), more
accurate representations (due to the larger training corpus), and faster training of
the tagger. However, word embeddings do not help in the case of the remaining
out-of-vocabulary words, which will just be associated with a vector of zeros.

In order to produce character embeddings, each word is split into its character se-
quence, which is then fed to a separate bi-directional LSTM layer one character at a
time. The last states of this LSTM layer are then concatenated and serve as a repre-
sentation of the word. With this option, words that are written in a similar manner
obtain similar representations. Breaking down the words into characters enables
the tagger to create meaningful representations for out-of-vocabulary words.’

Plank et al. (2016) show that character embeddings tend to be slightly more
efficient for tagging than word embeddings, but that using both representation types
(by concatenating the character embeddings and word embeddings) consistently
improves the results. They also show that pretrained word embeddings lead to
higher tagging accuracies compared to the embeddings trained within the tagger.
Cotterell and Heigold (2017) only use character representations, arguing that they
are better adapted to cross-lingual settings where out-of-vocabulary rates are high.
We follow the same reasoning in this section and report experiments based on
character embeddings alone. In Section 6, we discuss different ways of building
cross-lingual word embeddings for Rusyn and their impact on tagging performance.

The work cited above considers each output tag as a distinct entity; consequently,
tagging a word consists of choosing one element from the list of output tags. This
approach works for part-of-speech tagging where the list of possible output tags is
small, and elements are mutually exclusive. For full morphological tagging however,
this approach may not be sufficient, for a number of reasons. First, due to the
combinatorics of different features, the number of distinct output tags is very high
(around 4000 in our training data), making the choice considerably more difficult
than for part-of-speech tagging (less than 20 distinct tags). Second, the tagger
should be able to share information across tags that differ only partially, e.g. across

9 This assumes that there are no out-of-vocabulary characters, i.e., that the whole char-
acter inventory has been seen at training time, which generally holds to a large degree.
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Fig. 2. Illustration of our tagging architecture. Blue arrows represent feed-forward connec-
tions, red arrows represent recurrent connections inside an LSTM layer, and green arrows
represent mere copy operations. The embedding layer consists of a character embedding
part ¢ and an optional word embedding part @W. The number of output layers corresponds
to the number of morphological features found in the data — we exemplify this with the

two features POS and Tense.

the two following tags:
POS=NOUN/Animacy=Inan/Case=Dat/Gender=Masc/Number=Plur
POS=NOUN/Animacy=Anim|/Case=Dat/Gender=Masc|/Number=Plur

Third, the tagger should be able to predict combinations of values that it has never
seen during training. For example, it should be (theoretically) able to compose a tag
for a dative singular noun even if it only has ever seen dative plural and nominative
singular nouns during training.

To alleviate these issues, we follow a proposal by Pinter et al. (2017) and create
as many output layers as there are distinct features in the training data. Features
that are not relevant are given a special value N/A that prevents them from being
outputted. The part-of-speech tag has its own output layer, like any other feature.'?
Figure 2 illustrates the final neural tagger architecture. The w part is absent from
the models presented in Sections 4 and 5, but present in the models of Sections 6.

As shown elsewhere for pre-modern Slavic including varieties of Church Slavonic
(Scherrer, Mocken, & Rabus, 2018), character-level neural network taggers with per-
feature output layers perform well on highly inflectional languages such as Slavic
languages that require large tagsets, achieving well over 90% micro-averaged F1
for full morphological tagging. Using character embeddings instead of word embed-
dings made the tagger more robust towards orthographic variation. The pre-modern
Slavic case is similar to the Rusyn case in that orthographic variability is a frequent

10° A similar option has been proposed by Malaviya et al. (2018).
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phenomenon leading to a comparatively large amount of OOV tokens. However, we
cannot expect comparable performances for Rusyn, as we do not have any language-
specific training data.

