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Abstract: As data acquisition technology continues to advance, the improvement and upgrade of 

the algorithms for surface reconstruction are required. In this paper, we utilized multiple terrestrial 

Light Detection And Ranging (Lidar) systems to acquire point clouds with different levels of 

complexity, namely dynamic and rigid targets for surface reconstruction. We propose a robust and 

effective method to obtain simplified and uniform resample points for surface reconstruction. The 

method was evaluated. A point reduction of up to 99.371% with a standard deviation of 0.2 cm was 

achieved. In addition, well-known surface reconstruction methods, i.e., Alpha shapes, Screened 

Poisson reconstruction (SPR), the Crust, and Algebraic point set surfaces (APSS Marching Cubes), 

were utilized for object reconstruction. We evaluated the benefits in exploiting simplified and 

uniform points, as well as different density points, for surface reconstruction. These reconstruction 

methods and their capacities in handling data imperfections were analyzed and discussed. The 

findings are that i) the capacity of surface reconstruction in dealing with diverse objects needs to be 

improved; ii) when the number of points reaches the level of millions (e.g., approximately five 

million points in our data), point simplification is necessary, as otherwise, the reconstruction 

methods might fail; iii) for some reconstruction methods, the number of input points is proportional 

to the number of output meshes; but a few methods are in the opposite; iv) all reconstruction 

methods are beneficial from the reduction of running time; and v) a balance between the geometric 

details and the level of smoothing is needed. Some methods produce detailed and accurate 

geometry, but their capacity to deal with data imperfection is poor, while some other methods 

exhibit the opposite characteristics.  

Keywords: point simplification; surface reconstruction; Alpha shapes; screened Poisson 

reconstruction; APSS; Crust 

 

1. Introduction 

As the diversity, ease of use and popularity of three dimensional (3D) acquisition methods 

continue to increase, so does the need for the development of new techniques for surface 

reconstruction [1]. The focus of surface reconstruction has shifted in recent years from the early stage 

of piecewise linear reconstruction to handling the data imperfections caused by, e.g., occlusion and 

reflective materials. Some well-known algorithms, such as Alpha shapes [2], Ball pivoting [3], Poisson 

reconstruction, the Crust [4,5] and Algebraic point set surfaces (APSS or APSS Marching Cubes) [6], 

have proven their effectiveness for certain object reconstruction scenarios. However, multi-sourced 

data from various scenes with data imperfection are challenging the methods of surface 
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reconstruction. It is necessary to know how these classic algorithms handle the challenge of datasets 

from state-of-the-art light detection and ranging (Lidar) technologies, and to indicate the direction of 

future development.  

Multi-sourced data has been acquired by terrestrial Lidar with different platforms: static tripod, 

movable trolley and handheld style. These systems have different advantages and disadvantages. 

Thus, different types of objects can be collected. A static terrestrial Lidar is operated in one station 

along or around the target (e.g., an object or a scene). Multiple featured objects (e.g., typically using 

white, spherical objects) are placed in the scene so that the data measured from neighboring stations 

can be matched by these features. A car has been scanned by such a static Lidar system. While 

acquiring the data of a human body, it is challenging to stay still for that time period. Therefore, it is 

necessary to have multiple static Lidar systems operating from different directions at the same time 

to shorten the time of measurement. Although the static terrestrial Lidar is capable of highly accurate 

measurement, it has low efficiency. Additionally, it may encounter more occlusions due to the 

inflexibility of the platform. In contrast, a mobile platform is more flexible and highly efficient. In an 

indoor environment, a mobile Lidar system is one or more Lidar sets mounted on a mobile platform, 

e.g., a trolley or personal backpack, or in a hand-held style. Among these platforms, the hand-held 

system produces the least occluded data due to its flexibility and small volume. Thus, it can avoid 

occlusions to the greatest extent. Point clouds acquired by a Lidar system often have noise and holes 

due to, e.g., reflective materials (e.g., metal or glass), from the scene, occlusions, reflections from 

sunlight, errors from measurement, and so on. Different surface reconstruction methods handle data 

imperfection differently.  

Apart from data imperfection, a huge amount of point clouds has been produced from Lidar 

systems. State-of-the-art laser scanning technology can produce several million points per second. 

Such a huge amount of data, on the one hand, provide data with high accuracy; on the other hand, it 

is a challenge to perform follow-up processing, e.g., 3D surface reconstruction and rendering. To 

reduce the workload during the reconstruction, point simplification has become considerably 

important. In previous studies, feature-based methods were mostly introduced by, e.g., Cohen et al., 

2004 [7]; Song & Feng, 2009 [8]; Leal et al., 2017 [9]; Chen et al., 2017 [10]; Qi et al., 2018 [11]. The most 

common problems with these methods were that a) the resultant point cloud was not uniform; and 

b) it was a challenge to maintain a balance between loss in features and loss in accuracy. In this paper, 

we will address a reliable, robust and effective solution for the above problems.  

The objectives of the paper are to propose an approach to simplify the point cloud and obtain 

uniform resampled points with minimized accuracy loss, to study how the uniformity of points 

affects the surface reconstruction, to figure out how the number of points and the density of points 

affect the surface reconstruction and to analyze the differences of different surface reconstruction 

algorithms in handling data imperfection.  

The idea of our point cloud simplification method is to separate the key characteristics of an 

object from the least important points by using Principal Component Analysis (PCA) and multi-view 

projection geometry and to resample these points using different grid sizes (e.g., key characteristics 

use a small grid size, while the least important points use a big grid size) to minimize the loss of 

accuracy. Then, the resampled key points (also called edge points in this paper) are merged with the 

resampled remaining points. Surfaces are reconstructed by exploiting four well-known methods: 

Alpha shapes, power crust, APSS, and Screened Poisson Reconstruction (SPR). The results are 

compared and analyzed, and their advantages and disadvantages, and the direction of future 

development, are addressed. Figure 1 illustrates an overview of the procedure of point cloud 

simplification and the use of different methods for surface reconstruction. 
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Figure 1. Point simplification and surface reconstruction with different algorithms. (a): point 

simplification with feature preservation and uniform resampling; (b): surface reconstruction by 

different methods: Alpha shapes, algebraic point set surfaces (APSS), the Crust, and Screened Poisson 

reconstruction (SPR). 

2. Related Works  

Studies related to point cloud simplification and object surface reconstruction have been 

highlighted for decades. Over time, as the hardware continuously advanced, methods are constantly 

improved and upgraded. In this paper, related work is focused on two aspects: point cloud 

simplification and surface reconstruction. 

