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The present study compared crustacean assemblages from coastal wetlands between a fragment 

archipelago and a landmass. The study included four typical crustacean taxonomic groups (i.e. Cladocera, 

Copepoda, Ostracoda and Malacostraca) from the Balearic Archipelago region as an example of a 

fragment island (‘Archipelago’) and the Catalonia region as the landmass (‘Mainland’; Spanish 

Mediterranean coast). We tested null hypotheses based on the expected similarity between Archipelago 

and Mainland in terms of crustacean assemblages and biodiversity. Similar relationships of those 

community attributes with environmental variables were also expected in both regions. The results 

partially met the null hypotheses. We found that crustacean taxonomic composition varied between 

Archipelago and Mainland, likely due to peculiar biological and biogeographical processes acting in the 

Archipelago. The relationship between crustacean assemblages and the environmental variables was 

mostly similar between Archipelago and Mainland, as expected. Both regions also showed similar 

patterns of species distribution (i.e. Archipelago and Mainland coastal wetlands were characterised by a 
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few dominant species). This result could be masked by the ‘filter’ effect exercised by the harsh conditions 

of coastal wetlands. Moreover, the total diversity values (gamma biodiversity) in the Archipelago were 

similar to the values for the Mainland, supporting the hypothesis that fragment islands can be of 

substantial value for the conservation of global biodiversity. 

Additional keywords: crustacean diversity, fragment islands, island biogeography, Mediterranean 

ecoregion. 

Introduction 

The study of island biogeography has produced an extensive number of theories, models and 

tests, not only for biogeography, but also for evolution and ecology (e.g. MacArthur and Wilson 

1967; Diamond 1975; Whittaker and Fernández-Palacios 2007). Different categorisations of 

islands, depending on the geological mechanism of their origins, are possible, for example 

oceanic islands, continental fragments, continental shelf islands, land-bridge islands (Darwin 

1859; Wallace 1902; Whittaker and Fernández-Palacios 2007). In the present study, we 

followed the more generalised ‘Darwinian’ and ‘fragment’ island concepts suggested by 

Gillespie and Roderick (2002). Darwinian islands include those islands formed de novo, and the 

best known are the oceanic islands. In addition, some mangrove islands and rock pools could be 

included within this category (Gillespie and Roderick 2002). Fragment islands include those 

islands that are separated fragments from continents or mainland landmasses. The best known 

fragment islands are the continental islands, although we could also include isolated habitats 

within this category (Gillespie and Roderick 2002). In the present study, when we refer to 

‘Darwinian’ and ‘fragment’ islands, we are only considering the case of oceanic and continental 

islands respectively. 

Fragment and Darwinian islands are expected to have different roles in key ecological 

processes, such as immigration. For example, communities that are nearly saturated with species 

and have well-established biotic interactions can reduce the risk of potential colonisers (e.g. 

alien species; Shurin 2000; De Meester et al. 2002). In this sense, fragment islands should have 

a biota similar to their continental sources and the ecological niches would be filled to the point 

that the establishment of new species was hampered. Nevertheless, the magnitude of the effects 

of these ecological processes and, consequently, the expected assemblage characteristics and 

community structure will be ultimately determined by the isolation level of the island. Distance 

from the continent, the level of habitat dissimilarity and the dispersion capacity of the colonisers 

are main aspects to consider in establishing the scale of isolation (Gillespie and Roderick 2002). 

Three scales of isolation can be generally described, namely low, intermediate or high, which 

can be applied to both Darwinian and fragment islands (Gillespie and Roderick 2002). Evidence 

of the ecological processes that took place in Darwinian islands (or high-intermediate isolated 

fragmented islands) is widely known (e.g. Darwin 1859; Simon 1987; Gillespie et al. 2008), 
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whereas empirical studies in fragment islands are scarce, probably because it is less appealing to 

find no significant differences between island and mainland ecological dynamics, as could be 

expected. 

Coastal wetlands are naturally stressed environments (Barnes 1989; Basset et al. 2006; Pérez-

Ruzafa et al. 2011). This environmental stress is caused by the effects of variable physical 

factors, such as tides, storms, winds or flows (Quintana et al. 1998; Pérez-Ruzafa et al. 2005; 

Ciavatta and Pastres 2011), as well as the intermediate position between freshwater and marine, 

and between freshwater and land interfaces (Kjerfve 1994; Comín et al. 2004; Dauvin 2007). In 

this context, it is interesting to highlight that the Mediterranean region is characterised by a high 

seasonality, accompanied by sharp changes in water regimens (Alvarez Cobelas et al. 2005; 

Beklioglu et al. 2007). This unstable hydrological regimen has been related to strong changes in 

community composition and in population dynamics (e.g. Guelorget and Perthuisot 1983; 

Gascón et al. 2007). In the present study, we examined the crustacean assemblages of coastal 

wetlands from a fragmented and scarcely isolated archipelago and compared them with the 

crustacean assemblages of a mainland landmass. We selected the best represented groups 

occurring in coastal wetlands (Cladocera, Copepoda, Ostracoda and Malacostraca). In 

particular: (1) Cladocera, Copepoda, Ostracoda and Malacostraca are considered key groups for 

wetland food webs (Jeppesen et al. 2007; Brucet et al. 2010; Jensen et al. 2010); (2) they 

represent a high proportion of the metazoan biodiversity (Boix et al. 2007; Brucet et al. 2009); 

(3) some species are physiologically well adapted to these stressful environments (e.g. 

Kevrekidis et al. 2000; Brucet et al. 2009); and (4) some groups have a high dispersal capacity 

(Louette and De Meester 2005; Frisch et al. 2006) through different vectors that could act at 

different geographical scales (Havel and Shurin 2004), such as amphibians or wind 

(Vanschoenwinkel et al. 2008), birds (Green et al.  2008), fish (Beladjal et al. 2007) and even 

humans (Rossi et al. 2003; García-Berthou et al. 2007). 

