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A declining first-phase insulin response (FPIR) is asso-
ciated with positivity for multiple islet autoantibodies,
irrespective of class II HLA DR-DQ genotype. We ex-
amined the associations of FPIR with genetic variants
outside the HLA DR-DQ region in the Finnish Type
1 Diabetes Prediction and Prevention (DIPP) study in
children with and without multiple autoantibodies. As-
sociation between FPIR and class I alleles A*24 and
B*39 and eight single nucleotide polymorphisms out-
side the HLA region were analyzed in 438 children who
had one or more FPIR results available after serocon-
version. Hierarchical linear mixed models were used to
analyze repeated measurements of FPIR. In children
with multiple autoantibodies, the change in FPIR over
time was significantly different between those with
various PTPN2 (rs45450798), FUT2 (rs601338), CTSH
(rs3825932), and IKZF4 (rs1701704) genotypes in at least
one of the models. In general, children carrying sus-
ceptibility alleles for type 1 diabetes experienced a more
rapid decline in insulin secretion compared with children
without susceptibility alleles. The presence of the class I
HLA A*24 allele was also associated with a steeper de-
cline of FPIR over time in children with multiple autoanti-
bodies. Certain genetic variants outside the class II HLA
region may have a significant impact on the longitudinal
pattern of FPIR.

The first-phase insulin response (FPIR), a marker reflect-
ing functional capacity of the b-cells in the pancreas,
increases physiologically over time in children and ado-
lescents (1). As a sign of deteriorating b-cell function,
a decline in FPIR can, however, be observed several years
before clinical type 1 diabetes (T1D) (1).

The class II HLA DR-DQ region has been shown to
affect the appearance of islet-specific autoantibodies.
Children with multiple autoantibodies have a high risk
of progressing to clinical disease, and the presence of
multiple autoantibodies seems to represent a point of no
return (2). However, class II HLA does not have any effect
on the progression rate from advanced islet autoimmu-
nity to clinical diabetes (3), which in turn is influenced by
some class I HLA alleles (4). Genetic variants outside the
HLA region also affect the development of islet autoim-
munity and/or progression to clinical diabetes (5–7).

We recently observed that the association between
FPIR and class II HLA DR-DQ is secondary to the presence
of multiple autoantibodies (8). The declining pattern of
FPIR was associated with multiple autoantibodies irre-
spective of HLA class II risk group. However, it is possible
that other genetic polymorphisms are specifically associ-
ated with the evolution of FPIR during progression from
autoimmunity to clinical disease.
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Here, we studied the role of two class I HLA alleles and
eight selected non-HLA gene polymorphisms in the de-
velopment of insulin secretory capacity as measured by
FPIR in children participating in the Finnish Type 1 Di-
abetes Prediction and Prevention (DIPP) study. Because
the presence of multiple islet autoantibodies is strongly
associated with b-cell failure, we analyzed separately chil-
dren with and without multiple biochemical autoanti-
bodies. The selected HLA class I alleles and non-HLA
markers have previously been shown to associate with
the progression rate from islet autoimmunity to clinical
diabetes (4,5,9,10). However, it is not known how or
whether these markers are associated with insulin response.
The genetic variants of INS and CTSH genes were selected
because of their known role in b-cell function (11,12).

RESEARCH DESIGN AND METHODS

The population-based DIPP study was launched in 1994 to
screen for diabetes-associated risk by genotyping the major
HLA DR-DQ haplotypes at birth (3). The study participants
were followed regularly for the appearance of islet auto-
antibodies at 3–12-month intervals. Children who developed
islet autoantibodies (islet cell antibodies and biochemi-
cal autoantibodies to insulin, GAD 65, and IA2) under-
went an intravenous glucose tolerance test (IVGTT) (1),
whereas autoantibodies to zinc transporter 8 were analyzed
after IVGTT. b-Cell function was estimated by FPIR and
change in FPIR (DFPIR) as described previously (8).