2.1. Point Cloud Simplification and Uniformity 

Among point cloud simplification methods, feature-based methods and random sampling 

methods have been highlighted. Cohen-Steiner et al. (2004) [7] introduced a variational shape 

approximation approach by utilizing error-driven optimizations of a partition and a set of local 

proxies to provide geometric representations. However, the efficiency was low. Leal et al. (2017) [9] 

presented a point cloud simplification method by estimating the local density to cluster the point 

cloud, identifying the points with a high curvature to remain, and applying a linear programming 

model to reduce the point cloud. Song and Feng (2009) [8] identified sharp edge points from the 

scanned mechanical part. Then, based on points in its neighborhood and corresponding to the point’s 

contribution to the representation of local surface geometry, the least important data point was 

removed. Chen et al. (2017) [10] introduced a resampling method that is guaranteed to be shift-, 

rotation- and scale-invariant in three-dimensional space. The resampling method utilizes a graph 

filtering based on all-pass, low-pass and high-pass graph filtering and graph filter banks. The 

resulting points on surfaces with indistinct features are all neglected. The above methods preserve 

distinct edge information and remove the least important data. This leads to the extreme non-

uniformity of point density. However, uniformity is important in mesh-related applications. Qi et al. 

(2018) [11] addressed a point cloud simplification method that aims to strike a balance between 
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preserving sharp features and maintaining uniform density during resampling by leveraging graph 

signal processing. The authors formulated the loss in features and the loss in uniformity during the 

process of simplification. Then, an optimal resampling matrix is found by minimizing the total loss. 

However, it is a challenge to strike such a balance.  

With regard to the random sampling methods, the most well-known methods include Monte 

Carlo sampling [12] and Poisson disk sampling. Monte Carlo sampling uses a probability distribution 

function to generate uniformly distributed random numbers on a unit interval. Poisson disk sampling 

uses a disk that is centered in each sample. The minimum distance between samples is the diameter 

of the disk. Thus, uniform sampled points are produced.  

Corsini et al. (2012) [13] proposed a constrained Poisson disk sampling method, which is 

currently adopted by Meshlab (www.meshlab.net) for point simplification. The constrained Poisson 

disk sampling method utilizes the geometric constraints on sample placement, and the authors 

suggested that biased Monte Carlo distributions should be avoided. This method makes the Poisson 

disk sampling method more flexible and effective.  

2.2. Surface Reconstruction from Point Clouds 

The approaches for surface reconstruction from point clouds are typically grouped into two 

categories: parametric surface reconstruction methods and triangulated surface reconstruction 

methods.  

2.2.1. Parametric Surface Reconstruction Methods 

These methods typically exploit parameters to adjust a set of initial models to fit the geometry 

of an object. The advantages lie in their flexibility, high efficiency and reuse capability. However, it 

is challenging to reconstruct complicated geometries. Studies concerning parametric surface 

reconstruction methods can be found in, e.g., Floater, 1997 [14]; Floater & Reimers, 2001 [15]; Gal et 

al., 2007 [16]; Lafarge & Alliez, 2013 [17]. The aforementioned Floater and Reimers (2001) [15] 

proposed a method to map the points into some convex parameter domain and obtain a 

corresponding triangulation of the original dataset by triangulating the parameter points. Gal et al. 

(2007) [16] proposed a surface reconstruction method by using a database of local shape priors. The 

method extracts similar parts from previously scanned models to create a database of examples, and 

forms a basis to learn typical shapes and details by creating local shape priors in the form of enriched 

patches. The patches serve as a type of training set for the reconstruction process. Lafarge and Alliez 

(2013) [17] proposed a structure-preserving approach to reconstruct the surfaces from both the 

consolidated components and the unstructured points. The authors addressed the common 

dichotomy between smooth/piecewise-smooth and primitive-based representations. The canonical 

parts from detected primitives and free-form parts of the inferred shape were combined. The final 

surface was obtained by solving a graph-cut problem formulated on the 3D Delaunay triangulation 

of the structured point set where the tetrahedra are labeled as inside or outside cells.  

2.2.2. Triangulation/Mesh-based Algorithms 

The most classic triangulation methods include Marching Cube reconstruction [18,19], Alpha 

Shapes reconstruction [2], the Ball-Pivoting surface reconstruction [3], the Power Crust [4], Cocone 

[20–22], Poisson surface reconstruction [23], Screened Poisson surface reconstruction [24], and 

Wavelet surface reconstruction [25]. The Marching cubes reconstruction method was first proposed 

by [18]. The authors used a divide-and-conquer approach to generate cube slices (voxels). Triangle 

vertices were calculated by using linear interpolation. A table of edge intersections was established 

to describe cube connectivity. The gradient information at a cube vertex was estimated by using 

central differences along the three coordinate axes, and the normal of each triangle vertex was 

interpolated. The resulting triangle vertices and vertex normal were the output. Later, the Marching 

cubes were evolved into the Marching tetrahedral [26] and Cubical Marching Squares [27]. A review 

of the Marching cubes methods can be found in [19] and [28].  
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In 1994, Edelsbrunner and Mucke (1994) [2] developed the concept of a 3D alpha shape from an 

intuitive description to a formal definition, implemented the algorithm and made the software 

available to the public. The idea of the 3D alpha shape was to draw the edges of an alpha shape by 

connecting neighboring boundary points and envelop all points within the dataset. The parameter α, 

as the alpha radius, controls the desired level of detail and determines different transitions in the 

shape. The typical drawback of such a method was low efficiency in computing the Delaunay 

triangulation of the points. Later, in 1997, Bernardini and Bajaj [29] further developed the alpha 

shapes algorithm for reconstruction.  

The authors proposed that a regularization could eliminate dangling and isolated faces, edges 

and points from the alpha shapes, and they improved the resulting approximate reconstruction in 

areas of insufficient sampling density. After two years, Bernardini et al. (1999) [3] introduced the ball-

pivoting algorithm (BPA) for surface reconstruction. It retains some of the qualities of alpha shapes. 

The idea of the Ball-Pivoting algorithm is to pivot a ball with specific radius R over the points and 

touch three points, without containing any other point, to form a triangle. Then the ball starts from 

an edge of the seed triangle and touches another point to form the next triangle. The process is 

repeated until all points are allocated in triangles. This method improved efficiency. 

The power crust algorithm was first proposed by Amenta et al. [4]. The idea was to construct 

piecewise-linear approximations to both the object surface and medial axis transform (MAT). It is a 

Voronoi diagram-based method. The Voronoi diagram was applied to approximate the MAT from 

the input points, and the power diagram was used to produce a piecewise-linear surface 

approximation from the MAT, which was an inverse transform. This method was effective at resisting 

noise and eliminating holes in the original data. 