The architecture and training procedure of a neural network tagger are defined
by a large number of hyperparameters. In the experiments presented here, we use
a tagger with 2 LSTM layers of 256 dimensions each. The input to this tagger
are character embeddings, which are produced by a character input layer of 128
dimensions and 2 additional LSTM layers with 256 dimensions each. We train all
taggers during 20 epochs!! using stochastic gradient descent with momentum; the
initial learning rate is set to 0.01, with a decay of 0.1. We also apply dropout with
a probability of 0.02. The tagger is implemented in Python and uses the DyNet
toolkit (Neubig et al., 2017). We call this tagger CLSTM.!2

4.2 Baseline systems

We compare our neural tagging experiments with two traditional tagger architec-
tures: TnT (Brants, 2000) and MarMoT (Miiller et al., 2013). TnT is based on a
Hidden Markov model architecture and thus very fast to train, but is not particu-
larly adapted for full morphological tagging, as it does not allow the decomposition
of a full tag into a list of feature-value pairs. MarMoT uses a higher-order CRF
architecture that is optimized for large tagsets such as those used in morphological
tagging.

MarMoT has been used in our previous experiments (Scherrer & Rabus, 2017).
We also present the results of these experiments using the current evaluation met-
rics.

4.3 Experiments and results

In a first set of experiments, we compare three tagger architectures, two differ-
ent training sets (5k or 10k training sentences per source corpus) and two casing
schemes (original case or all lowercase). Table 2 reports the results in terms of
out-of-vocabulary rates and tagging F1 scores. As described above, reporting pure
accuracy is too harsh, which is why we used micro-averaged per-feature F1 scores
for evaluation. For our mixed-language development set, we report these scores on
all features (Full F1) as well as on the reduced feature set (Red. F1) defined on
the annotation of the Rusyn corpus. For the Rusyn test set, only the latter score is
meaningful.

The two first lines of Table 2 show the results obtained with two systems presented
in Scherrer and Rabus (2017); the MS system is most comparable to the new
experiments, whereas the LEX-L system was the best-performing one using an

1 We follow Plank et al. (2016) for this setting. Although we have found parameters to
converge on the development set after about 20 epochs, we still observe considerable
fluctuation in test set performance. In the absence of a proper Rusyn development set,
we cannot devise a more principled way of determining convergence.

12 The implementation is available under https://github.com/yvesscherrer/lstmtagger.



12 Y. Scherrer € A. Rabus

Table 2. Comparison of tagging performance with different tagger architectures,
training datasets and evaluation datasets.

Development data Test data
Tagger Dataset OOV rate FullF1 Red. F1 OOV rate Red. F1
MarMoT MS 26.4% 70.5%
(S& R 2017) LEX-L 1.1% 73.5%
TnT 5k 21.69%  87.64%  88.22% 23.9% 76.1%
5k LC 20.056%  87.61%  88.17% 23.3%  76.2%
10k 19.38%  88.51%  89.06% 23.0% 75.5%
10k LC 17.82% 88.54% 89.07% 22.5% 75.3%
MarMoT 5k 21.69%  90.77%  91.44% 23.9%  77.4%
5k L.C 20.05%  90.58%  91.11% 23.3% 75.7%
10k 19.38% 91.50% 92.16% 23.0% 75.1%
10k LC 17.82%  91.28%  91.77% 22.5% 74.9%
CLSTM 5k 21.69%  93.05%  93.32% 23.9% 79.7%
5k LC 20.05%  92.48%  92.55% 23.3% 78.3%
10k 19.38% 93.74% 93.98% 23.0% 79.4%
10k LC 17.82%  93.25%  93.31% 22.5%  79.8%

automatically induced morphological dictionary.'® The comparison with the current
MarMoT results indicates the performance boost obtained by the updated training
resources (more and larger datasets, better annotation harmonization).