As a case study of fragment islands, we selected the Mediterranean Balearic Archipelago 

(Mediterranean Spain), located less than 100 km from the mainland (i.e. Catalonia). The 

response of crustacean assemblages to the main environmental variables was compared between 

the Balearic Archipelago and Catalonia. The main aim of the present study was to evaluate 

differences in crustacean diversity and structure between the mainland and fragment island at 

the species and assemblage levels, contributing to the limited literature published regarding 

fragment islands scarcely isolated. The main hypothesis tested was that crustacean assemblages 

and their responses to environmental variables are expected to be similar between the Balearic 

Archipelago and the mainland landmass (Catalonia; hereafter ‘Mainland’). Moreover, partial 

null hypotheses that supported the main hypothesis were tested, namely: (1) the environmental 

variables that best fit the species variability in the crustacean assemblages will not vary between 
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the Archipelago and Mainland; (2) different diversity values measured at different scales (α, β 

and γ) will not be found between the Archipelago and Mainland; and (3) the relationships 

between the number of crustacean species and the environmental variables will not vary 

between the Archipelago and Mainland. 

Material and methods 

Areas of study 

The study was performed in coastal wetlands from two Spanish Mediterranean regions: 

Catalonia (north-eastern Iberian Peninsula; Mainland) and the Balearic Archipelago (Western 

Mediterranean sea; ‘Archipelago’) located ~100 km from the Spanish east coast (Fig. 1). 

Coastal wetlands from the four principal islands of this Archipelago (i.e. Majorca, Minorca, 

Ibiza and Formentera) were sampled in the present study. Both the Mainland and the 

Archipelago sites belong to the Mediterranean ecoregion, characterised by dry summers and 

mild winters, with rainfall occurring mainly during autumn and spring (Britton and Crivelli 

1993). All coastal wetlands studied were permanent and brackish. Although the Mediterranean 

Sea has a microtidal range (<2 m; Davies 1964), all the coastal wetlands studied were marine 

influenced and shallow (maximum depth <6 m). 

Sampling procedure 

Mainland data were obtained from surveys conducted at 32 coastal wetlands (one sampling 

site per wetland, yielding 32 sites). In the Archipelago, surveys were conducted at 23 coastal 

wetlands. In three of the wetlands, more than one sampling site was established due to the size 

and within-habitat heterogeneity, yielding 32 sampling sites. The study was performed during 

winter (February–March) and spring (May–June) in 1996, 1997, 2000, 2003 (Mainland) and 

2006 (Archipelago) to reflect temporal variability. 

Water temperature, electrical conductivity, percentage oxygen saturation and pH were 

measured in situ, whereas dissolved inorganic nutrients (ammonium, nitrite, nitrate and 

phosphate) and chlorophyll-a (Chl-a) content were analysed in the laboratory. Details of the 

analytical protocols for these variables can be found in Boix et al. (2008) for the Mainland sites 

and Lucena-Moya et al. (2009) for the Archipelago sites. The coastal wetland surface area (size) 

was calculated using freely available aerial photographs (Departament de Política Territorial i 

Obres Públiques 2005; Ministerio de Agricultura Pesca y Alimentación 2006). Additional 

information on the characterisation of the coastal wetlands (chemistry of the water and size) is 

summarised in Table 1. 

Crustacean samples were collected accounting for the possible different microhabitats within 

each sampling site (e.g. shores with and without vegetation, submerged vegetation, bare 

sediment). Thus, a sampling effort proportional to the representativeness of each microhabitat 
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was performed at each site. A hand net with a mesh size of 250 µm was used. A fixed number 

of ‘sweeps’ (10 and 20 in the Archipelago and Mainland respectively) was undertaken at each 

sampling site. The abundance data were calculated as catch per unit effort (CPUE; i.e. 

individuals per sweep). Each ‘sweep’ consisted of a rapid push through the water column and 

on the bottom. 

Data analysis 

Environmental characterisation 

To test the significance of differences in the environmental characterisation of the coastal 

wetlands over space and time, comparisons were made between the following groups: Group 1, 

Mainland-winter; Group 2, Mainland-spring; Group 3, Archipelago-winter; Group 4, 

Archipelago-spring. A multivariate approach based on principal components analysis (PCA) 

coupled with between-group analyses was used (Dolédec and Chessel 1989). The between-

group analysis allowed us to obtain the centroid of each group. Differences among groups were 

checked using a Monte Carlo permutation test (999 unrestricted permutations under a reduced 

model). The PCA was performed by applying the function ‘duddi.pca’, centroids were 

calculated by means of the function ‘between’ and a Monte Carlo test was performed using the 

function ‘randtest.between’. These three functions can be found in the ade4 library written in the 

R language (R Foundation for Statistical Computing, Vienna, Austria) (Dray and Dufour 2007). 

Variables were log transformed (log(x + 1)) when necessary and standardised (by the 

maximum). The dataset analysed contained a total of 128 data samples (32 sites × 2 seasons = 

64 samples for each region of study) and eight environmental variables (water temperature, 

electrical conductivity, percentage oxygen saturation, pH, dissolved inorganic nitrogen (DIN; 

obtained by summing nitrogen fractions: ammonium + nitrite + nitrate), phosphate, Chl-a and 

water body size). 

Composition of crustacean assemblages and environmental variables 

Similarity percentage analysis (SIMPER) was used to detect characteristic crustacean species 

on coastal wetlands. This analysis examines the contribution of individual species to the average 

dissimilarity between pairs of groups (Archipelago v. Mainland) and resemblances within a 

group (Archipelago and Mainland) using Bray–Curtis similarities. Absence and presence data 

per site were used and the region of study (Archipelago v. Mainland) was included as a factor. 

The SIMPER analysis was performed using PRIMER 6 (PRIMER-E Ltd.) (Clarke and Warwick 

2001). 