The Cocone algorithm was first introduced by [20]. It improved the Crust algorithm both in 

theory and practice [21]. The Cocone is a simplified version of the power crust. The Crust algorithm 

exploited two passes of the Voronoi diagram computation and applied normal filtering and trimming 

steps, while the Cocone method used a single pass of Voronoi diagram computation without normal 

filtering. Consequently, homeomorphic meshes were the outputs. Later, further developments, such 

as Super Cocone, tight Cocone, Robust Cocone and Singular Cocone, were proposed by Dey and his 

colleagues [21][22].  

The Poisson surface reconstruction technique is used to reconstruct an oriented point set. The 

method solves the relationship between oriented points sampled from the surface of a model and the 

indicator function of the model. The gradient of the indicator function is a vector field that is zero 

almost everywhere, except at points near the surface, where it is equal to the inward surface normal. 

Thus, the oriented point samples can be viewed as samples of the gradient of the model’s indicator 

function. This method supports surface reconstruction from sparse and noisy point sets. SPR [24] was 

an attempt to improve the over-smoothing problem that appeared in the early version of Poisson 

reconstruction. It utilizes point clouds as positional constraints during the optimization instead of 

direct fitting to the gradients. Thus, sharp edges remain.  

The APSS [6] reconstruction method is based on the moving least squares (MLS) fitting of 

algebraic spheres. It improved on the planar MLS reconstruction method. This method obtains an 

increased stability for sparse and high-curvature point set reconstruction. It is robust to sharp features 

and boundaries.  

Since 2015, learning-based methods for surface reconstruction have received much attention. 

However, at present, such techniques are mainly focused on images and objects spanned by the 

training set [30,31]. 

2.2.3. Comparison of Surface Reconstruction Methods from Literature 

Different surface reconstruction methods have different advantages and disadvantages in 

dealing with, e.g., noise, holes, model quality, accuracy and runtime. Wiemann et al. (2015) [32] 

evaluated open-source surface reconstruction software/methods for robotic applications. The 

evaluated methods from open software include Poisson reconstruction, Ball pivoting, Alpha shapes, 

APSS Marching Cubes, Las Vegas Surface Reconstruction (LVR) and Kinect Fusion. The open 
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software that was used included Meshlab, LVR, CGAL and PCL. The evaluation was focused on 

runtime, open/close geometry, sharp features, noise robustness and topological correctness (See 

Table 1). After the study, the authors concluded that Ball Pivoting and Alpha Shapes generate 

geometrically precise reconstructions of the input data on a global scale, but are sensitive to noise, 

have long runtimes and create topologically inconsistent meshes with locally undesirable 

triangulations. The Poisson reconstruction method was suitable for smaller environments with closed 

geometries, and it is robust to noise. Concerning geometrical and topological correctness, the 

Marching Cube method showed good results.  

Kinect Fusion can reconstruct both open and closed geometries without sharp features. It is 

highly efficient and robust to noise. However, the reconstructed meshes showed very poor 

topological correctness. Overall, LVR Planar Marching Cubes outcompeted the others. It was able to 

reconstruct both open and closed geometries with topological correctness. It is the only one that can 

handle sharp features, and it is also robust to noise. In terms of runtime, it outcompeted all other 

methods/software except for Kinect Fusion. This investigation was valuable for users. However, the 

authors concentrated on the evaluation of surface reconstruction for the original point cloud. In this 

paper, prior to the reconstruction, the point cloud is simplified and uniformed. 

Table 1. Comparison of the evaluated methods with respect to the considered criteria ranging from 

+++ (very good) to --- (very poor) (From Wiemann et al. [32]). 

 
Open 

Geometry 

Closed 

Geometry 

Sharp 

Features 

Topological 

Correctness 

Noise 

Robustness 

Run 

Time 

Poisson 

Reconstruction 
-- +++ - ++ +++ o 

Ball Pivoting o o o -- --- - 

Alpha Shapes o o o -- --- - 

APSS Marching 

Cubes 
++ ++ o ++ o - 

LVR Planar 

Marching Cubes 
+++ ++ ++ ++ ++ + 

Kinect Fusion ++ ++ -- --- +++ +++ 

Later, a comprehensive overview of the existing methods on surface reconstruction from 3D 

point clouds was provided by Khatamian & Arabnia (2016), in [33]. The authors categorized and 

summarized the most well-known surface reconstruction techniques and addressed their advantages 

and disadvantages. When considering the large and dense point clouds from laser scanning, two 

trends were highlighted by the authors for future work in this field: “Preserving the intrinsic 

properties in the reconstructed surfaces, and reducing the computation time (which is a challenge 

when dealing with large datasets).” The intrinsic properties of a surface refer to, e.g., sharp edges and 

corners. In addition, the authors also mentioned other trends for future work, e.g., reconstructing 

fine, accurate and robust-to-noise surfaces, and producing reasonably acceptable surfaces from 

minimum informative input data, which is just a set of coordinates in space, and nothing else. This 

paper meets the requirement for future work proposed by [33]. 

3. Materials  

The data were collected by two static terrestrial Lidar devices, a mobile terrestrial Lidar mounted 

on a trolley and a handheld scanner. There were three groups of data (eight objects) collected for the 

test, including dynamic and still targets: human bodies, a car and indoor objects (one bookshelf, two 

chairs and one stool). These targets have different levels of complexity of structure and data 

imperfection. For example, the surface materials of the car consist of metal, rubber and glass. Specular 

reflection of the laser beam off of the surfaces results in some holes in the point cloud. Three people 

with indoor casual clothes were scanned. One male and one female had similar clothes: a sweater on 

the upper body and jeans on the lower body. However, the female had stylish hair on the back side. 
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The third person was a female wearing a skirt, which produces more sharp edges in the dataset. The 

bookshelf consisted of partly wooden surfaces and was partially covered by papers (books). It 

exhibited unflattened surfaces and holes between books and the shelf in the point cloud. It can be 

seen from Figure 2 that the bookshelf and two linear lights on each side were combined as one object 

with small connections between them. These issues are challenging for the meshing process. 

 

Figure 2. Photo of the scene of the bookshelf in a library. 

3.1. Car 

A Skoda Superb 2014 model car was scanned with a Faro Focus3D X330 terrestrial laser scanner 

(FARO Technologies Inc., Florida, USA), seen in Figure 3 in blue on top of a tripod, obtaining three 

scans from each side of the vehicle and resulting in a total of six scan stations: two in front of the car, 

two over the middle section from both sides and two from behind the car. This was done to ensure 

sufficient overlap between the scans. Five reference spheres were mounted near the vehicle to 

facilitate the co-registration of individual scans. The scanner mounted on a tripod moves around the 

car body with six stations, taking approximately five minutes in each station. In total, the scanning 

time for the car was 30 min. The resulting scans are located in a local Cartesian coordinate system. 