Regarding the three tagger architectures tested here, MarMoT performs around
3% better than TnT and CLSTM performs about 2% better than MarMoT on the
multilingual development set. On the Rusyn test data, the ordering is confirmed,
although the increase rates are lower (about +1% for MarMoT vs. TnT, about +2%
for CLSTM vs MarMoT).

In terms of training data size, we expected the taggers trained on the larger 10k
dataset to yield better performance. This behavior is confirmed on the development
set, whereas the test set often obtained better performance with taggers trained on
the smaller 5k dataset. The reason for this — somewhat surprising — outcome may
be the proportionally higher amount of Ukrainian data in the 5k set, which is likely
to be the most relevant source language for tagging Rusyn.

As it is often the case in transcription of oral corpora, the Rusyn test corpus is
entirely lowercased. Therefore, we assumed that lowercasing the training data could
make it more similar to the test data and hence lead to better tagging accuracies.
While the TnT tagger is not very sensitive to casing, the more advanced taggers
MarMoT and CLSTM usually perform significantly better with mixed case data,
which makes them more suitable for real-world applications. On the test set, the

13 The Fl-scores shown here correspond to the accuracy scores of 72.0% and 75.5% re-
spectively reported in Scherrer and Rabus (2017).
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MarMoT results show the same preference, whereas the situation is less clear with
CLSTM. However, it should be noted that the CLSTM F1 rates on the test set
vary quite a lot from one training epoch to another.

Overall tagging performance on the development data using conventional taggers
such as MarMoT and neural network taggers such as CLSTM yields results well
beyond 90%, which is almost as high as the performance of monolingual systems
on languages with rich morphology. In contrast, tagging performance on the Rusyn
test data is considerably lower. Part of that loss may be due to the limited size
of the test set. However, we believe that the main reason is the specifically oral
syntax of the test data with omissions, repetitions, many discourse markers, etc.
Because of that, our results should be compared to the performance of taggers
trained on written data from languages with rich morphology applied to spoken
data as test files. As is well known and has been demonstrated numerous times, the
use of standard training data for tagging nonstandard, more specifically oral, test
data inevitably leads to worse results as compared to standard test data (Ljubesic,
Erjavec, & Figer, 2017).

These experiments clearly confirm that neural taggers work successfully in dif-
ficult settings with little training data from a mix of different languages. In the
light of these results, and since character-level neural taggers seems to be rather
immune towards different casing and sampling strategies, we use a neural network
architecture based on CLSTM for our further experiments.

5 Language identification as auxiliary task

A tagger trained on data from several languages may benefit from knowing the
language of each sentence or word it is seeing. For example, the tagger may learn
that a particular suffix corresponds to feature A in one language, but to feature B
in another language. In the tagging experiments presented above, this information
is not available — the distinction between different languages is even voluntarily
blurred by converting all data to Cyrillic script.

Language information can be added in several ways:

1. Add an artificial token at the beginning of each sentence. This serves as a type
of initialization of the tagging process. This approach has become popular in
machine translation (Johnson et al., 2017).

2. Add a language label to each token, ideally encoded separately from the word
form. This approach is used e.g. by Ammar et al. (2016).

3. Add a language label in the form of an additional morphological feature to
the tag. This approach can be viewed as a form of multi-task learning, where
the additional task is language identification (Cotterell & Heigold, 2017).

The first two approaches add the language information on the input side (the
words to be tagged), whereas the third approach adds the information to the output
side (the tags to be produced). This difference is crucial at test time: in the first
two approaches, the language of the test data must be known, whereas in the third
approach it is not given, but predicted as a byproduct of the tagging. In our case,
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423 NUM Animacy=Inan|Case=Acc|Gender=Masc|NumType=Card|
Number=Plur|Lang=pl

pasbl NOUN  Animacy=Inan|Case=Acc|Gender=Masc|Number=Plur|
Lang=pl

cnorkaiael  VERB Animacy=Inan|Aspect=Perf|Gender=Masc|Mood=Ind|
Number=Plur|Tense=Past|VerbForm=Fin|Voice=Act|Lang=pl