Genotyping Methods
HLA typing of major DR-DQ haplotypes was performed
with a PCR-based lanthanide-labeled hybridization method
using time-resolved fluorometry for detection (3). Geno-
typing using the Sequenom platform (San Diego, CA) of
eight single nucleotide polymorphisms (SNPs), including
PTPN22 (rs2476601), IFIH1 (rs1990760), INS (rs689), IKZF4
(rs1701704), ERBB3 (rs2292239), CTSH (rs3825932),
PTPN2 (rs45450798), and FUT2 (rs6013380), was performed
at the University of Eastern Finland (Kuopio, Finland)
(5); CTSH (rs3825932) genotyping was performed using
the Taqman SNP Genotyping Assay (Thermo Fisher Sci-
entific, Waltham, MA). The assays of class I HLA alleles
(B*39, A*24, and B*39:06) were analyzed on the DELFIA
platform (4). SNPs in ERBB3 and IKZF4 polymorphisms
were highly correlated (Fisher exact test P , 0.0001).

Autoantibody Analyses
Autoantibodies to insulin, GAD 65, IA2, and zinc trans-
porter 8 were measured in serum samples by a radio-
binding assay (13,14). Islet cell antibodies were measured
by classical immunofluorescence method applied to sec-
tions of human pancreas, blood group O (15).

Study Participants
The 438 study children (268 [61.2%] males) with one or
more FPIR results (133 [30.4%] who had progressed to
T1D, 35 with a single biochemical, 65 with multiple

biochemical autoantibodies who did not progress to
T1D during the study period) had been categorized ac-
cording to the biochemical autoantibody status (none/
one or multiple [at least two] biochemical islet autoanti-
bodies) at the time of the first IVGTT. Themedian age at the
first IVGTT, which was performed at least 2 years before
diagnosis in progressors, was 4.6 years. Diabetes was
diagnosed according to World Health Organization criteria
(16).

Statistical Analyses
DFPIR was calculated in children with and without mul-
tiple biochemical autoantibodies. Before data analysis,
the response variable FPIR was log-transformed. Age-
adjusted hierarchical linear models (8) applied to analyze
the repeated measurements of FPIR included autoanti-
body status (0 or 1 autoantibody) in children without
multiple autoantibodies, genotypes (three groups except
for class I HLA genotypes, which were categorized into
two groups), and interaction terms genotype by time and
autoantibody group by time. The period of 0–5 years from
the first IVGTT was examined.

Three types of models (additive, recessive, and dom-
inant) were investigated for the SNP genotypes. In the
additive model, all three groups were compared. In the
recessive model, children homozygous for the risk allele
were compared against those who were not homozygous
for the risk allele (two groups). In the dominant model,
children carrying the risk allele were compared with those
who did not have a risk allele (two groups).

Statistical analyses were performed with JMP Pro
version 11.2 and SAS 9.4 for Windows (SAS Institute,
Cary, NC) software. P, 0.05 (two-tailed) was considered
statistically significant.

Ethical Considerations
This study was conducted according to the guidelines of
the Declaration of Helsinki II and was approved by local
ethics committees. Written informed consent was obtained
from all participants and/or their primary caregivers.

Data and Resource Availability
The data sets generated and analyzed during the current
study are not publicly available because of privacy regu-
lations. No applicable resources were generated or ana-
lyzed during the current study.

RESULTS

The median FPIR levels and DFPIR over the observation
period are shown in children with and without multiple
biochemical autoantibodies (Tables 1 and 2). FPIR in-
creased over time in children without multiple autoanti-
bodies (Table 2), whereas it declined in those with
multiple autoantibodies (Table 1). When the hierarchical
linear mixed models were used in children with multi-
ple autoantibodies, modest associations were observed
between the evolution of FPIR and three of the gene
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regions studied (PTPN2 [rs45450798], FUT2 [rs601338],
and CTSH [rs3825932]) in the additive model (P5 0.013,
P 5 0.020, and P 5 0.0042, respectively) (Table 3).

In general, children carrying susceptibility alleles had
a more rapid decline in insulin secretion compared with
those who did not carry a susceptibility allele. Children
homozygous for the diabetes-associated risk allele in
IKZF4 and PTPN2 genes had a steeper decline of FPIR
than those who were not homozygous for the risk allele
in these genes (recessive model P 5 0.026 and P 5
0.0035, respectively) (Table 3). Children carrying the

T1D-associated risk allele in FUT2 and CTSH genes expe-
rienced also a steeper decline of FPIR than those without
the risk allele in these genes (dominant model P5 0.0098
and P 5 0.0011, respectively) (Table 3). In an analysis
where risk scores were calculated on the basis of T1D
risk in four SNPs that were significant in the model,
there were no clearly additive effects (data not shown).

