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Abstract
Aims/hypothesis Metabolomics technologies have identified numerous blood biomarkers for type 2 diabetes risk in case−control
studies of middle-aged and older individuals.We aimed to validate existing and identify novel metabolic biomarkers predictive of
future diabetes in large cohorts of young adults.
Methods NMR metabolomics was used to quantify 229 circulating metabolic measures in 11,896 individuals from four Finnish
observational cohorts (baseline age 24–45 years). Associations between baseline metabolites and risk of developing diabetes
during 8–15 years of follow-up (392 incident cases) were adjusted for sex, age, BMI and fasting glucose. Prospective metabolite
associations were also tested with fasting glucose, 2 h glucose and HOMA-IR at follow-up.
Results Out of 229 metabolic measures, 113 were associated with incident type 2 diabetes in meta-analysis of the four cohorts
(ORs per 1 SD: 0.59–1.50; p< 0.0009). Among the strongest biomarkers of diabetes risk were branched-chain and aromatic
amino acids (OR 1.31–1.33) and triacylglycerol within VLDL particles (OR 1.33–1.50), as well as linoleic n-6 fatty acid (OR
0.75) and non-esterified cholesterol in large HDL particles (OR 0.59). The metabolic biomarkers were more strongly associated
with deterioration in post-load glucose and insulin resistance than with future fasting hyperglycaemia. A multi-metabolite score
comprised of phenylalanine, non-esterified cholesterol in large HDL and the ratio of cholesteryl ester to total lipid in large VLDL
was associated with future diabetes risk (OR 10.1 comparing individuals in upper vs lower fifth of the multi-metabolite score) in
one of the cohorts (mean age 31 years).
Conclusions/interpretation Metabolic biomarkers across multiple molecular pathways are already predictive of the long-term
risk of diabetes in young adults. Comprehensive metabolic profiling may help to target preventive interventions for young
asymptomatic individuals at increased risk.

Keywords Branched-chain amino acid . Isoleucine . Leucine .Metabolomics . Type 2 diabetes

Abbreviations
DILGOM Dietary, Lifestyle, and Genetic Determinants of

Obesity and Metabolic Syndrome Study

GlycA Glycoprotein acetyls
IDL Intermediate-density lipoprotein
MUFA Monounsaturated fatty acids
NFBC Northern Finland Birth Cohort
YFS Young Finns Study

Introduction

The global prevalence of type 2 diabetes is increasing rapidly,
particularly in low- and middle-income countries [1]. Type 2
diabetes is associated with increased mortality risk from vas-
cular and numerous other causes, and reduced quality of life,
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causing an immense societal cost burden [2, 3]. Given the
availability of lifestyle interventions that are effective at
preventing or delaying the onset of type 2 diabetes [4, 5], early
identification of individuals at high risk is important. The risk
for developing type 2 diabetes is, to some extent, reflected in
current measures of hyperglycaemia and dyslipidaemia; how-
ever, these markers are ineffective for identifying high-risk
individuals [6]. This has spurred interest in metabolite profil-
ing technologies, also known as metabolomics, to identify
biochemical changes occurring before the onset of diabetes
to elucidate the pathophysiology and potentially aid risk pre-
diction for better targeted prevention [7, 8].

Metabolomics is increasingly used in diabetes epidemiolo-
gy [7, 8]. Multiple case−control studies have identified circu-
lating lipids and metabolites associated with the risk for type 2
diabetes using a range of technological assays, based on MS
or NMR [7, 9, 10]. Branched-chain and aromatic amino acids
have been observed to be the most consistent metabolite bio-
markers for type 2 diabetes [8]. Genetic evidence and exper-
imental studies suggest that impaired metabolism of these
amino acids may be causally implicated in the development
of insulin resistance and type 2 diabetes [11, 12]. Also, n-6 and
other fatty acids have emerged as robust biomarkers for future
diabetes risk [8, 13, 14]. However, previous metabolomics
studies have commonly involved a modest number of

participants in nested case−control settings and have almost
exclusively been conducted in middle-aged and older
individuals.