Figure 3 shows the setup for the car scans. The point cloud of the car is not perfect. Due to the 

reflective materials of the car windows, the point cloud contains some holes.  

 

Figure 3. The car was scanned by a FARO Focus3D X330 terrestrial laser scanner. The scanner was 

mounted on the yellow tripod, seen near the right. Three of the five white reference spheres are also 

visible. 

3.2. Human Bodies 

Scanning a human body is not an easy task. Unlike a rigid object, a human body is dynamic, and 

a small movement of the body can cause failure in the data matching. To ensure the accuracy of the 

measurement, we simultaneously utilized two static terrestrial Lidars to scan the front and the 

backside of the human body (FARO Focus3D S120 and X330, respectively). Additionally, to minimize 

the occlusion from the body, the subject’s two hands were straightened in the horizontal direction at 

an angle of 90° to the body (Figure 4). After scanning, data from both scanners are registered. Even 

so, occlusions under the arms and on both sides of the body still exist. The fingers were not properly 

shown in the resulting data. 
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Figure 4. The scene of human body acquisition. 

3.3. Bookshelf Data Acquisition 

Indoor data were collected by the SLAM-based indoor mobile laser scanning (the FGI 

SLAMMER) [34]. The FGI SLAMMER was developed by the Finnish Geospatial Research Institute 

(FGI), Masala, Finland. It is a research platform combining survey-grade sensors with state-of-the-art 

2D SLAM algorithms, Karto Open Library and Hector SLAM [34,35]. The FGI SLAMMER consists of 

two Faro Focus 3D (120S and X330) high-precision laser scanners and a NovAtel SPAN Flexpak6 

GNSS receiver with a tactical grade IMU (UIMU-LCI) mounted on a wheeled cart. One scanner is 

mounted horizontally to collect data for SLAM, and another scanner is mounted vertically for 3D 

point cloud collection. The test data were from the second floor of the FGI building, around the library 

area. One bookshelf from the library was chosen as a test object (Figure 4). In the dataset of the 

bookshelf, there were lights attached on top of it to make the object structure more complicated. In 

addition, holes exist in the point cloud where there was empty space between books or between books 

and the shelf.  

3.4. Acquisition of Indoor Objects: Two Chairs and A Stool 

For 3D digitizing of smaller objects, a Faro Freestyle 3D X hand-held laser scanner was utilized. The 

instrument operates by projecting a laser pattern (structured light) on the target and photographing 

it with two infrared cameras and one conventional color camera. The point coordinates are obtained 

through triangulation, whereas the conventional camera is used to acquire color information for the 

resulting point cloud. According to the manufacturer, the system is capable of recording up to 88,000 

points per second, with a point accuracy of 1 mm [36]. In practice, deviations between 0–2.5 mm have 

been attained in a comparison with photogrammetric surveys when digitizing geometrically complex 

cultural heritage artifacts [37].  

Object scanning was performed by mounting the objects on a flat, white table surface with eight 

markers of the Faro System installed adjacent to the object, and then circling the object with the 

scanner (see Figure 5). The targets are automatically detected by the applied Faro Scene software, and 

assist in co-registering consecutive frames from the instrument. Faro Scene (version 6.0) software was 

used to post-process the scan data. The scanned point clouds were manually segmented to remove 

the table surface from the final point clouds. 
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Figure 5. An object point cloud reconstructed with a hand-held scanner shown with the measurement 

trajectory and automatically detected markers mounted adjacent to the object on the table surface. 

4. Methods  

Our method is designed in two phases (see Figure 6). The first phase presents the multi-view point 

simplification method; the second one is the surface reconstruction with four well-known 

approaches. The first phase consists of three steps. First, the scanned object was rotated to the 

orthographic projection by the angle estimated from principal component analysis (PCA). Then, 

multi-view projection geometry (top-view, front-view and right-side-view) is applied to obtain the 

edges of the object from each view.  

These edge points are merged to produce the three dimensional (3D) edges of the object. Thus, the 

least important points are separated from the point cloud. Next, a grid-based resampling method is 

applied to both the key points and the remaining points with different grid sizes to acquire highly 

accurate and uniform points. In the second phase, the objects are reconstructed by the well-known 

methods: Alpha shapes, the Crust, Algebraic point set surfaces (APSS), Marching cubes and screened 

Poisson reconstruction (SPR). The effects of points’ density and quantity on surface reconstruction 

are investigated. Different reconstruction methods’ handlings of the data imperfections are studied.  

 

Figure 6. Workflow of the point simplification and surface reconstruction. 

Two phases: the first phase in the red frame concerns the point simplification; the second phase 

within the green frame concerns surface reconstruction. 

4.1. Phase 1: Point Simplification 

4.1.1. PCA of the Objects 
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This method is developed for highly dense point clouds. Prior to the point simplification, the 

point cloud needs to be segmented into individual objects with the noise removed according to its 

spatial distribution. The terrestrial laser scanner is operated in a local coordinate system, which is not 

necessary to produce orthogonal views of the object. Multi-view projection geometry for 3D edge 

acquisition needs to be in orthogonal projection, so that the key characteristics of an object can be 

obtained. Therefore, principal component analysis (PCA) for each object needs to be estimated to 

rotate the object to its orthogonal projection.  

PCA is an eigenvector-based multivariate analysis. It utilizes an orthographic transformation 

method to obtain several sets of linearly-uncorrelated components. For example, a set of point cloud 

data consists of x, y and z coordinates. A transformation results in three principal components. The 

first principal component exhibits the axis of the largest possible variance by the elements of the first 

column of the eigenvalues.  

Each succeeding component in turn has the highest variance possible under the constraint that 

it is orthogonal to the preceding components. This has to satisfy the following equations: 

𝑈 = 𝑎𝑟𝑔𝑚𝑎𝑥 {
𝑈𝑇𝑋𝑇𝑋𝑈

𝑈𝑇𝑈
}                                                    (1) 

where U is the unit vector of the first weighted component, in X, and each row represents different 

observations, while each column presents different features. Figure 7 explains the reason why we 

need to use an orthographic view. In the left image, a set of point clouds of a human body was 

scanned with a static terrestrial Lidar. It is in a sensor-centered local coordinate system. The origin 

point of the data varies when the scanner starts in a different position. Therefore, it is not necessary 

for the data to be in orthographic view. By a PCA estimate, the first main component, that is, the first 

column of eigenvalues, represents the primary direction of the data in an orthographic projection. 

The left image of Figure 7 is the original data in a non-orthographic view. The right image shows data 

after the PCA transformation, which exhibits a clear contour of the scanned human in the 

orthographic view.  