Canonical correspondence analyses (CCAs) were performed to identify the environmental 

variables that best fit the species variability in the crustacean assemblages. A combined CCA 

(i.e. Mainland and Archipelago together) was first performed to quantify the regional effect 
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through their conditional effect. Another two CCAs were performed for each separate region 

(i.e. one for Mainland and another for Archipelago) to identify whether the environmental 

variables related to the crustacean assemblages were similar across regions. All the species 

abundance matrices used (93 taxa for Archipelago and Mainland combined; 66 taxa for 

Mainland; 58 taxa for Archipelago) were square root transformed. We downweighted for rare 

species to reduce their influence in the analysis (ter Braak and Šmilauer 1998). All 

environmental variables (n = 8) were log transformed (log(x + 1)), except pH and region. 

Season (spring and winter) was taken into account as a covariate. The forward selection 

procedure was used to obtain the conditional effect (λ) for each variable, and expressed as a 

percentage. Two significance tests for canonical axes were performed using the Monte Carlo 

test (499 permutations). The first test shows whether the first canonical axis is sufficient to 

explain species variation. The second permutation test (with all canonical axes) verifies the 

existence of a relationship between environmental parameters and species matrix. CCAs were 

performed using CANOCO 4.5 (ter Braak and Šmilauer 1998). 

Crustacean diversity and environmental variables 

We used three approaches to analyse values of diversity in the Archipelago and Mainland for 

each taxonomic group of crustaceans (Cladocera, Copepoda, Ostracoda and Malacostraca), as 

detailed below. 

1. α Diversity as mean species richness per site. Significant differences in α diversity values 

between the Mainland and Archipelago were tested for each crustacean taxonomic group 

using either Kruskal–Wallis H test or one-way analysis of variance (ANOVA) tests 

depending on whether the parametric assumptions were met. 

2. β Diversity as multiple-site similarity measures independent of patterns of richness (Baselga 

et al. 2007; Baselga 2010). Because β diversity may be caused by two different phenomena, 

namely nestedness (reflecting a process of species loss) and species turnover (implying the 

replacement of some species by others; Harrison et al. 1992; Baselga et al. 2007; Baselga 

2010), we assessed the overall multiple-site dissimilarities, considering total β diversity 

(Sørensen-based multiple-site dissimilarity; βSOR), spatial turnover (Simpson-based 

multiple-site dissimilarity; βSIM) and nestedness (nestedness-resultant multiple-site 

dissimilarity (βNES), which is inferred: βNES = βSOR – βSIM) components. Calculations 

were performed using the free software R (R Foundation for Statistical Computing, Vienna, 

Austria) and followed functions and scripts described in Baselga et al. (2007) and Baselga 

(2010). 

3. γ Diversity as the total richness for each region, calculated using the Chao2 estimator 

(EstimateS: statistical estimation of species richness and shared species from samples, 
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version 8.2; http://viceroy.eeb.uconn.edu/estimates/, accessed 15 January 2015). This 

estimator is a highly recommended measure of total richness because it is independent of 

possible differences in the sampling effort (Magurran 2013). The bias-corrected formula of 

the Chao2 estimator was used when Chao’s estimated CV for abundance distribution was 

<0.5; otherwise, a classic Chao2 estimator was used To determine whether the results 

obtained with the Chao2 estimator were significantly different (P < 0.05), the criterion used 

was the absence of overlap among the 95% confidence intervals (CIs) of the coastal wetlands 

(Colwell et al. 2004). 

The relationships between species richness and the environmental variables were explored by 

means of linear mixed effects (LME) models. The categorical spatial variable region (i.e. 

Archipelago or Mainland) was introduced as a dummy variable. The model was mixed because 

the explanatory variables are a mixture of fixed (regions of study) and random (season: winter 

and spring) factors. Residual plots were checked for model assumptions. We started with the 

most complex model taking into account the double interactions with the ‘region’ factor. The 

residual maximum likelihood (REML) method was used to find the fittest and most 

parsimonious model (see Venables and Ripley 2002). All models were estimated by the LME 

function in the lme library written in the R language (Pinheiro and Bates 2000). 

Results 

Environmental characterisation 

A comparison of centroids from the PCA ordination showed no significant differences 

between Mainland-winter and Archipelago-winter groups (P > 0.05) or between Mainland-

spring and Archipelago-spring groups (P > 0.05) in the environmental characterisation of the 

coastal wetlands (Fig. 2; Table 1). However, significant differences were found between seasons 

within the same region (e.g. Archipelago-winter v. Archipelago-spring), reinforcing the 

importance of seasonality in Mediterranean areas. 

Composition of crustacean assemblages and environmental variables 

In all, 93 crustacean species were recorded in the Archipelago (n = 58) and Mainland (n = 67) 

systems (see Table S1, available as Supplementary Material to this paper). Furthermore, 27 

crustacean species were found exclusively in the Archipelago, whereas 35 were found in the 

Mainland (Table S1). Ostracods and copepods had the highest occurrence among all the 

crustaceans; specifically, copepods were present in every sample from the Mainland (Table 2). 

Malacostracans showed a high occurrence, but only in the Archipelago, and cladocerans had the 

lowest occurrence in both regions (Table 2). The percentage of common species was always 

higher (Cladocera and Copepoda) or slightly higher (Ostracoda) in the Archipelago than in the 

Mainland, except for Malacostraca (Table 2). 
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SIMPER analysis showed a high dissimilarity (>80%) between the regions (Archipelago v. 

Mainland) for the crustacean composition (Table 3). Furthermore, a low similarity within 

Mainland (~20%) and Archipelago (~25%) should be noted because it indicates a high 

variability within regions. Taxa that best characterised the crustacean assemblages of the 

Archipelago were the ostracod Cyprideis torosa (25.91%) and the two malacostracans 

Gammarus aequicauda and Lekanesphaera hookeri (22.14% and 19.63% respectively; Table 3). 