The class I HLA A*24 allele was also associated with
the evolution of FPIR in children with multiple autoanti-
bodies (P 5 0.037) (Table 3) so that the presence of
the A*24 allele was associated with a steeper coefficient

Table 1—Themedian of the first FPIR andDFPIR over time according to different genotypes in 195 children with multiple (at least
two) biochemical autoantibodies during follow-up

DFPIR (mU/L/year)
SNP (n, %
of total within
the gene)†

Baseline FPIR
(mU/L), median

(95% CI)

Age at first
IVGTT (years),
median (IQR)

Time between last
and first IVGTT (years),

median (range) Median (95% CI) n
Progressors,

n (%)

PTPN22 (193) 49.2 (44.6, 53.9) 3.5 (2.3, 5.5) 3.1 (0.8–14.5) 23.3 (24.5, 21.5) 151 128 (66)
AA (12, 6) 50.5 (32.2, 79.6) 2.4 (2.1, 4.7) 3.2 (1.1–10.0) 20.7 (25.9, 2.0) 10 8 (67)
AG (50, 26) 46.8 (41.2, 53.9) 2.9 (2.0, 5.0) 3.0 (0.8–8.5) 24.0 (25.6, 21.1) 42 37 (74)
GG (131, 68) 51.0 (44.1, 56.1) 3.6 (2.4, 5.5) 3.1 (1.0–14.5) 23.4 (25.4, 21.6) 99 83 (63)

IFIH1 (188) 47.6 (44.6, 53.5) 3.5 (2.3, 5.5) 3.1 (0.8–14.5) 23.4 (24.9, 21.6) 147 126 (67)
TT (70, 37) 52.3 (41.2, 67.3) 3.5 (2.2, 5.7) 2.6 (0.8–10.4) 23.7 (26.2, 21.3) 53 45 (64)
TC (90, 48) 50.3 (44.8, 55.0) 3.5 (2.4, 5.4) 3.4 (1.0–12.3) 23.1 (25.1, 20.7) 72 59 (66)
CC (28, 15) 40.1 (32.9, 51.8) 2.9 (2.2, 4.9) 4.3 (1.5–14.5) 23.7 (25.3, 1.4) 22 22 (79)

INS (195) 47.7 (44.6, 53.5) 3.5 (2.3, 5.5) 3.1 (0.8–14.5) 23.4 (24.5, 21.6) 153 130 (67)
AA (148, 76) 46.7 (42.7, 53.1) 3.5 (2.3, 5.4) 3.2 (0.8–14.5) 23.4 (25.1, 21.1) 115 100 (67)
AT (41, 21) 57.2 (43.7, 63.4) 3.4 (2.1, 5.1) 2.7 (1.0–11.3) 23.7 (27.2, 21.2) 33 26 (63)
TT (6, 3) 50.7 (39.8, 90.0) 5.6 (2.1, 6.0) 6.1 (2.1–10.0) 21.3 (218.3, 2.3) 5 4 (67)

IKZF4 (189) 47.4 (44.6, 53.5) 3.5 (2.3, 5.5) 3.1 (0.8–14.5) 23.4 (25.0, 21.6) 148 129 (68)
CC (20, 10) 48.5 (38.8, 76.9) 3.1 (2.3, 5.4) 3.1 (1.1–8.0) 25.0 (218.9, 1.4) 14 15 (75)
AC (75, 40) 53.9 (47.1, 63.3) 3.5 (2.2, 5.6) 3.4 (1.0–14.5) 21.6 (24.4, 20.4) 60 42 (56)
AA (94, 50) 43.8 (41.2, 47.4) 3.5 (2.3, 5.2) 2.9 (0.8–11.2) 24.0 (25.4, 22.3) 74 68 (72)