 

Figure 7. The difference between before principal component analysis (PCA) transformation and after 

PCA transformation for human body scanning data. (See the axis for the difference). Because both 

images are in local coordinate systems, there are no units for the axes. 

4.1.2. Object 2D Projection 

After the transformation of the first component of PCA, the new point cloud of an object is 

projected onto three orthographic planes: xy, xz and yz. In each 2D projection, the boundary of the 

object is estimated. A point is a boundary point only if it belongs to both the closure of the dataset 

and the closure of its complement. If p ϵ s & p ϵ s ̅, then p ϵ b, where s is a point set; b is a boundary; 

p is a point; s ̅ is the complement of the dataset s. Figure 8 shows three 2D boundaries of the orthogonal 

projections. The 3D edges are achieved by merging the 2D boundaries.  
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Figure 8. Three 2D projections: Front, top and side. 

4.1.3. Edge Points Resampling 

The laser scanning typically produces very dense point clouds, especially from ground-based 

terrestrial Lidar. The scan frequency can produce up to millions of points/second. The density is a 

few hundred points/m2. The point distance on an edge, which we obtained from previous steps, is at 

the level of millimeters. Furthermore, the edge points usually appear in a zigzag pattern, which is not 

visually pleasing for the follow-up work (such as measurement or visualization). Therefore, the edge 

points need to be resampled by a grid filter. The grid size can be selected so that high accuracy and 

uniform resampled points can be simultaneously achieved. In our case, we chose a grid size of 0.001 

m (one millimeter).  

4.1.4. Resampling of the Remaining Points 

After 3D edge extraction, the remaining points, i.e., points that do not belong to the edge points, 

are resampled. Usually, these points are the least important because the edge points determine the 

shape of an object and appear in places where the shape has local contouring. Therefore, these points 

are resampled based on two principles: one is to keep the geometry at a certain level of detail; another 

is to achieve a regular point distribution so that the resulting meshes are visually pleasing. There are 

different resampling methods, such as percentage-based resampling, grid-based resampling and 

non-uniform resampling.  

1. Percentage-based resampling 

A random resampling method needs to specify the percentage of reduced points. The points are 

randomly selected from the original points, without replacement. The advantage is its high 

computational efficiency. 

2. Grid/box-based resampling 

The grid-based resampling method selects points using a fixed size grid, retaining a single point 

in each cell. Replacement or interpolation is needed in this case. The advantage of this method is that, 

after resampling, the points are distributed evenly over the shape surface. 

3. Number of points in a box resampling (also called non-uniform resampling) 

In this method, the points are located in cubes. The maximum number of points within a cube is 

specified. The resampling is conducted by selecting a certain number of points in a cube using the 

applied criteria/method. 

By the above resampling methods, we may define what percentage of input points needs to be 

reserved, or we may define a grid size for sampling, or we may determine the maximum number of 

points in a cube.  

An experiment has been implemented using different resampling methods. The parameters for 

these methods were selected so that the number of output points are at similar levels. For example, 

in Figure 9, we chose a percentage of 20, that is, the number of output points is 20% of the input 

points, which is 4150 points in this case. In the case of the grid method, we select grid size = 0.0233, 

in which the number of resulting points is 4158; when the maximum number of points in a cube is 
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eight, the resulting number of points is 4096, which is quite close to the other numbers. However, 

even with the similar numbers of points, the meshes constructed from these points are quite different. 

The meshes from the grid-based resampling visually exhibit the best result: continuous and evenly-

distributed points. 

 

Figure 9. Different resampling methods. 

Therefore, we utilize the grid-based resampling method to reduce the points. To test how point 

density affects the surface reconstruction, we utilize three grid sizes to filter the remaining points: 

0.01 m, 0.02 m and 0.05 m (one, two and five centimeters). After resampling, each point set is merged 

with the resampled edge points. Thus, each object has four datasets for surface reconstruction, 

including the original points. 

4.2. Phase 2: Surface Reconstruction 

In this paper, we tested four well-known surface reconstruction methods: Alpha shapes, APSS, 

the Crust and SPR. Alpha shapes, APSS and SPR were implemented by Meshlab [38], which was 

developed by the ISTI - CNR research center (Pisa, Italia).,. MeshLab is free and open-source software.  

The sources are from the Visual Computing Lab, which is supported by the Visualization and 

Computer Graphics Library (VCG) and distributed under the GPL 3.0 Licensing Scheme [38]. The 

Crust method was performed by MATLAB [39], which is a mathematical computing software for 

data analysis, algorithm development and model creation. It is developed by MathWorks 

(Massachusetts, USA). 

The point clouds obtained from phase 1 were used for surface reconstruction by the above four 

methods. We compare and analyze the reconstruction results from i) the original points and the 

uniform points; and ii) the resampled points with different densities, by their runtime and capacity 

to handle data imperfection (especially in hole filling). The applicability of these surface 

reconstruction methods is addressed. 

4.3. The Method for Assessing Point Simplification 

We employed the standard deviation (SD) to measure the deviation: 

𝑺𝑫 = √
∑ (𝒀𝒕 − 𝒀 ̅)𝒏

𝒕=𝟏

𝒏
 (2) 

where Yt is the distance from point t in the compared point cloud to its nearest neighbor in reference 

point cloud. 𝒀 ̅ is the mean distance. t = 1, 2, 3…, n and n is the number of points.  

5. Results 

Test targets/data were selected by their manifold characteristics: different surface materials, 

different geometric complexities, rigid objects and vivid human bodies. They were scanned by three 

types of systems: static, mobile and hand-held scanners. This indicates that point densities and the 

completeness of the data vary when scanned by different systems. In the phase of the point 

simplification, the eight measured targets/objects, each with four datasets (one original point set and 

three resampled point sets), yielded 32 total datasets. The runtime and the point reduction were 
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evaluated. In the phase of the surface reconstruction, the 32 datasets from phase 1 and the four 

reconstruction methods resulted in a total of 128 reconstruction results.  

5.1. Results from Phase 1 

In this phase, point clouds from the eight targets were simplified and made uniform. The edge 

points were resampled with a grid size of 0.001 m for the edges from all datasets so that uniform edge 

points were achieved. The remaining points were resampled with the grid sizes of 0.01 m, 0.02 m and 

0.05 m. The resulting data are a combination of the resampled edge points and the resampled 

remaining points. Among these point clouds, the original point cloud of the car contains more than 

five million points. After the implementation of our method with the resampling sizes of 0.01 m, 0.02 

m and 0.05 m for the least important points, 94.032%, 98.428% and 99.671% of points were reduced, 

respectively. Figure 10 exhibits a close view of the simplified and uniform points taken from the 

examples of the car, the human body and the chairs. All results from phase 1 are shown in Table 2. 