¢ PRON PronType=Prs|Reflex=Yes|Lang=pl

9TEPHI NUM Animacy=Inan|Case=Nom|Gender=Masc|NumType=Card|
Number=Plur|Lang=pl

psioBe ADJ Animacy=Inan|Case=Nom|Degree=Pos|Gender=Masc|

Number=Plur|Lang=pl
komurersl  NOUN  Animacy=Inan|Case=Nom|Gender=Masc|Number=Plur|
Lang=pl
PUNCT Lang=pl

Fig. 3. Example of the Polish sentence 423 razy spotkaly sie cztery rzqdowe komitety.,
cyrillized and annotated with language labels (in bold).

the test language (Rusyn) is different from all languages seen during training, so
that the first two approaches cannot be used reasonably.

The second and third approaches add language information at the token level,
whereas the first approach uses a single language label per sentence. Since our
training data does not contain sentences mixing several languages, the first approach
would be most reasonable. However, the Rusyn data may contain instances of code-
switching or calques from different source languages, such that language annotation
on token level may be useful.

For the reasons exposed above, we follow the third approach. In our neural tagger
architecture, learning an additional task (language identification) is equivalent to
learning an additional morphological feature. We therefore modify our training data
by adding the feature Lang and the corresponding ISO code. An example of such
a modified sentence is given in Figure 3.

This simple way of adding language labels has two drawbacks: Since all tokens
of a sentence are given the same label, the tagger might just learn to predict the
label for the least ambiguous word of the sentence and copy it to the remaining
words, without associating the label prediction with the word forms, limiting its
usefulness. Second, labeling tokens such as 423 or . as Polish does not make much
sense, as they would look exactly the same in a different language. In order to
address these potential problems, we devise a second way of assigning language
labels. Tokens which occur in at least four languages, such as punctuation symbols
or named entities as well as numbers are assigned the language label gn (generic).
Moreover, we swap the labels of tokens which occur in more than one language
with the same morphosyntactic annotation in order to break the “one sentence —
one language” constraint. An example of this modified language labeling is shown
in Figure 4.

Table 4 summarizes the results of the language labeling experiments using the
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423 NUM Animacy=Inan|Case=Acc|Gender=Masc|NumType=Card|
Number=Plur|Lang=gn

pasbl NOUN  Animacy=Inan|Case=Acc|Gender=Masc|Number=Plur|
Lang=ru

cuorkansl  VERB Animacy=Inan|Aspect=Perf|Gender=Masc|Mood=Ind|
Number=Plur|Tense=Past|VerbForm=Fin|Voice=Act|Lang=pl

csa PRON PronType=Prs|Reflex=Yes|Lang=pl

YTEepbI NUM Animacy=Inan|Case=Nom|Gender=Masc|NumType=Card|
Number=Plur|Lang=pl

psimoBe ADJ Animacy=Inan|Case=Nom|Degree=Pos|Gender=Masc|

Number=Plur|Lang=pl
komurersl NOUN  Animacy=Inan|Case=Nom|Gender=Masc|Number=Plur|
Lang=ru
PUNCT Lang=gn

Fig. 4. Example of the Polish sentence 423 razy spotkaty sie cztery rzgdowe komitety.,
cyrillized and annotated with swapped language labels. Note the generic gn label for
numbers and punctuations, as well as the Russian label associated to the second and
second-last token, based on the existence of the plural noun forms paswe. and xomumemot
in a Russian corpus.

originally cased 5k training dataset. Note that the correctness of language labels is
evaluated separately and is not included in the F1 computations. For comparison,
we repeat the results of the tagger without added language labels in the first row.