ERBB3 (193) 47.4 (44.1, 53.5) 3.5 (2.3, 5.5) 3.1 (0.8–14.5) 23.4 (24.5, 21.6) 151 129 (67)
AA (19, 10) 46.0 (38.6, 98.0) 3.0 (2.3, 5.4) 3.0 (1.0–8.0) 23.3 (218.9, 1.6) 13 13 (68)
CA (75, 39) 53.5 (47.7, 62.8) 3.5 (2.4, 5.6) 3.5 (1.0–14.5) 21.9 (26.2, 20.6) 61 46 (61)
CC (99, 51) 43.9 (41.6, 51.3) 3.5 (2.3, 5.5) 2.7 (0.8–11.2) 23.7 (25.3, 22.3) 77 70 (71)

CTSH (193) 47.3 (44.1, 53.5) 3.5 (2.3, 5.5) 3.1 (0.8–14.5) 23.4 (24.5, 1.6) 151 129 (67)
CC (75, 39) 47.0 (39.0, 53.9) 3.5 (2.4, 5.8) 2.5 (1.0–8.0) 23.7 (25.3, 21.1) 51 48 (64)
CT (87, 45) 47.0 (44.6, 60.2) 3.4 (2.3, 5.4) 3.1 (0.8–12.3) 24.1 (26.9, 21.7) 74 62 (71)
TT (31, 16) 50 (39.8, 71.8) 3.5 (2.2, 5.0) 4.1 (1.0–14.5) 21.2 (23.7, 2.3) 26 19 (61)

PTPN2 (192) 47.6 (44.6, 53.5) 3.5 (2.3, 5.5) 3.1 (0.8–14.5) 23.4 (24.9, 21.6) 150 128 (67)
CC (3, 1) 28.1 (26.2, 87.4) 2.8 (2.5, 4.4) 3.0 (2.1–4.0) 25.5 (25.8, 25.3) 2 3 (100)
GC (53, 28) 55.1 (46.8, 66.2) 3.5 (2.3, 6.5) 3.2 (1.0–12.3) 21.3 (26.9, 20.2) 42 36 (68)
GG (136, 71) 45.5 (42.7, 51.8) 3.4 (2.2, 5.1) 3.1 (0.8–14.5) 23.4 (25.0, 21.7) 106 89 (65)

FUT2 (169) 51.0 (46.0, 54.2) 3.5 (2.3, 5.5) 3.1 (0.8–14.5) 23.0 (24.4, 21.2) 131 109 (64)
AA (29, 17) 53.1 (40.3, 76.5) 3.5 (2.3, 5.8) 3.0 (0.8–10.4) 24.4 (28.4, 21.3) 25 21 (72)
GA (89, 53) 56.1 (47.4, 63.9) 3.6 (2.4, 5.7) 2.8 (1.0–11.3) 22.8 (25.3, 20.7) 64 56 (63)
GG (51, 30) 43.1 (41.2, 51.0) 3.5 (2.2, 4.9) 3.9 (1.0–14.5) 21.4 (23.7, 1.2) 42 32 (63)

Class I HLA alleles
A*24 (183) 47.7 (44.6, 53.5) 3.5 (2.3, 5.5) 3.1 (0.8–14.5) 23.4 (25.0, 21.7) 145 122 (67)
Present (32, 17) 41.1 (30.6, 47.4) 3.1 (2.1, 4.4) 2.3 (1.0–3.4) 25.1 (28.5, 23.3) 26 27 (84)
Absent (151, 83) 52.2 (46.5, 57.1) 3.5 (2.4, 5.7) 3.4 (0.8–14.5) 22.6 (24.5, 21.0) 119 95 (63)

B*39 (187) 47.4 (44.6, 53.5) 3.5 (2.3, 5.5) 3.1 (0.8–14.5) 23.4 (24.9, 21.6) 148 125 (67)
Present (16, 9) 36.2 (27.9, 53.5) 3.3 (2.2, 4.0) 2.6 (1.0–6.1) 23.9 (28.5, 9.4) 12 10 (63)
3901 (15, 8) 32.0 (25.1, 53.5) 3.3 (2.2, 3.5) 3.0 (1.0–6.1) 24.1 (28.5, 24.1) 11 9 (60)
3906 (1, 1) 40.6 5.5 2.0 23.4 1 1 (100)