From Table 2, it can be seen that, due to the preserved edges, the simplified objects retain the 

important features in spite of the resampling sizes. In addition, the simplified points are evenly 

distributed and visually pleasant. 

 

 

Figure 10. A close view of the results of the point simplification and uniformity. 

Upper: an example of the car with the point reduction of 99.671%; Lower: the resampled points 

of a human body and the chairs. 

Table 2. The results of point simplification. 

Original points Simplification1 Simplification2 Simplification3 
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Table 3 presents the number of points of the original one and the resampled ones, as well as the 

percentage of the point reduction. As mentioned above, we used a fixed grid size of 0.001 m for all 

edge point resampling, while the remaining points were sampled with different sizes. Therefore, for 

convenience, in the following discussion, the resampling size refers to the sampling of the least 

important points. In the case of resampling with a grid size of 0.01 m, there was a big variation in the 

point reduction: from 28.573% to 94.032%. Taking the example of the human bodies, only 

approximately 30% of the points were dropped. The average percentage of reduction with the 

resampling grid size of 0.01 m is 63.362%. In the case of the sampling grid size of 0.05 m, the 

percentage of reduction in all datasets varies from 83.149% to 99.671%. For the car points, after 

sampling with a grid size of 0.05 m, only 0.329% of the original points remained. However, it still 



Remote Sens. 2019, 11, x FOR PEER REVIEW 15 of 22 

 

exhibits the clear characteristics of the target. In the case of the grid size of 0.02 m, the average 

percentage of reduction is 84.063%. It was observed that the use of approximately 16% of the original 

data (with 0.02-m internal point resampling) can achieve very realistic results. 

Table 3. The number of points and the percentage of reduction in the number of points. 

Object 

Number of: 

Original 

Points 

The Number of Points (Edge 

Points + Internal Points) 
Percentage of Reduction (%) 

Grid = 

0.01 (m) * 

Grid = 

0.02 (m) 

* 

Grid = 

0.05 (m) 

* 

Grid = 

0.01 (m) 

* 

Grid = 

0.02 (m) 

* 

Grid = 

0.05 (m) 

* 

Car 5,549,404 331,207 87,213 18,249 94.032 98.428 99.671 

Human1 21,041 14,682 6551 3015 30.222 68.865 85.671 

Human2 16,848 12,034 5694 2839 28.573 66.204 83.149 

Human3 23,979 16,635 7287 2995 30.627 69.611 87.510 

BS 252,418 145,688 57,769 13,880 42.283 77.114 94.501 

Chair1 202,803 13,322 5724 3901 93.431 97.178 98.076 

Chair2 436,849 27,351 7472 2526 93.739 98.290 99.422 

Stool 146,000 8782 4649 3580 93.985 96.816 97.548 

Average         63.362 84.063 93.194 

* ‘grid = 0.01 m, 0.02 m and 0.05 m’ refers to the internal point resampling grid. 

We compared our method with the well-known constrained Poisson disk sampling method by 

resampling the data to the same amount of points. The car and the chair points were sampled by the 

Poisson method shown, resulting in the right images of Figure 11. The left images are from our 

method. It can be seen that our method enhances the visua1 effect.  

 

 

(Left) (Right) 
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Figure 11. Comparing our method with the Poisson sampling method. (Left): our method; (Right): 

Poisson sampling method. 

5.2. Assessment of Phase 1 

The point simplification was evaluated by estimating the standard deviation of the resulting 

points. These resulting points consist of the resampled edge points and the resampled remaining 

points. We used a grid size of 0.001 m to resample all edge points. For the remaining points, we 

adopted three different grid sizes: 0.01 m, 0.02 m and 0.05 m. Thus, the results from 24 datasets were 

evaluated. The assessment was run on a laptop: Dell (Texas, USA) Precision model 7510 (32 GB of 

RAM and a 2.70-GHz CPU) with the Windows 7 operating system in the MATLAB (MathWorks, 

2018) environment.  

Table 4 shows the result of the assessment. From the results, it can be seen that the standard 

deviation rises as the grid size increases in the cases of the grid size of 0.01 m and 0.02 m. However, 

a ‘surprising’ result occurs when the grid size varies from 0.02 m to 0.05 m. We expect that the 

standard deviation from data with 0.02-m grid resampling should be smaller than that from 0.05-m 

resampling. However, this is not the case. The edge points almost retain their original accuracy (with 

very small grid resampling), especially when the number of edge points is greater than the number 

of remaining points.  

Thus, the average error rate of the entire dataset decreased. In the case of ‘Human1,’ the number 

of edges is 2064. When grid = 0.05 m, the number of remaining points is only 951, which is much less 

than the number of edge points. Thus, as long as those 2064 edge points remain correct, the average 

deviation does not necessarily rise. Taking the example of the bookshelf (BS), the number of 

remaining points (10,647) is much greater than the number of edge points (3233). Thus, the standard  

deviation (std) in the case of 0.05-m grid down-sampling is greater than that in the 0.02-m grid down-

sampling. The result shows that the separation between the edge points and the remaining points 

can well control the accuracy. This is one of the advantages of our method.  

Table 4. Assessment of point simplification. 

Object 

NumP: 

Original 

Points * 

NumP: 

Edge 

Points 

* 

Runtime 

(s) 

NumP: 

Resampled 

Edge Points 

Grid = 0.005 

m * 

Number of Internal 

Point Resampling 

Accuracy in all 

Points (std) (cm) 

Grid = 

0.01 m 

Grid 

= 0.02 

m 

Grid 

= 0.05 

m 

Grid 

= 

0.01 

m 

Grid 

= 

0.02 

m 

Grid 

= 

0.05 

m 

Car 5,549,404 5785 125.45 4850 326,357 82,363 13,399 0.086 0.113 0.203 

Human1 21,041 2065 0.508 2064 12,618 4487 951 0.177 0.214 0.207 

Human2 16,848 2016 0.404 2016 10,018 3678 823 0.173 0.218 0.195 

Human3 23,979 1928 0.538 1928 14,707 5359 1067 0.179 0.229 0.262 

BS 252,418 3317 5.673 3233 142,455 54,536 10,647 0.156 0.227 0.389 

Chair1 202,803 4884 5.024 3585 9737 2139 316 0.087 0.106 0.099 

Chair2 436,849 1927 11.82 1735 25,616 5737 791 0.087 0.114 0.173 

Stool 146,000 5524 3.673 3385 5397 1264 195 0.066 0.08 0.075 

Average               0.116 0.163 0.200 
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* ‘NumP’ refers to the number of points; ‘BS’ is the bookshelf; ‘std’ is the standard deviation; ‘Accuracy in 

all points’: all points refers to the regular edge points and resampled internal points; grid = 0.01 m, 0.02 m and 

0.05 m are the internal point resampling sizes. 