In this study, we aimed to assess if the metabolic biomarkers
are already associated with future onset of type 2 diabetes in
young adults, with blood sampling up to 15 years before disease
onset. We used NMR metabolomics to quantify 229 metabolic
measures in 11,896 individuals from four population-based co-
horts with individuals aged 24–45 years at blood draw. The high-
throughput NMR platform allows us to validate many known
metabolite biomarkers for diabetes and explore novel associa-
tions with detailed measures of lipoprotein metabolism. We also
assessed of which hyperglycaemia measures the metabolite bio-
markers were most strongly reflective, and if a multi-metabolite
score would display a stronger association with early risk of type
2 diabetes than any individual metabolite biomarker.

Methods

Study populations

The study involved 11,896 individuals from four prospective
population-based cohorts in Finland. An overview of the
study cohorts and participants included in the present analyses
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is shown in electronic supplementary material (ESM) Fig. 1.
Details of the individual cohorts are provided in ESM
Methods. All participants gave written informed consent and
the studies were approved by local ethics committees. In all
cohorts, we excluded individuals with diabetes at baseline,
pregnant women, study participants aged over 45 years at
the blood draw and those lacking follow-up information on
diabetes diagnosis. The characteristics of each cohort are de-
scribed in brief below.

Cardiovascular Risk in Young Finns Study In the Cardiovascular
Risk inYoung Finns Study (YFS), serummetabolites were quan-
tified from 2248 individuals in the 2001 survey. The final sample
consisted of 2141 individuals in the age range 24–39 years. The
follow-up timewas 10years.Type2diabetes diagnoses at 10year
follow-up were based either on HbA1c or fasting glucose
assessed in the 2011 re-survey or nationwide registers of reim-
bursement for diabetes medication or inpatient hospital ICD-10
diagnosis of diabetes (http://apps.who.int/classifications/icd10/
browse/2016/en; see ESM Methods) [15].

FINRISK-1997 Serum metabolites were quantified from 7603
individuals. The final sample consisted of 3063 individuals
when limiting analyses to participants aged 24–45 years.
The follow-up time was 15 years. Type 2 diabetes diagnoses
at follow-up were based on nationwide register data [16].

Dietary, Lifestyle, and Genetic Determinants of Obesity and
Metabolic Syndrome Study In the Dietary, Lifestyle, and
Genetic Determinants of Obesity and Metabolic Syndrome
Study (DILGOM), serum metabolites were quantified from
4816 individuals in 2007. The final sample consisted of 1421
individuals when limiting analyses to participants in the age
range 25–45 years. The follow-up time was 7.8 years. Type 2
diabetes diagnoses at follow-up were based on fasting glucose at
the re-survey conducted in 2014 or nationwide register data.

Northern Finland Birth Cohort In the Northern Finland Birth
Cohort (NFBC) of 1966, serum metabolites were quantified
from 5680 individuals in the 1997 survey. The final sample
consisted of 5275 individuals aged 30–32 years. The follow-
up time was 15 years. Type 2 diabetes diagnoses were based
on either fasting or 2 h glucose at the 46 year follow-up con-
ducted in 2012 or nationwide register data.

Metabolite quantification

A high-throughput NMR metabolomics platform (Nightingale
Health, Helsinki, Finland) was used to quantify 229 metabolic
measures from baseline serum samples [17]. This metabolite
panel captures a range of established and emerging biomarkers
from multiple metabolic pathways, including amino acids,
glycolysis-relatedmetabolites, fatty acids and detailed lipoprotein

lipid profiles, covering triacylglycerol, total cholesterol, non-
esterified cholesterol, esterified cholesterol and phospholipids
within 14 subclasses. The same experimental NMR setup and
software library was used for metabolite quantification for all
four cohorts. The mean levels and distributions of metabolite
concentrations were coherent across the cohorts [18]. Details of
the NMR metabolomics experimentation have been described
previously [17] and epidemiological applications have recently
been reviewed [7].