Absent (171, 91) 49.5 (44.8, 54.0) 3.5 (2.3, 5.5) 3.1 (0.8–14.5) 23.3 (25.1, 21.5) 136 115 (67)

Major allele is marked in bold. †Within each SNP, alleles associated with T1D risk are presented first.
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estimate of FPIR (20.00037, SE 0.000098, P 5 0.0002)
(Table 3). In children without multiple autoantibodies,
the FPIR increased over time independent on A*24 allele
status (Table 2). Furthermore, in children without mul-
tiple autoantibodies, ERBB3 (rs2292239) showed a sig-
nificant association with FPIR in the recessive model
(P 5 0.0075) (Table 4).

DISCUSSION

In this study, we identified novel associations between
FPIR and genetic variants known to affect T1D. In

children with multiple autoantibodies, the change in FPIR
over time was different between those categorized by
their PTPN2 (rs45450798), FUT2 (rs601338), CTSH
(rs3825932), and IKZF4 (rs1701704) genotypes. Children
carrying disease susceptibility alleles had a more rapid
decline in insulin secretion over time compared with
those who did not carry the allele associated with sus-
ceptibility for T1D.

Homozygosity for the risk alleles in the IKZF4 and
PTPN2 genes was associated with a steeper decline of
FPIR compared with nonhomozygosity. IKZF4 encodes

Table 2—The median of the first FPIR and DFPIR over time according to different genotypes from 243 children with zero or one
biochemical autoantibody at the time of the first IVGTT

DFPIR (mU/L/year)
SNP (n, %
of total within
the gene)†

Baseline FPIR
(mU/L), median

(95% CI)

Age at the first
IVGTT (years),
median (IQR)

Time between last
and first IVGTT

(years), median (range) Median (95% CI) n
Progressors,

n (%)

PTPN22 (237) 77.6 (72.5, 87.8) 6.1 (3.6, 8.1) 2.3 (0.4–11.0) 4.2 (2.6, 10.8) 88 3 (1)
AA (3, 1) 74.3 (39.8, 281.2) 6.1 (5.7, 7.5) NA (0) NA 0 0
AG (48, 20) 73.0 (62.0, 91.9) 4.6 (3.6, 7.5) 2.1 (0.4–6.6) 7.8 (2.9, 15.0) 20 0
GG (186, 79) 80.1 (74.3, 89.8) 6.4 (3.6, 8.2) 2.5 (0.6–11.0) 3.8 (20.3, 11.2) 68 3 (2)

IFIH1 (128) 75.7 (67.4, 88.8) 5.1 (3.0, 7.8) 2.3 (0.4–11.0) 3.7 (1.5, 11.2) 68 3 (2)
TT (45, 35) 69.0 (57.2, 82.7) 3.8 (2.9, 7.2) 2.5 (0.6–7.4) 20.3 (22.2, 12.7) 19 3 (7)
CT (60, 47) 77.2 (63.0, 107.9) 6.2 (3.5, 8.5) 2.5 (0.4–11.0) 8.0 (3.1, 15.1) 33 0
CC (23, 18) 80.2 (66.0, 115.3) 5.6 (2.5, 6.8) 2.0 (0.8–7.4) 1.5 (212.3, 15.0) 16 0

INS (239) 77.6 (72.0, 87.1) 6.0 (3.6, 8.1) 2.3 (0.4–11.0) 4.0 (2.6, 10.8) 88 3 (1)
AA (151, 63) 76.0 (68.4, 87.8) 6.3 (3.6, 8.2) 2.2 (0.4–7.7) 3.4 (1.6, 10.8) 64 3 (2)
AT (79, 33) 82.7 (69.4, 102.1) 5.3 (3.7, 7.5) 2.9 (0.8–11.0) 6.0 (21.5, 13.0) 23 0
TT (9, 4) 117.8 (53.1, 125.5) 6.4 (3.6, 8.3) 6.4 12.6 1 0