When evaluated on development data, the standard language labels do not lead
to significant performance changes. Also, the accuracy of the language prediction
is almost perfect, as the model learns to look at adjacent words for difficult cases.
On the Rusyn test set however, the Fl-score drops heavily, probably again due to
the same effect: the model tries to adapt to a situation in which the whole sentence
is written in a single language of the training set. Note that language prediction on
the test data would always lead to 0% accuracy, since the model has not seen the
correct label rue during training.

With the swapped language labels, language prediction accuracy drops signifi-
cantly on the development data, because the swapping has made the problem more
difficult and less deterministic. Consequently, tagging performance slightly drops
as well. However, we expect this approach to work better on Rusyn, which is in-
deed the case when compared with the standard labels. However, both language
labeling models are not able to match the performance of the simple model without
language labels.

The predicted language labels of the test tokens may give some clues about the
behavior of the two different labeling schemes. Table 3 shows the distribution of
the labels across the 1051 tokens of the test set. One can see that the effect of
the standard language labels is to mark almost all Rusyn utterances as Ukrainian,
which is indeed the most closely related training variety. With the swapped labels,
this dominance is broken, partly due to the newly introduced generic label, but
partly also to the higher percentage of Czech and Polish labels.
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Table 3. Comparison of language labeling schemes. The Lang Acc column shows
the accuracy of the auziliary language identification task.

Development data Test data
CLSTM 5k Tagger Full F1 Reduced F1 Lang Acc Reduced F1
No language labels 93.05% 93.32% — 79.7%
Standard language labels  93.09% 93.34% 97.82% 76.8%
Swapped language labels  92.92% 93.17% 92.17% 79.0%

Table 4. Distribution of language labels in the Rusyn test set (absolute token num-
bers). The last column shows the proportion of uniquely labeled test set sentences
(not taking into account the gn label).

gn cs pl ru sk uk Uniquely lab. sent.

Standard language labels 0 37 54 96 40 824 95/105
Swapped language labels 250 65 123 80 41 492 22/105

A more detailed analysis of the language labels may give us hints about regional
variation in the Rusyn corpus. For example, labeled data can help discover the
amount of lexical loans in each of the Rusyn varieties with Slavic umbrella languages
and, thus, facilitate linguistic research.

6 Word embeddings

Many recent pieces of research include both character embeddings and (pretrained)
word embeddings in tagging models. In this section, we investigate to what extent
word embeddings can also help in a transfer learning setting.

As a starting point, we replace the ¢ part of our LSTM tagger by the w part.
These word embeddings are trained jointly with the rest of the neural network.
As a result, each distinct word form of the training corpus is associated with an
embedding vector that reflects the distributional properties of the word form. The
word forms used to train the embeddings are lowercased cyrillicized forms, and the
embeddings are set to 300 dimensions.'* This model is not expected to yield good
performance on Rusyn, as it essentially does not know what to do with out-of-
vocabulary words.'®

We also combine the ¢ and W parts, as illustrated in Figure 2. This model is

14 These casing and dimensionality choices were made to facilitate comparison with sub-
sequent experiments.

15 One option to reduce the number of out-of-vocabulary forms in morphologically rich
languages is to use embeddings of lemmas instead of embeddings of inflected word forms.
While we could train such a model using the available lemmas in the training data, our
Rusyn data is not lemmatized. Solving the Rusyn lemmatization problem may actually
be even harder than the tagging problem because there are no standardized spelling
and lemmatization conventions.
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Table 5. Comparison of LSTM taggers trained on the 5k corpus with different
types of word embeddings.