Statistical analyses

Owing to the skewness of the metabolite distributions, all me-
tabolite concentrations were loge(metabolite+1) transformed
prior to analyses and scaled to SD concentrations separately
for each cohort. Although 229metabolic measures in total were
analysed, the number of independent tests performed is lower
because of the correlated nature of the measures [7]. We calcu-
lated that 54 principal components explained 99% of the vari-
ation in the metabolic measures. Alternative methods have
yielded a similar number of independent tests in the NMR
metabolite data [19, 20]. Hence, we inferred statistical signifi-
cance at meta-analysis p value <0.0009 (0.05/54). The ORs of
229 circulating metabolic measures with incidence of type 2
diabetes were assessed using logistic regression. Each metabo-
lite was analysed for association with incident diabetes in a
separate model, adjusted for sex, baseline age, fasting glucose
and BMI. To facilitate comparison of the magnitudes of bio-
marker association for measures with units and different con-
centration ranges, the ORs are scaled to 1 SD increments in
loge-transformed metabolite concentration. Results from indi-
vidual cohorts were combined using inverse variance-weighted
fixed-effect meta-analysis. We also assessed the influence of
additional adjustment for HOMA-IR index, tested results sep-
arately for men and women and compared the pattern of me-
tabolite associations with incident type 2 diabetes with that of
impaired fasting glucose (≥6.0 mmol/l) at follow-up.

Metabolite associations were also assessed cross-sectionally
with BMI, HOMA-IR and fasting glucose using linear regression
models adjusted for age and sex, and prospectively with fasting
glucose, 2 h glucose, HbA1c and HOMA-IR at follow-up,
adjusting for sex, baseline age, fasting glucose and BMI.

Last, we examined the association with future diabetes risk
using a multi-metabolite score, composed as the weighted
sum of metabolite concentrations. The metabolite selection
and weights in the multi-metabolite score were derived by
meta-analysis of three of the cohorts (YFS, FINRISK-1997
and DILGOM, constituting approximately half of the incident
cases) using forward stepwise logistic model testing of all
metabolites. Age, sex, baseline fasting glucose and BMI were
always included as covariates in the models for metabolite
selection. In each step, the metabolite with the lowest p value
was added as a covariate, and associations of all remaining
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metabolites with diabetes risk were assessed. This process was
repeated until no further metabolites were significant at p<
0.0009 in meta-analysis of the three derivation cohorts. The
multi-metabolite score was defined as the sum of concentra-
tions of the three selected metabolites weighted by β-
coefficients in the final stepwise model. This multi-
metabolite score was then evaluated for association with dia-
betes risk in NFBC, as this cohort had the highest number of
cases and most reliably ascertained diagnoses. ORs of the
multi-metabolite score were assessed both as a continuous
marker and by quintile, with adjustment for sex, baseline
age, fasting glucose and BMI. The influence of further adjust-
ment for HOMA-IR, triacylglycerol and HDL-cholesterol was
also assessed. The risk discrimination when adding the multi-
metabolite score to models containing these two sets of clin-
ical variables were compared in terms of C-statistic, integrated
discrimination improvement and continuous reclassification
[21]. Statistical analyses were performed in R version 3.1.3
(R Foundation for Statistical Computing, Vienna, Austria;
https://www.R-project.org/).

Results

The study included 11,896 individuals from four Finnish co-
horts. The characteristics of the study participants at the time
of blood sampling are shown in Table 1. The mean age was
32.9 years (range 24–45 years). The follow-up time ranged
from 8 to 15 years, during which a total of 392 incident cases
of type 2 diabetes occurred. Mean concentrations and SDs of
all metabolic measures are listed in ESM Table 1. The ORs of
104 selected metabolic measures with incident type 2 diabetes
are shown in Figs 1 and 2; results for the remaining 125
metabolic measures assayed are found in ESM Fig. 2. In
meta-analysis of all four cohorts, 113 out of the 229 metabolic

measures were robustly associated with incident type 2 diabe-
tes (p< 0.0009) when adjusting for sex, baseline age, BMI and
fasting glucose. The biomarkers associated with risk of future
type 2 diabetes risk spanned multiple metabolic pathways of
polar metabolites, fatty acids and detailed lipoprotein lipid
measures, with significant ORs ranging from 1.18 to 1.50
for direct associations and from 0.59 to 0.86 for inverse asso-
ciations per 1 SD metabolite concentration.