IKZF4 (125) 75.2 (66.4, 87.1) 5.3 (3.0, 7.8) 2.3 (0.4–11.0) 3.9 (1.6, 11.2) 68 2 (2)
CC (14, 11) 69.8 (50.5, 119.8) 3.9 (2.3, 7.6) 2.1 (0.4–4.3) 21.0 (29.0, 18.1) 7 0
AC (51, 41) 75.2 (61.4, 98.0) 6.9 (3.6, 8.5) 2.3 (0.6–7.4) 6.2 (20.3, 15.0) 26 2 (4)
AA (60, 48) 77.0 (66.0, 100.0) 4.6 (3.0, 6.8) 2.6 (0.8–11.0) 3.8 (21.0, 11.2) 35 0

ERBB3 (236) 77.4 (71.5, 86.8) 6.1 (3.6, 8.1) 2.3 (0.4–11.0) 4.0 (2.6, 10.8) 86 2 (1)
AA (22, 9) 92.4 (64.3, 140.9) 6.3 (2.5, 8.9) 2.4 (0.4–7.7) 5.7 (29.0, 30.0) 6 0
CA (110, 47) 77.6 (69.3, 89.1) 6.8 (4.5, 8.1) 2.2 (0.6–7.4) 6.1 (2.6, 12.8) 37 2 (2)
CC (104, 44) 75.4 (67.4, 91.9) 5.0 (3.1, 7.7) 2.3 (0.8–11.0) 3.7 (20.5, 11.2) 43 0

CTSH (241) 77.6 (72.5, 87.8) 6.1 (3.6, 8.1) 2.3 (0.4–11.0) 4.1 (2.6, 10.8) 89 3 (12)
CC (89, 37) 74.3 (65.3, 92.9) 6.0 (4.1, 8.1) 2.2 (0.6–6.6) 4.5 (1.6, 11.2) 34 1 (1)
CT (114, 47) 80.1 (71.5, 93.1) 6.2 (3.2, 8.1) 2.5 (0.4–7.7) 6.9 (20.5, 16.9) 42 2 (2)
TT (38, 16) 88.1 (67.4, 98.0) 6.2 (4.4, 8.0) 2.0 (0.8–11.0) 2.7 (212.3, 12.7) 13 0

PTPN2 (238) 77.6 (72.0, 87.1) 6.1 (3.6, 8.1) 2.3 (0.4–11.0) 4.1 (2.6, 10.8) 89 3 (1)
CC (5, 2) 88.8 (69.3, 131.5) 6.3 (4.2, 8.8) 3.1 (1.8–4.3) 5.9 (21.0, 12.8) 2 0
GC (67, 28) 74.3 (65.0, 86.8) 6.1 (4.0, 8.3) 1.9 (0.4–11.0) 2.7 (21.7, 14.9) 26 2 (3)
GG (166, 70) 80.2 (72.5, 93.1) 6.1 (3.5, 8.0) 2.5 (0.8–7.7) 5.2 (2.7, 11.3) 61 1 (1)

FUT2 (27) 97.0 (64.3, 131.5) 7.6 (2.3, 15.1) 2.9 (0.6–5.9) 8.9 (22.5, 26.3) 14 2 (7)
AA (3, 11) 82.7 (37.6, 131.5) 4.5 (2.9, 9.1) 3.5 (3.3–3.7) 21.5 (22.5, 20.5) 2 1 (33)
GA (19, 70) 97.0 (60.0, 128.6) 7.8 (3.0, 8.5) 2.9 (0.6–5.9) 12.7 (25.0, 26.3) 10 1 (5)
GG (5, 19) 179.6 (55.8, 362.4) 7.6 (4.9, 12.3) 1.7 (1.4–2.0) 28.1 (271.0, 54.9) 2 0

Class I HLA alleles
A*24 (233) 77.6 (72.5, 87.1) 6.1 (3.7, 8.1) 2.3 (0.4–11.0) 4.2 (2.6, 10.8) 84 2 (1)
Present (48, 20) 76.7 (65.3, 117.8) 4.9 (2.9, 7.8) 2.1 (1.1–11.0) 11.2 (1.6, 26.0) 16 1 (2)
Absent (185, 76) 78.2 (72.0, 87.1) 6.3 (4.0, 8.2) 2.3 (0.4–7.4) 4.0 (2.3, 9.6) 68 1 (1)