Development data Test data

Embeddings OOV rate FullF1 Red F1 OOV rate Red F1
é 21.69%  93.05%  93.32% 23.9%  79.7%
w 20.03%  80.58%  80.50% 23.3% 67.1%
c+ W 20.03%  93.11%  93.42% 23.3% 78.1%
¢+ W Panslavh 6.28% 93.59% 93.86% 16.2% 77.7%
+ Rusyn OOV words 6.28%  93.39%  93.63% 0% 81.0%
¢+ w Panslav6

+ Rusyn OOV words 6.26%  93.39%  93.67% 0% 78.2%

expected to improve tagging accuracy on the development set thanks to the com-
plementary information contained in the two embedding types. However, we do not
expect significant improvements on the Rusyn test set, since the predictions for
out-of-vocabulary words will have to back off to the character embeddings. The
first three rows of Table 5 confirm our expectations. The test data F1 for ¢+ w
decreases considerably compared to ¢.16

Instead of training the word embeddings on the rather small tagging dataset, we
can take advantage of word embeddings that have been pretrained on large raw cor-
pora of the source languages. Sharoff (2018) takes the Fasttezt (Bojanowski, Grave,
Joulin, & Mikolov, 2017) embeddings as a starting point for his work; these embed-
dings have been independently trained on lowercased Wikipedia data and contain
300 dimensions. Sharoff (2018) converts the independently trained embeddings of
all Slavonic languages into a shared vector space using known conversion methods
and automatically induced bilingual dictionaries.

For our purposes, the entries of the five source language embedding files need to be
cyrillicized and merged into a single file for inclusion in the tagger. When doing so,
embeddings may overlap. For example, the Slovak word bud is cyrillicized to 6ydy,
which is also an Ukrainian and Russian word. Since double entries are not allowed
in the word embedding files, we merge the vectors of identical word forms by taking
their average. In our example, the vector of 6ydy would therefore be computed as the
average of Slovak budiu, Ukrainian 6ydy and Russian 6ydy. We assume that a large
proportion of these overlapping word forms correspond to those found by Sharoff
(2018)’s lexicon induction technique, so that their respective vectors are already
quite close to each other. Table 6 shows the statistics of the Fasttext embeddings;
the cyrillicized merged embedding file is called Panslavs.

The fifth row of Table 5 shows the corresponding tagging results. The OOV rate

16 The slightly decreasing OOV rate can be explained by the casing differences between
character embeddings (original case) and word embeddings (lower case), as mentioned
above.
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Table 6. Multilingual Fasttext word embeddings.

cs pl ru sk uk Panslavh rue Panslav6
Entries 200k 200k 200k 55.6k 52.8k 581.8k  10.4k 587.4k
-+ Rusyn OOV words: 582.0k 10.7k 587.6k

goes down considerably for the development set thanks to the addition of the large-
coverage pretrained embeddings. The OOV rate also decreases on the test set, as
many Rusyn words correspond to identically spelled source language words of the
embeddings. Tagging performance on the development set increases, confirming the
effectiveness of pretrained embeddings already observed by (Plank et al., 2016). In
contrast, tagging performance on the Rusyn test set decreases substantially despite
the lower OOV rate.

In Rabus and Scherrer (2017), we have found that a large proportion of Rusyn
word forms can be matched with source language word forms using hand-crafted
correspondence rules or vowel-sensitive Levenshtein distance. Here, we use the latter
approach to artificially create Rusyn word embeddings for the out-of-vocabulary
words: each Rusyn word form of the test set that does not occur in the Panslavh
file is associated with the most similar forms in Panslavb, and its embedding vector
is computed by averaging the vectors of the found similar forms. For example, the
embedding for the Rusyn word uekaror corresponds to the averaged vector of the
most similar words uekar and 4JekaroTh, both at normalized Levenshtein distance
of 0.83. This only adds 129 entries to the Panslav5 file (see second row of Table 6).

The fourth row of Table 5 shows that this technique considerably increases Rusyn
tagging performance, bringing down the Rusyn OOV rate to zero by design. Note
that this vocabulary expansion strategy could also be carried out using a large
Rusyn word list in order to make it completely independent of the test set. However,
the proposed setup is realistic in our real-world scenario of annotating the Corpus
of Spoken Rusyn, as the text to be tagged can be made available before tagger
training.