Amino acids, glycolysis and inflammation

The branched-chain amino acids isoleucine, leucine and va-
line (ORs 1.20–1.33) and the aromatic amino acids phenylal-
anine and tyrosine (ORs 1.31 [95% CI 1.18, 1.46] and 1.18
[95% CI 1.06, 1.32], respectively) were associated with the
risk of type 2 diabetes (Fig. 1). Glycerol was also associated
with increased risk (OR 1.22 [95%CI 1.10, 1.35]), while other
glycolysis-related metabolites had weaker associations. The
inflammatory biomarker glycoprotein acetyls (GlycA)
displayed one of the strongest associations for type 2 diabetes
risk (OR 1.37 [95% CI 1.24, 1.51]).

Fatty acids

The total concentration of circulating fatty acids (OR
1.23 [95% CI 1.11, 1.36]) and the relative amount of
monounsaturated fatty acids ([MUFA] ratio to total fatty
acids) were directly associated with increased risk for
type 2 diabetes (OR 1.32 [95% CI 1.18–1.48]). In con-
trast, higher relative concentrations of n-6 fatty acids
were associated with decreased risk for type 2 diabetes
(OR 0.75 [95% CI 0.69, 0.83]). This inverse association
was primarily driven by linoleic acid, whereas the asso-
ciation for arachidonic acid was weaker.

Table 1 Baseline characteristics
of participants in the four pro-
spective cohorts

Characteristic YFS FINRISK-1997 DILGOM NFBC

Number of individuals 2141 3063 1421 5271

Number of incident type 2 diabetes cases 65 110 18 199

Follow-up time (years) 10 15 8 15

Sex (% women) 53.8 52.7 55.7 50.2

Baseline age (years) 31.7 ± 4.7 35.3 ± 6.0 35.7 ± 6.2 31.2 ± 0.4

BMI (kg/m2) 25.0 ± 4.4 25.1 ± 4.2 25.6 ± 4.4 24.6 ± 4.1

Glucose (mmol/l) 5.0 ± 0.4 4.7 ± 0.6 5.6 ± 0.4 5.0 ± 0.4

Total cholesterol (mmol/l) 5.1 ± 1.0 5.1 ± 1.0 5.0 ± 0.9 5.0 ± 1.0

HDL-cholesterol (mmol/l) 1.3 ± 0.3 1.4 ± 0.3 1.4 ± 0.4 1.5 ± 0.4

Triacylglycerol (mmol/l) 1.3 ± 0.8 1.3 ± 1.0 1.3 ± 0.9 1.2 ± 0.7

Plasma insulin (pmol/l) 52.8 ± 36.1 39.6 ± 38.2 38.9 ± 27.1 57.6 ± 27.1

Lipid-lowering medication (%) 0.3 0.3 1.3 0.1

Values are mean ± SD
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Lipoprotein measures

Both lipid measures used in routine clinical settings and more
fine-grained lipoprotein subclass measures were quantified by
the NMR metabolomics platform. The associations of routine
lipids, as well as cholesterol and triacylglycerol concentrations
in 14 lipoprotein subclasses, with type 2 diabetes risk are
shown in Fig. 2. Additional lipoprotein subclass measures
are shown in ESM Fig. 2.

Overall, the cholesterol concentration within VLDL parti-
cles was associated with increased risk for type 2 diabetes,
whereas the cholesterol in HDL particles was associated with
decreased risk. Cholesterol in very large and large HDL par-
ticles was particularly strongly associated with decreased dia-
betes risk. The association patterns were similar for non-
esterified cholesterol and cholesteryl esters; the strongest bio-
marker for decreased diabetes risk was non-esterified choles-
terol in large HDL (OR 0.59 [95%CI 0.50, 0.68]; ESM Fig. 2.
However, this pattern of lipoprotein lipid association was dif-
ferent for triacylglycerols: increased triacylglycerol concentra-
tions in all VLDL, intermediate-density lipoprotein (IDL) and
LDL as well as medium-sized and small HDL subclasses were
strongly associated with increased type 2 diabetes risk. The
prominent importance of triacylglycerols was also evident
when examining the associations for the relative fraction of
triacylglycerol in each lipoprotein subclass, i.e. the percentage
of triacylglycerol per total lipid concentration in a given size

of lipoprotein particle: a higher relative abundance of triacyl-
glycerols within lipoprotein particles was strongly associated
with higher diabetes risk (Fig. 2). Because a higher relative
triacylglycerol content in lipoprotein particles generally re-
flects a lower cholesterol content, then the relative fraction
of cholesterol in most lipoprotein subclasses was inversely
associated with future diabetes risk.

