
1 
 

Evolution of Lichens 

H. Thorsten Lumbsch and Jouko Rikkinen 

 

 

1 INTRODUCTION—THE DIVERSITY OF FUNGAL LIFESTYLES 

 

Fungi represent one of the three major crown lineages of eukaryotes, besides plants and animals. 

For their nutrition, fungi either decompose organic material or form symbiotic associations with 

other organisms. These symbiotic relationships vary from parasitic lifestyle, such as the rice blight 

fungus (Partida-Martinez and Hertweck 2005), which causes damage to rice seedlings and uses 

endosymbiotic bacteria for toxin production, to mutualistic relationships, such as endomycorrhizal 

relationships, the origin of which coincides with the early evolution of land plants (Simon et al. 

1993). There is a continuum among symbiotic associations, from mutualistic to parasitic lifestyles, 

and some fungal species are known to exhibit different kinds of relationships with different hosts, 

such as species in the genus Colletotrichum, which can form mutualistic relationships with some 

plants and have parasitic relationship with other hosts (Redman, Dunigan, and Rodriguez 2001). In 

addition, at an evolutionary scale, changes of nutritional modes (parasitism versus mutualism) and 

inter-kingdom host switches have been shown to be common in fungi (Spatafora et al. 2007; 

Arnold et al. 2009). 

Given that all fungi are heterotrophic, it is not surprising that many of them have developed 

symbiotic relationships with photoautotrophic organisms, such as cyanobacteria, algae, and land 

plants. Fungal relationships with vascular plants are mostly in form of mycorrhiza, such as 

ectomycorrhizal (Agerer 1991; Wiemken and Boller 2002), endomycorrhizal (Bonfantefasolo and 

Spanu 1992), and the unique orchid mycorrhizal associations, in which plant seedlings are, from 

the very beginning, dependent on symbiotic fungi as carbohydrate source (Rasmussen 2002; 

Dearnaley 2007; Rasmussen and Rasmussen 2009). In addition, symbiotic relationships of fungi 

with early diverging land plants (i.e., liverworts, hornworts, and mosses) are diverse and 

ecologically important (Felix 1988; Davey and Currah 2006; Stenroos et al. 2010). Fungal associates 

with cyanobacteria and algae are just as diverse as those with plants and include not only lichen-

forming fungi (Hawksworth 1988; Nash 2008) but also algicolous fungi (Hawksworth 1987; 

Kohlmeyer and Volkmann-Kohlmeyer 2003; Jones 2011), which are either parasites on algae or 

cyanobacteria (Kohlmeyer and Demoulin 1981; Sonstebo and Rohrlack 2011; Gerphagnon et al. 
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2013) or form mutualistic relationships, the so-called mycophycobioses (Kohlmeyer and 

Kohlmeyer 1972; Hawksworth 1988; Selosse and Letacon 1995; Kohlmeyer and Volkmann-

Kohlmeyer 2003; Suryanarayanan et al. 2010). Another case of relationships of a fungus in the 

phylum Glomeromycota, which mostly includes species forming endomycorrhizal relationships, is 

the cyanobacterial-fungal relationship between Geosiphon pyriforme and Nostoc (Gehrig, 

Schussler, and Kluge 1996; Schussler and Kluge 2001; Kluge et al. 2002; Schussler 2002), in which 

the cyanobacteria are located within the coenocytic cell of the fungal host. If the fungal-

algal/cyanobacterial relationship is exosymbiotic (versus the endosymbiotic relationship of 

Geosiphon and Nostoc) and the fungal partner is the exhabitant (versus inhabitant in algicolous 

fungi), we call this type of association a lichen. Hence, lichens are not unique symbiotic 

associations but merely one type of a large diversity of relationships of fungi with 

photoautotrophic organisms. 

The majority of fungi forming lichens belong to the phylum Ascomycota, whereas a smaller 

number of species is also known from derived groups within Basidiomycota (Nash 2008). While 

the number of lichenized basidiomycetes was often assumed to be small, recent molecular studies 

suggest that the number of species is actually much higher—albeit drastically lower than the 

number of lichenized Ascomycota (Lawrey et al. 2009; Dal-Forno et al. 2013; Lücking et al. 2014). 

Within Ascomycota, none of the early diverging clades, such as the subphyla Taphrinomycotina, 

Saccharomycotina, and the Pezizomycetes, have any lichenized species (Lumbsch 2000; Hibbett et 

al. 2007; Schoch et al. 2009; Lumbsch and Huhndorf 2010) and other diverse clades, such as 

Sordariomyceta (including Leotiomycetes and Sordariomycetes), also lack lichen-forming species 

(Lumbsch and Huhndorf 2007). Lichen-forming ascomycetes can be found in the classes 

Arthoniomycetes, Coniocybomycetes (Prieto et al. 2013), Dothideomycetes, Eurotiomycetes, 

Lichinomycetes, and, especially, Lecanoromycetes (Hibbett et al. 2007; Schoch et al. 2009; 

Lumbsch and Huhndorf 2010). The latter is the second species-rich class after Dothideomycetes, 

with approximately 15,000 species (of the roughly 18,500 lichenized Ascomycota currently 

accepted [Feuerer and Hawksworth 2007]), and the vast majority of the species are lichen-

forming. Only few species in this class either have a facultatively lichenized lifestyle (Wedin, 

Döring, and Gilenstam 2004) or are lichenicolous fungi derived from lichenized ancestors (Divakar 

et al. 2015). 