B*39 (232) 77.4 (72.0, 86.8) 6.1 (3.6, 8.1) 2.3 (0.4–11.0) 5.2 (2.8, 11.3) 85 2 (1)
Present (19, 8) 98.0 (54.1, 144.6) 5.0 (2.9, 8.3) 2.2 (1.1–11.0) 12.9 (21.7, 187.8) 7 1 (5)
3901 (16, 7) 80.5 (43.9, 130.0) 4.8 (2.5, 8.1) 3.0 (1.2–11.0) 7.2 (21.7, 46.2) 6 1 (6)
3906 (3, 1) 148.0 (57.2, 186. 8) 7.7 (3.5, 9.8) 1.1 187.8 1 0

Absent (213, 92) 77.2 (72.0, 85.7) 6.1 (3.7, 8.1) 2.4 (0.4–7.7) 4.8 (2.8, 11.2) 78 1 (0)

Major allele is marked in bold. NA, not available. †Within each SNP, alleles associated with T1D risk are presented first.
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for Eos, which is known to play an important role in
lymphoid development (17). A decreased tyrosine phos-
phatase expression associated with the PTPN2 variant
has been shown to sensitize b-cells to cytokine-induced
apoptosis (18).

Children with multiple autoantibodies carrying at least
one risk allele in the CTSH and FUT2 genes were char-
acterized by a steeper decline of FPIR compared with
those who did not carry a risk allele. In recently diagnosed
children, however, it was, the CT genotype of CTSH that
was associated with the lowest dose of insulin, and the
children with the CT genotype were most often in re-
mission 12 months after onset compared with those with
other genotypes (11). Interestingly, in healthy adults, the
CTSH genotype affected b-cell function in the oral glucose
tolerance test but showed no effect on FPIR (11).

Fructosyltransferase 2 enzyme in the Golgi apparatus
is involved in the creation of a precursor of the H antigen,
which is needed in the synthesis of A and B antigens
found in secretions. Individuals carrying the major allele
G are called secretors, and they have a functional FUT2
gene (19). In the current study, we observed a difference
between children carrying the AA or AG genotype versus
the GG genotype. The mechanisms underlying the asso-
ciation between FUT2 and FPIR are not known but could
be related by the observation that the secretor status has
been associated with composition of the human micro-
biome (20), although this is controversial (21).

IFIH1, PTPN22, and INS did not show any association
with FPIR in this study, which could partly be explained
by the observation that they all have been found in the
DIPP study to have their main effect on the development
of islet autoimmunity (5). It is not known whether
associations between insulin secretion and various ge-
notypes would be different in children without or before
the appearance of islet autoantibodies. In autoantibody-
positive children carrying both INS risk alleles but with-
out class II HLA risk, the increase of FPIR was slower than
in children who carried one or no INS risk alleles (12).
Some effect of these genes could potentially be seen in
subgroups; for example, the association of caesarean
section with the development of T1D was reported to
be affected by the IFIH1 genotype (22).

Hyperexpression of class I HLA antigens is often seen
in pancreatic islets from patients with T1D (23). In this
study, the presence of the class I HLA A*24 allele was
associated with a steeper decline of FPIR in children with
multiple autoantibodies. The presence of the A*24 allele
has previously been reported to predict rapid progression
to clinical disease in autoantibody-positive relatives of
patients with T1D (24).

The unique possibility to analyze young, genetically
predisposed children followed intensively over a relatively
long period is a strength of this study. A weakness is the
low number of observations within some genotypes,
which reduces the statistical power. We did not analyze
FPIR and its changes over time in relation to the initiating

autoantibody (5,9). Although the overall effect of the
genetic markers studied on FPIR is modest, it is conceiv-
able that quite a variation in the b-cell mass exists. A
wide range of the estimated b-cell mass was observed in
adults, even in subjects with low FPIR and multiple
autoantibodies (25).

In conclusion, our results show that certain genetic
variants outside the class II HLA region can have a sig-
nificant impact on the longitudinal pattern of FPIR. In
children with multiple autoantibodies, the diabetes risk
alleles were associated with more rapid loss in b-cell
secretory capacity. The underlying mechanisms are still
unknown.
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