Concentration of apolipoproteins, the structural proteins of
lipoprotein particles, was also associated with increased risk
for type 2 diabetes. In particular, the ratio of apolipoprotein B
to apolipoprotein A1 was among the strongest predictors (OR
1.40 [95% CI 1.25, 1.58]). Further, larger VLDL particle size
was associated with increased diabetes risk (OR 1.32 [95% CI
1.19, 1.47]), whereas larger HDL particle size displayed an
inverse association (OR 0.62 [95% CI 0.54, 0.72]).

Consistency across cohorts and influence
of adjustment for insulin resistance

The patterns of association between metabolites and incident
type 2 diabetes were highly consistent in all four cohorts de-
spite between-cohort differences in fasting status and ascer-
tainment of diabetes diagnoses at follow-up (ESM Fig. 3). The
metabolite associations were highly similar for men and wom-
en (ESM Fig. 4). Most associations between metabolites and
future risk of type 2 diabetes were moderately attenuated
when including HOMA-IR as covariate, but the overall
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Fig. 1 Relationship between baseline circulating metabolite concentra-
tions and risk of future type 2 diabetes. Values are ORs (95% CIs) per 1
SD loge-transformed metabolite concentration. ORs were adjusted for

sex, baseline age, BMI and fasting glucose. The results were meta-
analysed for 11,896 young adults from four prospective cohorts. PG,
phosphoglyceride; TG, triacylglycerol
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pattern persisted and 71 of the metabolic measures remained
significant at p< 0.0009 (ESM Fig. 5). Results were almost
identical if random-effects rather than fixed-effects were used
in meta-analyses and if time-to-event Cox models were used
instead of logistic regression (ESM Table 2).

Prospective metabolite associations with measures
of hyperglycaemia

To clarify the aspects of hyperglycaemia reflected most close-
ly by the observed metabolic aberrations, we examined the
metabolite associations with fasting glucose, 2 h glucose and
HOMA-IR measured in the follow-up surveys 8–15 years af-
ter the baseline (Fig. 3). The overall pattern of metabolite
associations was similar for the three continuous measures
of blood glucose; however, the magnitudes of associations
were, on average, 2.2-fold stronger for HOMA-IR and 1.7-
fold stronger for 2 h glucose compared with association mag-
nitudes for fasting glucose (ESM Fig. 6). Consistently, the
ORs were almost twice as strong for metabolite associations
with incident type 2 diabetes compared with incident impaired

fasting glucose (≥6.0 mmol/l at follow-up; ESM Fig. 7). In
line with these prospective analyses, we found that the metab-
olite associations were strongly associated with HOMA-IR
and BMI as assessed cross-sectionally, whereas the associa-
tions with fasting glucose at baseline were substantially weak-
er in these young adults (ESM Fig. 8).

Multi-metabolite score strongly associates with future
diabetes

To examine if a combination of metabolites would be more
strongly associated with diabetes risk than any individual me-
tabolite biomarker, we derived a multi-metabolite score. The
weights for adding up the metabolite concentrations in the
multi-metabolite score were derived using a stepwise model-
ling approach based on three of the cohorts. In this manner,
three metabolic measures were selected as independent pre-
dictors of diabetes: phenylalanine, non-esterified cholesterol
in large HDL and cholesteryl ester to total lipid ratio within
large VLDL. The association of this multi-metabolite score
was then evaluated separately in the NFBC study: the multi-
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Fig. 2 Relationship between baseline circulating lipoprotein measures
and risk of future type 2 diabetes. Values are ORs (95% CIs) per 1 SD
loge-transformed metabolite concentration. ORs were adjusted for sex,
baseline age, BMI and fasting glucose. The results were meta-analysed