6.1 Pretrained Rusyn embeddings

The Fasttext project actually provides pretrained word embeddings for Rusyn based
on Wikipedia data,!” albeit of much smaller size than for the other languages (see
Table 6). Using this existing resource may thus be a valid alternative to the above-
mentioned approach of “synthesizing” Rusyn embeddings from similar words.

The pretrained Rusyn embeddings still need to be projected into the Panslavh
embedding space. To this end, we use a simpler procedure than Sharoff (2018) and
take the intersection of word forms of the two files as the seed lexicon (i.e., we
assume that words spelled the same should occur in the same area of the vector

17" https://fasttext.cc/docs/en/pretrained-vectors.html
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space). Almost half of the forms present in the Rusyn Fasttext embeddings are
covered by this lexicon. We call the resulting embeddings Panslav6 (see Table 6).

Not all words occurring in the Rusyn test set are covered by the Panslav6 em-
beddings. In order to obtain comparable results to those shown above, we again
create synthetic word embeddings for the OOV words of the test corpus. However,
we can use a potentially more accurate approach here: the Fasttert embedding
format enables us to create embedding vectors for unknown words based on sub-
word information (Bojanowski et al., 2017). We generate these using the Rusyn
Wikipedia embeddings and then merge them alongside the known ones into the
Panslav6 embeddings (see second row of Table 6).

The tagging results obtained with the Panslav6 embeddings are shown in the
last row of Table 5. The drop in development F1 is striking and may be due to
the additional alignment step performed to synchronize the Rusyn embeddings
with the Panslavb embeddings. Further analysis will be required on this subject.
Consequently, the F1 score on the test data is not competitive either and merely
matches the one obtained with word embeddings trained within the tagger.

These results suggest that the usefulness of pretrained word embeddings is still
open to debate in the context of transfer learning settings like the one presented
here. While small but consistent improvements can be observed in the development
data set, they translated into degradations on the test data in all but one cases; only
the addition of Rusyn OOV words into a previously aligned five-language vector
space allowed us to break the 80%-mark in F1 score.

7 Conclusions and future work

Our experiments have shown that neural taggers help in improving tagging per-
formance for low-resource languages such as Rusyn in a transfer learning setting
relying only on training data from related languages. This setting is more challeng-
ing than e.g. Cotterell and Heigold (2017), as we do not use any annotated Rusyn
data. We have shown that updated and cleaned training data boost tagging per-
formance by about 7% Fl-score, whereas the use of a neural network tagger adds
another 2% to the Fl-score. Pretrained word embeddings automatically extended
to full test set coverage add another 1%, resulting in a Fl-score of 81.0%.

In this paper, we have only explored a few options — there are a multitude of
algorithms to infer word embeddings and to align independently trained word em-
beddings into a common cross-lingual space. For example, Plank and Agi¢ (2018)
report consistently better performance when starting with Polyglot embeddings
(Al-Rfou, Perozzi, & Skiena, 2013) instead of Fasttext embeddings. Sharoff (2018)
mentions further improvements on named entity recognition when using the MUSE
method (Lample, Conneau, Ranzato, Denoyer, & Jégou, 2018) to align cross-lingual
embeddings rather than the one used here. Multilingual extensions (i.e. merging
more than two languages at a time) for cross-lingual embeddings have also been
proposed and could be relevant in our case. Further work will thus be needed on
finding the optimal combinations of methods for the given task.

We have also experimented with multi-task learning, using language identification
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as an auxiliary task, but did not find improvements in tagging performance. Further
experimentation is required in this area as well; for example, multi-task learning
could be combined with the pretrained word embeddings.

Our results also made clear that transfer experiments using Slavic languages
are especially challenging because of the rich morphology of the Slavic languages.
Furthermore, spoken data as represented in both our test data and the corpus data
we intend to practically use the tagger on pose certain difficulties. Therefore, in
further studies, the issue of tagging oral genres of low-resource languages should be
tackled specifically.
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