The crustacean assemblages of the Mainland were characterised by the copepod Acanthocyclops 

gr. robustus (32.99%) and the malacostracan Gammarus aequicauda (25.55%). Moreover, the 

Mainland included characteristic crustacean species missing from the Archipelago (two 

copepods (Diacyclops bicuspidatus and Eurytemora velox), one ostracod (Cypridopsis vidua) 

and one cladoceran (Daphnia pulicaria); Table 3). 

In relation to the explanatory variables that best fit the species variability in the crustacean 

assemblages, the factor ‘region’ explained the highest percentage (24.66%) of the crustacean 

variability for the combined CCA (i.e. Archipelago and Mainland together; Table 4). 

Conversely, analysis for each region separately (i.e. Archipelago CCA and Mainland CCA) 

showed that ~50% of the variability in the crustacean assemblages was explained by the same 

variables in both regions (i.e. electric conductivity, size and DIN; Table 4). 

Crustacean diversity and environmental variables 

Significant differences were observed for the α diversity. Specifically, the mean richness of 

Cladocera and Copepoda was significantly higher in the Mainland than in the Archipelago (H = 

5.98 (d.f. = 1, P = 0.0145) and H = 44.98 (d.f. = 1, P < 0.001) respectively; Fig. 3a). 

Conversely, the mean richness of Malacostraca and Ostracoda was significantly higher in the 

Archipelago than in the Mainland (F1,126 = 10.6 (P = 0.001) and H = 8.67 (d.f. = 1, P = 0.0032) 

respectively; Fig. 3a). β Diversity did not differ between the Archipelago and Mainland for all 

groups of crustaceans (Fig. 3b). It was observed that β diversity was due to the replacement of 

species (βSIM) rather than species loss (βNES) in both regions. Regarding γ diversity, there was no 

significant difference in the total estimated species richness between the Archipelago and the 

Mainland (Fig. 3c). 

The relationships between crustacean species richness and environmental variables were not 

significantly different between regions, except for Malacostraca and Cladocera, for which the 

interaction with the factor ‘region’ was significant (Fig. 4; Tables S2, S3). The relationship 

between Malacostraca richness and electrical conductivity was positive in both regions, albeit 

almost ninefold stronger in the Archipelago than in the Mainland sites (Fig. 4a). There was a 

significant positive relationship between nutrient content (phosphate and DIN) and 

Malacostraca richness in the Archipelago, whereas in the Mainland this trend was reversed (Fig. 
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4b, c). The relationship between Cladocera richness and DIN was region dependent, but the 

trend was similar in both regions (i.e. negative, although markedly stronger in the Archipelago 

than in the Mainland; Fig. 4d). 

Discussion 

Recognising the characteristic features of different islands types (e.g. Darwinian v. fragment 

islands, according to Gillespie and Roderick 2002) is important for understanding emerging 

patterns, in particular speciation, biodiversity and conservation (Whittaker and Fernández-

Palacios 2007; Watson 2009). Although studies on Darwinian islands are widely reported in the 

literature (Sauer 1969; Cowie and Holland 2006; Whittaker et al. 2008; Caujapé-Castells et al. 

2010), fragment islands have received less attention. This may be related to the anticipated 

similarity expected between fragment islands and the mainland landmass from where they 

originate, being less appealing for the researchers to investigate. Because we found significant 

differences in the species composition of the crustacean assemblages, we are not able to confirm 

the null hypothesis that assumed the similarity of the crustacean assemblages between the 

Archipelago (Balearic Islands) and Mainland (Iberian Peninsula). Such a difference was 

supported by the results of the combined CCA, which determined the regional effect as the best 

predictor of species variability. Considering the type of variables and analyses performed in the 

present study, we did not have enough information to single out the causes of these differences. 

Nevertheless, we can think of two possible causes, the first being the effect of stochastic 

ecological drift and evolutionary processes at local (e.g. community level) or regional (e.g. 

meta-community level) scales (Hubbell 2001). The current isolation of the Archipelago began at 

the end of the Messinian salinity crisis, 5.3 Myr ago (Clauzon et al. 1996; Krijgsman et al. 

1999), although the Archipelago suffered another regrouping during the Quaternary glaciations 

(Melendez-Hevia 2004). This is a sufficient time gap, biologically and geologically, so that the 

composition of the crustacean assemblages could differ from their source because of those 

processes related to the evolution and ecological drift (Lomolino et al. 2010). The second 

possible cause is the proximity of the coastal wetlands from the Archipelago to several land 

masses other than the Mainland site (e.g. by recruitment or dispersion; Barnes 1995). For 

example, in the present study, the Archipelago crustacean assemblage had 27 species that were 

not shared with the Mainland. This number of ‘exclusive species’ could be attributed to the 

potential influences of other regions and mainland landmasses. In fact, crustacean fauna of 

African origin have been found in temporary ponds in the Balearic Islands (Jaume 1989; 

Zamora et al. 2005). 

Beyond the regional effect, most of the variability of crustacean assemblages in both regions 

was explained by the same environmental variables, including electrical conductivity, size and 

DIN. These results support other studies that found that these three variables were related to the 
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turnover rate of the water body (Guelorget and Perthuisot 1983; De Kroon et al. 1985). In 

particular, wetland size and electrical conductivity have been identified as the main drivers of 

the fauna in coastal wetlands throughout the world (Joyce et al. 2005; Nielsen et al. 2007) and 

especially the Mediterranean area (Quintana et al. 1998; Anton-Pardo and Armengol 2012). 

Therefore, despite the dissimilarity in the composition of the crustacean assemblages between 

the Archipelago and the Mainland, we can assert that their responses to environmental variables 

were comparable. 