for 11,896 young adults from four prospective cohorts. ORs for the re-
maining 125 metabolic measures assayed are shown in ESM Fig. 2.
ApoA1, apolipoprotein A1; ApoB, apolipoprotein B
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metabolite score was more strongly associated with incident
type 2 diabetes than any individual metabolite measure (OR
1.76 [95%CI 1.48, 2.09] per SD]). When dividing individuals
based on quintiles of their multi-metabolite score, the OR was
10.1 (95% CI 4.2, 24.1) among individuals in the upper fifth
compared with those in the lower fifth when adjusting for age,

sex and baseline glucose and BMI (Table 2). If further
adjusting for baseline HOMA-IR, triacylglycerol and HDL-
cholesterol, the OR for the highest vs lowest fifth of the multi-
metabolite score was attenuated to 5.79 (95% CI 2.22, 15.1).
The discrimination in absolute risk for future type 2 diabetes is
presented in ESM Tables 3–5 and ESM Fig. 9.
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Fig. 3 Relationship between baseline circulatingmetabolites and lipids to
blood glucose measures at follow-up. The prospective associations were
assessed for fasting glucose (n = 5017), 2 h glucose (n = 3028) and
HOMA-IR (n = 5010). Values are β-coefficients (95% CIs) scaled to 1

SD in each of the measures of blood glucose per 1 SD loge-transformed
metabolite concentration. Associations were adjusted for sex, baseline
age, BMI and fasting glucose. ApoA1, apolipoprotein A1; ApoB, apoli-
poprotein B; PG, phosphoglyceride; TG, triacylglycerol
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Discussion

This large multi-cohort study describes the metabolic signa-
ture of increased type 2 diabetes risk in young adults up to
15 years prior to disease onset. Metabolic aberrations related
to incident type 2 diabetes spanned amino acids, fatty acid
balance, inflammation and detailed lipoprotein particle com-
position, with consistent results across the four cohorts. Many
of these metabolic measures have previously been associated
with future diabetes in middle-aged and older individuals.
Among the strongest biomarkers were higher concentrations
of branched-chained and aromatic amino acids, VLDL parti-
cle measures and the enrichment of triacylglycerol in all lipo-
protein subclasses. Moreover, higher circulating levels of
GlycA, glycerol and MUFA were also associated with in-
creased risk for type 2 diabetes, whereas glutamine, linoleic
acid, HDL particle size and certain lipid measures within large
HDL were associated with lower risk. These metabolic aber-
rations were more strongly predictive of deterioration of insu-
lin sensitivity and impaired post-load glucose levels over
long- te rm fol low-up than worsen ing of fas t ing
hyperglycaemia. A multi-metabolite score consisting of three
metabolic measures was associated with a tenfold elevation in
the long-term risk for type 2 diabetes in one of the cohorts,
comprising 31-year-old men and women.

The metabolic signature for type 2 diabetes risk described
here included biomarkers across multiple molecular path-
ways. Branched-chain and aromatic amino acids were among
the first biomarkers for type 2 diabetes risk identified by meta-
bolomics [10]. Their association with future diabetes has since
been replicated in several epidemiological studies [8, 9, 22]

and extended to insulin resistance and blood glucose [9, 23,
24]. The ORs of all amino acids assayed in this study were
consistent with a recent meta-analysis of prospective studies
[8]. We extend these prior findings by showing that branched-
chain and aromatic amino acid levels already associate with
the long-term risk of type 2 diabetes in young adults. Our
results also show that the perturbed amino acid levels are more
strongly indicative of future impaired glucose tolerance and
insulin resistance than of worsening in fasting glucose levels.

The mechanistic underpinnings and causal relation be-
tween amino acid levels and type 2 diabetes risk are not yet
fully clear [25]. Mendelian randomisation studies have indi-
cated that adiposity and insulin resistance lead to increased
branched-chain amino acid levels [12, 26]; other Mendelian
randomisation studies suggest that the metabolism of these
amino acids may play a causal role in the development of type
2 diabetes [11]. In addition, physiological studies have sug-
gested mechanisms by which alterations in branched-chain
amino acid metabolism might cause insulin resistance and
impairment of insulin secretion [27, 28]. Altered amino acid
metabolism may also represent a link between diabetes and
cardiovascular diseases [29, 30]. Our results in young adults
support the notion that amino acid profiling may prove helpful
for monitoring cardiometabolic health in asymptomatic indi-
viduals, with the potential to facilitate targeted interventions
[31].