5.3. Result of Phase 2 

We exploited both the original points and the simplified points for surface reconstruction. Four 

reconstruction methods, i.e., Alpha shapes, APSS, the Crust and SPR, were applied. They were 

conducted by Meshlab and MATLAB. 128 models from 32 datasets with four methods were obtained. 

From the above assessment, the average point reduction with the resample size of 0.01 m was 63.36%. 

The difference in reconstruction results from the original points and from the simplified points varies 

with the methods. However, all methods are beneficial from the point simplification for the reduction 

of running time (see Table 5). Alpha shapes reconstruction with uniform points produces smoother 

meshes and is visually more pleasant. For the Crust method, the number of meshes from the 

simplified points was much less than that from the original points. Except for the method of Alpha 

shapes, the other reconstruction methods rearranged (including adding or removing) the input points 

for meshing. 

When surfaces were reconstructed from the low, dense points, the main benefits were to save 

storage space and be convenient for the following up work, e.g., rendering. When the same 

parameters are used, in the method of the Crust and SPR, fewer points produce fewer meshes. 

However, in the method of APSS, the opposite is true. In the method of Alpha shapes, it varies with 

different objects. For example, during the human1 reconstruction, 32,034 meshes were produced from 

the original data with 21,041 points, while 89,868 meshes were produced from 14,682 resampled 

points. For the reconstruction of human3, it was the same as with the method of the Alpha shapes. 

From Table 5, it can also be seen that half of the reconstruction methods failed when the number of 

points was huge (more than five million) in the case of the car. Therefore, point simplification is 

necessary when surfaces are reconstructed from such huge datasets.  

Table 5. Surface reconstruction methods and evaluation. 

 Alpha Shape 
APSS 

(Grid Resolution = 500) 
Crust SPR 

 

Run 

Tim

e (s) 

Number 

of 

Meshes 

Hole 

(Y/N) 

Run 

Tim

e (s) 

Number 

of 

Meshes 

* 

Hole 

(Y/N) 

Run 

Time 

(s) 

Number 

of Meshes 

Hole 

(Y/N) 

Run 

Tim

e (s) 

Number 

of 

Meshes 

Hole 

(Y/N) 

Car_org  failed   failed  1814.5 12,529,297 N 11 188,088 N 

Car_1 25.6 932,630 Y 53.2 655,075 Y 93.8 737,790 N 7.8 206,516 N 

Car_2 4.3 359,902 Y 17.5 742,331 Y 22.8 175,961 N 7.4 202,206 N 

Car_5 0.7 76,117 Y 12.7 827,202 Y 4.8 34,533 N 3.3 79,684 N 

Hu1_org 3.8 32,034 Y 8.4 339,328 Y 5.9 45,339 N 3.6 91,014 N 

Hu1_1 0.8 89,868 Y 7.1 310,857 Y 3.9 29,116 N 3.5 79,142 N 

Hu1_2 0.2 31,409 Y 6.3 337,071 Y 1.9 12,919 N 1.7 27,436 N 

Hu1_5 0.1 9279 Y 6.2 372,628 Y 1.1 5948 N 1.5 20,746 N 

Hu2_org 1.1 116,032 Y 7.4 295,369 Y 4.9 36,758 N 3.2 205,132 N 

Hu2_1 0.7 72,574 Y 6.1 258,619 Y 3.4 23,747 N 2.9 80,854 N 

Hu2_2 0.3 28,056 Y 6.0 282,096 Y 1.9 11,261 N 1.7 25,606 N 

Hu2_5 0.1 9544 Y 5.8 314,521 Y 1.0 5588 N 1.4 19,400 N 

Hu3_org 5.1 31,124 Y 6.7 338,799 Y 6.5 47,814 N 3.6 90,042 N 

Hu3_1 0.9 82,919 Y 6.6 339,403 Y 4.5 33,127 N 3.4 85,250 N 

Hu3_2 0.3 32,058 Y 5.7 347,050 Y 2.2 14,420 N 1.7 26,622 N 

Hu3_5 0.1 8022 Y 5.5 359,493 Y 0.9 5867 N 1.4 19,868 N 

BS_org 25.3 500,103 Y 113 
2,343,07

5 
Y 63.9 489,601 Y 19.1 556,746 N 

BS_1 17.5 359,227 Y 87.0 
2,505,29

5 
Y 37.4 290,048 Y 18.3 535,830 N 

BS_2 2.2 203,125 Y 45.4 
2,606,71

2 
Y 15.0 114,724 Y 8.5 210,352 N 
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BS_5 0.5 44,995 Y 41.6 
2,663,56

7 
Y 4.1 26,523 Y 2.8 42,560 N 

Ch1_org 7.4 174,942 N 86.4 
1,288,47

7 
N 8.6 452,190 N 7.2 168,126 N 

Chr1_1 0.4 40,203 N 18.2 838,936 N 4.0 27,316 N 2.3 42,612 N 

Ch1_2 0.2 18,870 Y 13.9 814,207 N 1.8 11,280 N 2.2 32,738 N 

Ch1_5 0.1 11,578 Y 12.9 803,961 Y 1.4 7381 Y 1.8 32,600 N 

Ch2_org 16.3 228,214 N 148 
1,813,63

1 
N 126 869,919 N 10.2 218,433 N 

Ch2_1 1.0 72,423 N 22.4 
1,082,33

9 
N 7.6 45,657 N 4.4 98,350 N 

Ch2_2 0.3 24,359 Y 14.9 989,877 N 2.4 11,831 N 2.1 36,265 N 

Ch2_5 0.1 6799 Y 13.9 
1,162,42

8 
Y 1.0 4023 Y 1.5 20,510 N 

Stool_or

g 
5.1 189,983 N 50.7 902,489 N 39.7 314,142 N 7.0 187,248 N 

Stool_1 0.3 29,506 N 17.5 657,254 N 2.6 17,468 N 2.1 42,390 N 

Stool_2 0.2 15,257 Y 15.6 652,582 N 1.5 9088 N 1.8 35,644 N 

Stool_5 0.1 12,415 Y 15.2 620,818 Y 1.2 6974 Y 1.7 29,880 N 

* ‘Mesh’ is the number of meshes after reconstruction; ’Accuracy’ refers to Reconstruction Accuracy. 

Data imperfection from data acquisition is hard to avoid when reflective materials and 

occlusions exist in a scene. Some reconstruction methods are able to fill the holes, for instance, SPR 

and the Crust. Although there were many holes presented in the data of human bodies, the 

reconstruction results from SPR were visually outcompeted: smooth and no holes.  