A marked dissimilarity in crustacean assemblages (~80%) between the Archipelago and 

Mainland was observed. Furthermore, a high dissimilarity was detected within regions, which 

reflects the variability among coastal wetlands within the Archipelago and Mainland. These 

results are in accordance with studies conducted in transitional waters of the Mediterranean and 

Black seas (Barbone and Basset 2010). These authors found that there was a patchy distribution 

of macroinvertebrate taxa and a low average similarity in taxa composition (~10%) among 

lagoons within the same region. We observed a similar pattern in both the Archipelago and 

Mainland consisting of the dominance of the assemblages by very few species: three species 

dominated in the Archipelago (Cyprideis torosa, Gammarus aequicauda and Lekanesphaera 

hookeri) and two species dominated in the Mainland (Acanthocyclops gr. robustus and 

Gammarus aequicauda). This pattern is typically expected in highly restrictive or ‘filtered’ 

environments. Thus, harsh conditions can act as a ‘filter’ for the community structure, causing 

the reduction of the community to a few species (Poff 1997; Strange and Foin 1999). Similar 

conclusions have been made for other Mediterranean coastal ecosystems (e.g. Barbone et al. 

2007; Barbone and Basset 2010). Certainly, the Mediterranean coastal wetlands can be 

considered highly ‘filtered’ ecosystems, where the ‘filter’ is partly imposed by harsh and 

changeable environmental conditions (e.g. abrupt changes between seasons, variations in water 

level and salinity) and variable physical factors (e.g. storms, wind, flows) of this ecoregion 

(Statzner et al. 2001; Elliott and Quintino 2007). Therefore, regardless of the mainland or 

fragment island region, a similar pattern of crustacean community structure was observed, in 

accordance with our null hypothesis. 

The instability and harshness of the environmental conditions of coastal wetlands can also 

constrain crustacean diversity in both the Mainland and Archipelago. The second proposed 

partial null hypothesis of equal diversity between regions was applicable to β and γ diversity. 

The comparable values of the among-systems (i.e. β) and total (i.e. γ) diversity between the 

Archipelago and the Mainland can be explained by a high temporal or spatial (among wetlands) 

turnover of species (Chalcraft et al. 2004; Anderson et al. 2011). This is supported by the high 

taxa occurrence, elevated dissimilarity within the wetlands and high rate of replacement of the 

crustacean species observed in both regions. However, within the equilibrium theory of island 
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biogeography, it would be expected that the turnover rate would be lower in the islands than on 

the continent (MacArthur and Wilson 1967; Walter 2004). However, our results support the 

hypothesis of similarity between fragment islands and mainland. The crustacean assemblage of 

the Archipelago can be supplied by the migration or colonisation from mainland landmasses, as 

well as migration among islands, favouring the maintenance of levels of diversity. Conversely, 

the Balearic Archipelago is old enough to have probably reached a fairly stable total 

biodiversity level. However, this scenario is different from what is happening on a smaller scale, 

because the α diversity values differed significantly between regions. It is expected that in 

fragment islands, over time and with isolation, the number of species (α diversity) on islands 

created by fragmentation will, if anything, decline (Gillespie and Roderick 2002). Based on this 

premise, it could be expected that the Mainland, being the principal source, would exhibit 

higher α diversity values than the Archipelago. However, this expectation was not always met, 

because the α diversity values were higher in the Archipelago for two taxonomic groups 

(Malacostraca and Ostracoda). As argued previously for the crustacean assemblage, various 

causes could be responsible for differences in the diversity values for those crustacean groups 

between regions, including environmental conditions, biological processes and biogeographical 

events. Furthermore, we considered crustaceans with a high component of microcrustaceans 

(cladocerans, ostracods, copepods), characterised by small body size, high fecundity and large 

geographic ranges. In previous studies, crustacean species meeting these traits were less prone 

to extinction following fragmentation (e.g. Cardillo 2003; Cooper et al. 2008), which could 

contribute to the maintenance of high levels of α diversity also in the islands. Although, we are 

not able to confirm the specific causes of the differences in biodiversity between the 

Archipelago and Mainland, it is of note that fragment and scarcely isolated islands may hold 

similar or even higher values of local diversity than the Mainland. 

Finally, the third proposed null hypothesis regarding the relationships between environmental 

variables and species richness was partially met. Thus, the relationships were similar across 

regions, although not for all cases (i.e. Malacostraca and Cladocera responded differently to 

environmental variables). The similar environmental relationships observed in the present study 

for copepods, cladocerans and ostracods have also been found in other studies, such as a 

reduction of copepod diversity with an increase in water temperature (e.g. Frisch and Green 

2007), decrease in diversity (cladocerans, copepods) with salinity (Boix et al. 2008; Brucet et al. 

2009) and an increase of ostracod diversity with Chl-a (Allen and Dodson 2011). Malacostraca 

and Cladocera showed different patterns between the two regions. Different factors could be 

responsible for those differences. For example, a higher eutrophication range (nutrients and Chl-

a) in the Mainland and a higher sea connectivity of the coastal wetlands in the Archipelago may 

favour the α diversity of typical littoral taxa such as malacostracans, as well as their positive 
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relationships with nutrients and electrical conductivity in the Archipelago. This is a hypothesis 

that needs to be tested experimentally. However, high eutrophication and sea connectivity 

would not be favourable environmental conditions for typical freshwater crustaceans, such as 

cladocerans, in the Archipelago. 

Conclusion 

The Balearic Archipelago, as an example of fragment islands, met some of the proposed null 

hypotheses based on the expected similarity to the Mainland. These results are consistent with 

the fact that fragment islands are half-way between the mainland and oceanic islands (which are 

expected to be the most dissimilar to the mainland) and so they have characteristics of both 

(Novosolov and Meiri 2013). However, it is remarkable that despite the short geographic 

distance that separates the Balearic Archipelago from the closest mainland, these islands are the 

most isolated islands in the Mediterranean (Bover et al. 2008). Indeed, the Balearic Islands have 

been described by some as ‘oceanic-like islands’ (Alcover et al. 1998) because of their isolation 

and their ancient fragmentation from the mainland. Although our data showed significant 

differences in species richness and assemblage structure between the Archipelago and 

Mainland, similar environmental patterns could be identified regardless of the regional effect. 