Increasing evidence suggests that levels of certain fatty
acids are associated with type 2 diabetes risk. Our finding that
a higher relative concentration of n-6 fatty acids was associ-
ated with decreased diabetes risk, whereas higher MUFA
levels were associated with increased diabetes risk is

Table 2 Multi-metabolite score
for the risk of type 2 diabetes
during the 15 year follow-up,
assessed for 5271 individuals
aged 31 years at blood sampling

Incident type 2
diabetes casesa, n (%)

OR

(95% CI)

Model 1b Model 2c

Score quintile

Lower fifth 6 (0.6) Reference Reference

20–40% 14 (1.3) 2.17 (0.83, 5.67) 1.95 (0.74, 5.16)

40–60% 36 (3.4) 4.09 (2.08, 12.0) 3.93 (1.59, 9.70)

60–80% 47 (4.5) 5.92 (2.47, 14.2) 4.11 (1.63, 10.3)

Upper fifth 96 (9.1) 10.1 (4.20, 24.1) 5.80 (2.22, 15.1)

Per 1 SD increment 1.76 (1.48, 2.09)d 1.42 (1.14, 1.76)e

The multi-metabolite score was calculated as the weighted sum of concentrations of three circulating metabolites:
phenylalanine (weight 0.320), non-esterified cholesterol in large HDL (weight −0.474) and ratio of cholesteryl
esters to total lipids in large VLDL (weight −0.321). The β-coefficients used as weights for the biomarkers score
were derived by meta-analysis of three derivation cohorts
a The lower fifth quantile contains 1055 individuals and the other quantiles 1054 individuals
bWith age, sex, BMI and fasting glucose as covariates
cModel 1 + triacylglycerol, HDL-cholesterol and HOMA-IR as additional covariates
d p = 2× 10−10

e p = 0.002
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consistent with previous investigations [13, 14]. Consistent
with our results in young adults, a recent study from 20 pro-
spective cohorts reported that higher levels of linoleic acid in
serum and different lipid compartments is associated with
lower risk of type 2 diabetes [14]. The circulating fatty acid
biomarkers are reflective of both dietary composition and en-
dogenous metabolism [32]. Dietary counselling aiming to re-
place saturated fat with unsaturated fat in the diet, in accor-
dance with Nordic dietary recommendations, has been shown
to decrease circulatingMUFA and increase circulating n-3 and
n-6 levels [33]. If these fatty acids play a causal role in the
development of type 2 diabetes, then our results suggest that
interventions modifying the circulating fatty acid composition
could be effective in prevention.

Pervasive alterations in the lipoprotein profile were also
found to be associated with future diabetes risk. These includ-
ed both established lipids and novel findings based on detailed
lipoprotein subclass measures. The lipid modulations shown
here to reflect diabetes risk in young adults are similar to those
previously reported in cross-sectional settings for older indi-
viduals with impaired glucose tolerance [34, 35]. The results
for VLDL and HDL particle size are consistent with a large
study of American women [36]. In addition, we report novel
associations of lipoprotein composition, showing increased
risk associated with a higher relative fraction of triacylglycerol
in VLDL, LDL as well as HDL. Higher percentage triacyl-
glycerol in VLDL subclasses was associated with the stron-
gest increase in diabetes risk among all metabolic measures
assayed. These results reflect early stages of the aberrations in
lipoprotein metabolism characteristic of insulin resistance: in-
creased production of large VLDLs, increased catabolism of
HDLs and increased transfer of triacylglycerol to HDL and
LDL particles [37]. Consistent with this, we showed that the
lipoprotein lipid perturbations were strongly reflective of fu-
ture insulin resistance and impaired glucose tolerance. Our
findings indicate that such distortions of lipoprotein metabo-
lism may already be present in normoglycaemic young adults
and reflect an increased risk for insulin resistance and type 2
diabetes.