However, the method of SPR failed in the reconstruction of thin parts of the objects, e.g., chair 

legs and lights on top of the bookshelf. Regarding the fidelity, efficiency and capacity of dealing with 

diverse data with and without holes, in total, the Crust performs the best. One of the advantages of 

the APSS is that the reconstructed models express the geometry in detail. However, the 

reconstruction results were awfully unsmoothed. The Alpha shapes successfully reconstructed chairs 

and the stool for all resampling sizes. However, many holes remained from the reconstruction of 

human bodies (see Table 6). 

Table 6. Results of reconstruction. 

 Alpha shapes APSS The Crust SPR 

Reconstruction 

with complete 

data 

    

Reconstruction 

with data 

imperfections 
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5.4. Recommendation of Surface Reconstruction Methods 

The reconstruction methods of Alpha shapes, APSS, the Crust and SPR for diverse objects with 

different densities of points and data imperfections have been studied. The Car data contain more 

than five million points and have data imperfections (reflections from metal and glassy windows). 

Two methods (Alpha shapes and APSS) failed in reconstruction from original data, but they all work 

for simplified points. Due to the capacity of hole-filling in the methods of the Crust and SPR, they 

both can be used for car reconstruction. However, the reconstruction results vary with changes in 

point density. It was shown that dense points were not necessary to achieve good reconstruction 

results. From Figure 12, it can be seen that one tire was missing during the reconstruction from the 

denser points, but they were reconstructed from the sparser points. A similar case also happens in 

the method of APSS. For the SPR, the reconstruction from sparse points loses the details, and the 

results were also over-smoothed in reconstruction from both the original points and the sparse data.  

Therefore, the results were not stable as the number of points decreases. We would recommend 

that the SPR method can be utilized for car reconstruction only at a certain level of point density. For 

the Crust method, relatively sparse data might achieve a better result.  

 

Figure 12. Car reconstruction from different point densities by the methods of the Crust and SPR. Left 

two images: the Crust with the resampling points of 0.01 m and 0.05 m, respectively; Right three 

images: the SPR with the original points and the resampling points of 0.01 m and 0.05 m, respectively. 

Regarding human body reconstruction, the Crust and the SPR are recommended due to their 

capacity to deal with the data imperfections. The method of APSS produced the clearest details of the 

face characteristics. If the data scanned from a human body were dense and complete (no holes under 

the arms and from the sides), the methods of the Alpha shape and the APSS would also be suitable 

for its reconstruction. The Bookshelf can be reconstructed by most of the methods. Without the two 

lights attached to the top of the bookshelf, the SPR method should also work well. Data of the stool 

and the chairs were complete. The Alpha shapes and the Crust can produce good results, but the 

results from the APSS were extremely unsmoothed, and those from the SPR lost fidelity as the 

number of points decreased. Table 7 shows the recommendations for the methods used for different 

objects’ reconstruction. The recommendation is based on our test data with or without data 

imperfections.  

Table 7. Recommend use of surface reconstruction methods. 

 
Alpha 

Shape 

APS

S 
Crust SPR 

Car   x x 

Human  x x x 
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Bookshe

lf 
x x x x 

Chair x  x  

Stool x  x  

6. Discussion and Future Work 

In this paper, a Multi-view projection method was proposed to obtain 3D edges. Three-view 

projections were applied. However, in 3D modeling software, there are six standard drawing views: 

top view, front view, left view, back view, right view and bottom view. To verify the effectiveness of 

using three orthographic views to represent an object’s 3D shape, we conducted an experiment. We 

extracted the boundaries of objects from six orthographic views, merged these boundaries, and 

removed the duplicate points. The boundaries from the six views were compared with those from 

the three views. It turned out that both produced the same edge points.  

The Multi-view projection method can successfully extract the external boundaries of the objects. 

When objects contain complex structures, e.g., multiple internal edges, or encounter occlusions from 

the three projections, internal details might not be fully presented.  

There is a need to simplify the points prior to surface reconstruction when objects contain a large 

number of points, e.g., five million points in the car dataset. Without the point simplification, the 

reconstruction methods might not work. For a small object, the benefits of point simplification are to 

reduce the surface reconstruction time and conserve data storage. The benefit of the point uniformity 

prior to the reconstruction is to achieve visually pleasing results. By using our method, objects were 

visually enhanced. The proposed method is applicable and operable in practice.  

It is necessary to continuously develop surface reconstruction methods to improve their capacity 

to reconstruct diverse objects. The main concerns for future development are i) how to deal with data 

imperfections; ii) how to ascertain the proper level of smoothing; iii) how to achieve a model with 

geometric details and fidelity; iv) how to improve the capacity to reconstruct diverse objects. 

7. Conclusions 

In this paper, we utilized two static terrestrial Lidar systems, one trolley-based mobile terrestrial 

Lidar system, and one handheld Lidar system, for data acquisition from dynamic and rigid targets. 

Extremely dense point clouds from eight targets were obtained. The work was divided into two 

phases. In the first phase, we utilized PCA and a Multi-view projection method to separate 3D edges 

from the least important points. 3D edges were resampled with a small grid, while the least important 

points were resampled with a large grid. Thus, the accuracy of the simplified points remained high. 

Point reduction up to 99.371% with a standard deviation of 0.2 cm was achieved. With the grid 

resampling, the resultant points are uniform. Our point simplification method was compared to the 

well-known constrained Poisson disk sampling method. The results from our method enhanced the 

visual expression. In the second phase, four well-known surface reconstruction methods (Alpha 

shape, APSS, the Crust and SPR) were employed to reconstruct the object surfaces from the original 

points and the simplified points with different resampling densities. A total of 128 surfaces of the 

targets were reconstructed. The difference between the reconstructions from the original points and 

from the simplified points revealed that resampling with a high density was beneficial in that it 

reduced runtime while still achieving similar results. For a large number of points, point 

simplification became necessary to ensure that the reconstruction methods work normally. When 

using simplified points of different densities for surface reconstruction, it was found that, in the 

method of APSS, the number of input points is inversely proportional to the number of output 

meshes, whereas the methods of the Crust and the SPR exhibited the opposite trend. The Crust 

method deals well with different densities of data. SPR deals the best with data imperfection. Alpha 

shapes work well if the data are complete. The APSS provided the most details of object geometry. 

Recommendations and concerns for future development were addressed. 
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In the future, surface reconstruction methods may focus on improving the capacity to 

reconstruct diverse objects, maintaining a balance between smoothing and preserving geometric 

details, and extending the capacity to handle data imperfections. 
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