Thus, we should consider that the similarity between the fragment island and mainland may be 

somehow cofounded by the effect of a ‘filter’ exerted by the ecosystem itself (i.e. coastal 

wetlands). The fact that fragment islands can support a diverse crustacean fauna comparable to 

the mainland, or even higher in some cases, provides evidence that islands in general contribute 

a more significant portion of global biodiversity than is commonly recognised (Walter 2004). 

Therefore, fragment islands are ecosystems of substantial conservation interest, although they 

have been less ecologically considered than oceanic islands. Fragment islands, with stable 

population dynamics, can be considered important faunal reservoirs that can feed back to their 

original sources. 

Supplementary material 

Supplementary material includes a species list identified in the present study for Archipelago 

and Mainland (absence and presence) and two tables containing a summary of the LME results 

that supports Figure 4. The Supplementary material is available from the journal online (see 

http://www.publish.csiro.au/?act=view_file&file_id=MF15457_AC.pdf). 
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Table 1. Environmental variables from the studied coastal wetlands 

The mean ± s.d. are shown for each season and for each region of study. DIN, dissolved 

inorganic nitrogen 

Environmental variables Archipelago Mainland 

Winter Spring Winter Spring 

Size (ha) 251 ± 240 29 ± 16 

Chlorophyll a (µg L–1) 5.60 ± 1.40 9.16 ± 1.94 9.64 ± 2.41 18.65 ± 3.28 

pH 8.17 ± 0.09 8.22 ± 0.09 8.04 ± 0.11 8.05 ± 0.12 

Water temperature (°C) 13.79 ± 0.88 24.34 ± 0.65 11.41 ± 0.41 25.29 ± 1.08 

Conductivity (mS cm–1) 7.41 ± 1.03 18.69 ± 3.06 11.19 ± 2.34 12.75 ± 2.63 

Dissolved oxygen (%) 95.73 ± 4.42 73.23 ± 5.72 81.45 ± 4.44 91.66 ± 12.05 

Phosphate (µM) 3.92 ± 0.56 1.93 ± 0.81 3.11 ± 1.67 4.37 ± 1.93 

DIN (µM) 123.16 ± 32.48 30.58 ± 13.87 136.94 ± 42.75 148.67 ± 53.35 

 

 

 

 

Table 2. Descriptive parameters of the crustacean assemblage in the coastal wetlands 

from the Archipelago and the Mainland 

Occurrence is given as the percentage of samples in which the crustaceans were found 

 Cumulative species richness Common species (%) Occurrence (%) 

Archipelago Mainland Archipelago Mainland Archipelago Mainland 

Cladocera 13 18 53.80 38.90 40.60 62.50 

Ostracoda 12 13 58.30 53.80 90.60 81.30 

Copepoda 17 24 76.50 54.20 81.30 100.00 

Malacostraca 16 12 31.30 41.70 93.80 62.50 
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Table 3. Summary of similarity percentage analysis (SIMPER) 

The contribution to the average resemblances within sample groups (Contrib%) and the 

cumulative percentage (Cum.%) of characteristic species are given. The average dissimilarity 

between groups (Mainland v. Archipelago) was 85.29%. Asterisks indicate exclusive species 

(i.e. those that only appear in one region of the study). CLA, Cladocera; OST, Ostracoda; COP, 

Copepoda; MAL, Malacostraca. 

Species Contrib% Cum.% 

Archipelago (average similarity: 24.25%)   

Cyprideis torosa (OST) 25.91 25.91 

Gammarus aequicauda (MAL) 22.14 48.04 

Lekanesphaera hookeri (MAL) 19.63 67.67 

Loxoconcha elliptica (OST) 5.55 73.22 

Heterocypris salina (OST) 3.36 76.58 

Palaemonetes varians (MAL) 2.59 79.17 

Simocephalus vetulus (CLA) 2.57 81.73 

Sarscypridopsis aculeata (OST) 2.52 84.25 

Calanipeda aquaedulcis (COP) 2.29 86.54 

Daphnia magna(CLA) 1.66 88.2 

Megacyclops viridis (COP) 1.39 89.59 

Corophium acherusicum (MAL) 1.08 90.67 

Mainland (average similarity: 9.50%)   

Acanthocyclops gr. robustus (COP) 32.99 32.99 

Gammarus aequicauda (MAL) 25.55 25.55 

Chydorus sphaericus (CLA) 7.87 42.78 

Calanipeda aquaedulcis (COP) 6.9 49.68 

Diacyclops bicuspidatus (COP)* 5.84 55.52 

Eucyclops serrulatus (COP) 4.79 60.31 

Heterocypris salina (OST) 4.25 64.56 

Lekanesphaera hookeri (MAL) 4.01 68.57 

Macrocyclops albidus (COP) 3.05 71.62 

Cyprideis torosa (OST) 2.75 74.37 

Cypridopsis vidua (OST)* 2.48 76.85 

Simocephalus vetulus (CLA) 2.27 79.12 

Eucypris virens (OST) 2.18 81.3 

Tropocyclops prasinus (COP) 1.97 83.27 

Daphnia magna (CLA) 1.75 85.03 

Daphnia pulicaria (CLA)* 1.6 86.62 

Eurytemora velox (COP)* 1.35 87.98 

Pleuroxus adundus (CLA) 1.28 89.25 

Loxoconcha elliptica (OST) 1.27 90.53 
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Table 4. Results from canonical correspondence analyses (CCAs): combined 