In addition to modulations in lipoprotein metabolism, met-
abolic measures related to lipolysis (glycerol) and inflamma-
tion (GlycA, a marker of chronic inflammation [38, 39]) were
predictive biomarkers, illustrating that many different path-
ways are perturbed long before the onset of type 2 diabetes.
The overall metabolic signature of increased diabetes risk was
reminiscent of the patterns of metabolite associations for adi-
posity and insulin resistance index, cross-sectionally and pro-
spectively. This is keepingwith previous large-scalemetabolic
profiling studies [23, 24, 26] and consistent with the patho-
physiology of type 2 diabetes, where insulin sensitivity grad-
ually declines years before clinical disease onset [40]. It sug-
gests that the metabolic biomarkers for type 2 diabetes are
predominantly manifestations of developing insulin

resistance. Nonetheless, the overall pattern of biomarker asso-
ciations remained predictive after controlling for baseline
BMI and HOMA-IR. These results indicate that metabolomic
profiling is sensitive to subtle metabolic changes that precede
insulin resistance and hyperglycaemia in apparently healthy
young adults.

Whereas the comprehensive signature of single biomarkers
for type 2 diabetes risk provides a picture of the numerous
metabolic pathways reflective of the disease development,
the measurement of multiple biomarkers in one go may prove
beneficial for disease prediction. We found that a simple
multi-metabolite score comprised of phenylalanine and two
detailed lipoprotein measures was a stronger predictor of dia-
betes risk than any of the individual biomarkers. The tenfold
elevation in diabetes risk observed here for those in the highest
fifth compared with the lowest fifth of the multi-metabolite
score indicates that multi-metabolite scores hold potential to
aid identification of high-risk individuals at a young age.
Future studies with a larger number of incident diabetes cases
are needed to evaluate the potential of such scores for risk
identification and health tracking in clinical settings.

Our study has both strengths and limitations. Its strengths
include the large sample size and the profiling of multiple
prospective cohorts. Our results were consistent across co-
horts despite differences in age distribution, fasting status
and diagnostic ascertainment. The study design allowed deri-
vation and validation of the multi-metabolite score in indepen-
dent cohorts. Some limitations also need to be considered.
First, because type 2 diabetes is relatively rare among young
adults, the number of cases was modest despite the large sam-
ple size. The power for evaluating the predictive value of the
multi-metabolite score was therefore limited. Second, as all
cohorts were Finnish, our results cannot necessarily be gener-
alised beyond white Europeans. However, previous research
shows that amino acid measures may be even stronger predic-
tors of type 2 diabetes in South Asians compared with
Europeans [41]. Third, the NMR metabolomics platform is
not able to quantify metabolites present in blood in very low
concentrations, and therefore we could not replicate several
previously reported metabolomic biomarkers for diabetes [8,
9, 42]. Nonetheless, the NMR metabolomics method is high-
throughput and consistent over time, and therefore it is partic-
ularly suited for large cohorts. We acknowledge the lack of
coherent dietary information across the cohorts and that a
large fraction of the samples were non-fasting; however, we
observed highly consistent biomarker associations between
cohorts with fasting samples and the FINRISK 1997 cohort
with non-fasting samples.

In conclusion, we have described a metabolic signature of
increased risk for future type 2 diabetes in large population-
based cohorts of young adults with long follow-up. Metabolic
aberrations were observed across multiple biological path-
ways, including inflammation, fatty acid balance and aspects
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of lipoprotein metabolism. Our results extend the evidence of
amino acid alterations as strong predictors of type 2 diabetes
to young adults. If branched-chain amino acids, MUFAs or n-
6 fatty acids are proven to be causal in the pathogenesis of
type 2 diabetes, then interventions aimed at altering the circu-
lating levels may be beneficial in early adulthood. The de-
tailed metabolic profiling was shown to capture aspects of
the development of insulin resistance and post-load
hyperglycaemia, which are missed by fasting glucose and oth-
er risk markers used in primary care settings. These results
support the possibility that screening aided by detailed meta-
bolic profiling could help targeting interventions for type 2
diabetes prevention in young adults.
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