(Archipelago and Mainland) and for each region separately 

The order of the significant explanatory variables that had the best fit for species variability are 

indicated with numbers from 1 to 6. Variance explained by the first two axes is also shown. %λ, 

conditional effect expressed as percentage. DIN, dissolved inorganic nitrogen; Chl-a, 

chlorophyll a 

Explanatory variables Combined CCA Archipelago CCA Mainland CCA 

Best fit %λ Best fit %λ Best fit %λ 

Region  1 24.66     

Conductivity 2 19.73 1 24.58 1 20.08 

Temperature 3 10.31 2 16.20   

Size 4 9.42 4 11.17 2 16.47 

DIN 5 8.52 3 13.97 3 15.26 

Chl-a 6 8.07   4 14.06 

Phosphate     5 11.24 

Variance explained (%)       

  Axis 1 4.3 5.6 5.0 

  Axis 2 7.1 8.9 9.7 
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Fig. 1. Location of the coastal wetlands sampled (black dots) on the Catalonian mainland (‘Mainland) 

and on the Balearic Islands (‘Archipelago’): 1, Minorca; 2, Majorca; 3, Ibiza; 4, Formentera. 
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Fig. 2. Plot showing the centroids for the Mainland (MAIN) and the Archipelago (ARCH) regions in 

spring and winter taking into account all the environmental variables (see Table 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

Page 25 of 30 

Fig. 3. Representation of the three diversity levels considered: (a) α diversity as mean species richness 

(mean ± s.d.), (b) β diversity as Simpson-based multiple-site dissimilarity (βSIM) and nestedness-resultant 

multiple-site dissimilarity (βNES) and (c) γ diversity as total species richness estimated using Chao2. Data 

are the mean ± 95% confidence intervals. *, P < 0.01; **, P < 0.001. CLA, Cladocera; OST, Ostracoda; 

COP, Copepoda; MAL, Malacostraca. 

 

 

 

 

 

 

 

 

 

Fig. 4. Biplots showing the results of the linear mixed-effects models for those cases where a significant 

interaction with the regional factor (Archipelago (ARCH) or Mainland (MAIN)) was detected. DIN, 

dissolved inorganic nitrogen. 
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Supplementary material 

 

Table S1. List of crustaceans species identified in the Archipelago and Mainland 

+ indicates presence; – indicates absence. CLA, Cladocera; OST, Ostracoda; COP, Copepoda; 

CAL, Calanoida; CYC, Cyclopoida; HARP, Harpacticoida; MAL, Malacostraca; MYS, 

Mysidacea; AMPH, Amphipoda; ISO; Isopoda; TAN, Tanaidacea; DEC, Decapoda 

Species Taxonomic Group Archipelago Mainland 

Alona guttata Sars, 1862 CLA + – 

Bosmina longirostris (O.F. Müller, 1776) CLA – + 

Camptocercus rectirostris Schoedler, 1862 CLA – + 

Ceriodaphnia laticaudata P.E. Müller, 1867 CLA – + 

Ceriodaphnia reticulata (Jurine, 1820) CLA – + 

Chydorus sphaericus (O.F. Müller, 1785) CLA + + 

Coronatella rectangula (Sars, 1861) CLA + + 

Daphnia curvirostris Eylman, 1887 CLA + – 

Daphnia magna Straus, 1820 CLA + + 

Daphnia pulicaria Forbes, 1893 CLA + + 

Leydigia acanthocercoides (Fischer, 1854) CLA + – 

Leydigia leydigii (Schödler, 1862) CLA – + 

Megafenestra aurita (Fischer, 1849) CLA – + 

Moina micrura Kurz, 1874 CLA – + 

Ovalona cf. anastasia (Frenzel and Alonso 1988) CLA + – 

Oxyurella tenuicaudis (Sars, 1862) CLA – + 

Pleuroxus aduncus (Jurine, 1820) CLA + + 

Pleuroxus denticulatus Birge, 1879 CLA – + 

Pleuroxus laevis Sars, 182 CLA – + 

Scapholeberis mucronata (O.F. Müller, 1776) CLA – + 

Scapholeberis rammneri Dumont and Pensaert, 1983 CLA + – 

Simocephalus exspinosus (DeGeer, 1778) CLA + + 

Simocephalus vetulus (O.F. Müller, 1776) CLA + + 

Tretocephala ambigua (Lilljeborg, 1900) CLA + – 

Bradleystrandesia reticulata (Zaddach, 1844) OST – + 

Candona angulata G. W. Müller, 1900 OST + – 

Candonocypris sp. Sars, 1894 OST – + 

Cyprideis torosa (Jones, 1850) OST + + 

Cypridopsis hartwigi G. W. Müller OST + – 

Cypridopsis vidua (O. F. Müller, 1776) OST – + 

Cypris bispinosa Lucas, 1849 OST + – 

Cypris subglobosa Sowerby, 1840 OST – + 

Eucypris virens (Jurine, 1820) OST + + 

Herpetocypris brevicaudata Kaufmann, 1900 OST – + 

Herpetocypris chevreuxi (Sars, 1896) OST + – 

Heterocypris incongruens (Ramdohr, 1808) OST + + 
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Heterocypris salina (Brady, 1868) OST + + 

Ilyocypris getica Masi, 1905 OST + – 

Ilyocypris gibba (Ramdohr, 1808) OST – + 

Loxoconcha elliptica Brady, 1868 OST + + 

Plesiocypridopsis newtoni (Brady & Robertson, 1870) OST + + 

Sarscypridopsis aculeata (Costa, 1847) OST + + 

Arctodiaptomus salinus (Daday 1885) COP (CAL) + – 

Arctodiaptomus wierzejski (Richard, 1888) COP (CAL) + – 

Calanipeda aquaedulcis Kritschagin, 1873 COP (CAL) + + 

Eurytemora velox (Lilljeborg, 1853) COP (CAL) – + 

Mixodiaptomus kupelwieseri (Brehm, 1907) COP (CAL) – + 

Acanthocyclops gr. robustus (Sars, 1863) COP (CYC) + + 

Cyclops sp.O. F. Müller, 1776 COP (CYC) – + 

Diacyclops bicuspidatus (Claus, 1857) COP (CYC) – + 

Diacyclops bisetosus (Rehberg, 1880) COP (CYC) – + 

Ectocyclops phaleratus (Koch, 1838) COP (CYC) – + 

Eucyclops macruroides (Lilljeborg, 1901) COP (CYC) – + 

Eucyclops serrulatus (Fischer, 1851) COP (CYC) + + 

Halicyclops rotundipes Kiefer, 1935 COP (CYC) + + 

Macrocyclops albidus (Jurine, 1820) COP (CYC) + + 

Megacyclops viridis (Jurine, 1820) COP (CYC) + + 

Microcyclops rubellus (Lilljeborg, 1901) COP (CYC) + + 

Paracyclops fimbriatus (Fischer, 1853) COP (CYC) – + 

Thermocyclops dybowskii (Landé, 1890) COP (CYC) + + 

Tropocyclops prasinus (Fischer, 1860) COP (CYC) + + 

Canthocamptus staphylinus (Jurine, 1820) COP (HAR) + + 

Canuella perplexa T. and A. Scott, 1893 COP (HAR) + + 

Cletocamptus confluens (Schmeil, 1894) COP (HAR) + + 

Cletocamptus retrogressus Schmankevitsch, 1875 COP (HAR) + – 

Eudactylopus sp. cf. Scott, 1909 COP (HAR) + – 

Harpacticus littoralis Sars, 1910 COP (HAR) – + 

Nitocra lacustris (Shmankevich, 1875) COP (HAR) – + 

Schizopera sp. (cf. compacta) Lint, 1922 COP (HAR) – + 

Tisbe longicornis (T. and A. Scott,, 1895) COP (HAR) + + 

Atyaephyra desmarestii (Millet, 1831) MAL (DEC) – + 

Corophium acherusicum Costa, 1857 MAL (AMP) + – 

Corophium insidiosum Crawford, 1937 MAL (AMP) + – 

Corophium orientale Schellenberg, 1928 MAL (AMP) + + 

Corophium sextonae Hurley, 1954 MAL (AMP) + – 

Cyathura carinata (Kroyer, 1847) MAL (ISO) + – 

Echinogammarus pacaudi (Hubault and Ruffo, 1956) MAL (AMP) – + 

Echinogammarus stocki Karaman, 1969 MAL (AMP) + – 

Gammarus aequicauda (Martyinov, 1931) MAL (AMP) + + 

Gammarus insensibilis Stock, 1966 MAL (AMP) + – 
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Heterotanais oerstedi (Kroyer, 1842) MAL (TAN) – + 

Lekanesphaera hookeri (Leach, 1814) MAL (ISO) + + 

Leptocheirus pilosus Zaddach, 1844 MAL (AMP) – + 

Mesopodopsis slabberi (Van Beneden, 1861) MAL (MYS) – + 

Microdeutopus sp.Costa, 1853 MAL (AMP) + – 

Orchestia gammarellus (Pallas, 1766) MAL (AMP) + – 

Orchestia platensis Hayat, 1998 MAL (AMP) + – 

Palaemon elegans Rathke, 1837 MAL (DEC) + – 

Palaemon longirostris Milne-Edwards, 1837 MAL (DEC) – + 

Palaemonetes varians (Leach, 1814) MAL (DEC) + – 

Palaemonetes zariquieyi Sollaud, 1939 MAL (DEC) – + 

Proasellus coxalis (Dollfus, 1892) MAL (ISO) + + 

Procambarus clarkii (Girard, 1852) MAL (DEC) + + 

Total species 93 58 67 

Exclusive species  26 35 
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Table S2. Summary of the LME results for the variable species richness 

The significance between regions was assessed using the conditional F-test of the intercept 

values (see Table S3), while the slopes inform about the relationship between the dependent 

variable (species richness) and the independent variables (continuous environmental 

parameters). Slope values of independent variables retained in each mixed effects model are 

shown for each region; when non-significant differences were detected for the slopes of each 

region (i.e., the same slope for both regions) then ‘overall slope’ is shown. The t-test obtained 

from each mixed effects model, indicating the significance of the slopes, is shown. The regional 

effect (‘Region’, i.e. Archipelago v. Mainland) is highlighted in bold. Cond, conductivity; Pho, 

phosphate; DIN, dissolved inorganic nitrogen; Chl-a, chlorophyll-a 

  Slopes   

Species richness Variable Archipelago Mainland Overall t-Student P-value 

 Phosphate   0.74 3.24 0.002 

Cladocera Conductivity   –1.81 –7.93 0.000 

d.f. = 121 Region × DIN –0.66 –0.03  3.31 0.001 

       

       

Ostracoda Size   0.29 4.12 0.000 

d.f. = 123 Chl-a   0.41 2.17 0.032 

 Region      

       

Copepoda Conductivity   –0.58 –2.75 0.007 

d.f. = 123 Temperature  –1.18 –2.27 0.025 

 Region      

       

 Chl-a   –0.59 –2.15 0.034 

Malacostraca Region × DIN 0.43 –0.15  –2.18 0.032 

d.f. = 118 Region × Pho 0.97 –0.63  –2.56 0.012 

 Region × Cond 1.70 0.20  –2.51 0.014 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

Page 30 of 30 

Table S3. Complementary table to Table S2, where intercept values are shown 

P-values < 0.05 show significant differences in the intercept values of Mainland and 

Archipelago, i.e. significant differences of species richness between both regions 

Intercept 

Species 

richness 
Archipelago Mainland F d.f.1 d.f.2 P-value 

Cladocera 2.75 2.63 0.19 1 121 0.667 

Ostracoda –0.03 –0.48 6.8 1 123 0.010 

Copepoda 2.86 4.25 62.51 1 123 <0.0001 

Malacostraca –0.36 1.79 6.5 1 118 0.012 

 