Photosynthetic partners in the lichen symbiosis include cyanobacteria and/or algae (Friedl 

1995; Friedl and Bhattacharya 2002; Rikkinen 2002; Rikkinen 2013). The majority of algae in lichen 
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symbioses belongs to green algae (Chlorophyte), but also heterokont (Stramenopiles) algae, such 

as brown or yellow-green algae, are known to form associations with fungi. In addition to fungal 

and photosynthetic partners, bacteria and additional fungi (endolichenic and lichenicolous) are 

regularly found in the lichen symbiosis (Lawrey and Diederich 2003; Cardinale et al. 2008; Arnold 

et al. 2009; Hodkinson and Lutzoni 2009; Hodkinson et al. 2012; Erlacher et al. 2015). In many 

cases, their role is not well understood, but their presence is far from random and rather shows a 

clear pattern not only regarding phylogenetic relationships but also at an ecological scale 

(Hodkinson et al. 2012; U’Ren et al. 2012). 

Lichen-forming species are a diverse group of fungi, with almost 20% of currently known 

fungal species participating in lichen associations, and they occur in all terrestrial ecosystems, 

from Polar Regions to the tropics. Although they are more prominent in arctic-alpine vegetation 

types, the diversity in the tropics, especially in wet montane forests, is actually higher (Sipman and 

Harris 1989; Lücking et al. 2009b). Lichens are able to grow on a wide variety of terrestrial 

substrates, including rocks, soil, wood, bark, and also living leaves of plants. A few species occur in 

the intertidal zones of coastal habitats or are submerged in mountain streams. Unlike most other 

fungi, lichens form extensive vegetative structures (thalli), which house the photosynthetic 

partners. The thalli can have different forms, including crustose, foliose, and fruticose growth 

forms (Figure 1). The latter resemble small shrubs; foliose lichens are distinctly flattened; and 

crustose species grow as a crust over or within their substrate. When isolated, lichen-forming 

fungi (mycobionts) do not generally form these specialized structures but grow as mold-like 

colonies comparable to those of many other ascomycetes. The typical growth form of each 

lichenforming fungus is usually species-specific, with the exception of some species that associate 

with both green algae and cyanobacteria and then can, in some cases, form different types of 

thalli with the two contrasting photobionts, such as the fruticose cyanomorphs and foliose 

chloromorphs of some Sticta species (James and Henssen 1976; Armaleo and Clerc 1991; Magain, 

Goffinet, and Serusiaux 2012). The conspicuous thallus structures of lichens partly explain why for 

a long time their symbiotic nature was not understood but they were thought to represent a 

separate group of organisms. DeBary and Schwendener discovered in the 1860s (Honegger 2000) 

that lichens are actually symbiotic entities consisting of one fungal and one to several algal/ 

cyanobacterial partners. 

How often has the lichen lifestyle evolved in fungi? Although it is clear that lichen-forming 

Ascomycota and Basidiomycota originated independently, the question of lichenization within 
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Ascomycota is more difficult to answer. As already mentioned, lichen-forming species are not 

randomly distributed over the tree of the phylum but are concentrated in the derived 

Leotiomyceta. While some analyses suggested a single origin of lichenization—or at least could not 

rule it out (Lutzoni, Pagel, and Reeb 2001)—other analyses suggested multiple such events within 

ascomycetes (Gargas et al. 1995; Schoch et al. 2009). In this connection, some recent experiments 

demonstrating latent capacity for mutualism in both fungi and algae are of special interest. (Hom 

and Murray 2014) performed an experiment in which obligate mutualism between the 

nonsymbiotic model organisms Saccharomyces cerevisiae (ascomycetous yeast) and 

Chlamydomonas reinhardtii (green alga) was induced in an environment requiring reciprocal 

carbon and nitrogen exchange. Further, this capacity for mutualism was shown to be 

phylogenetically broad, as it was also exhibited by other species of algae and yeasts. The 

experiments demonstrated that under speci.c conditions, environmental change induced free-

living species to become mutualists. This evidence is especially interesting in the context of the 

previously described diversity of symbiotic relationships of fungi with algae and/or cyanobacteria 

(parasitismmutualism and obligate or facultative mutualism) and in the context of the fact that the 

nature of symbiotic relationships in fungi has changed over evolutionary times (shifts between 

different nutritional modes, origin of lichenicolous fungi or saprobionts from lichenized ancestors, 

and so on). Hence, the question whether lichenization happened once or several times 

independently in Ascomycota may inherently require an unjustified oversimplification of biological 

complexity, since the plasticity of symbiotic relationships cannot really be expressed in coding 

schemes required for character reconstruction analyses. 

 

 

2 MOLECULAR EVIDENCE 

 

Traditionally, lichens were thought to represent an ancient group within fungi or at least within 

the crown group of fungi (Church 1921; Smith 1921), an idea that has been since resurrected in 

the “protolichenes hypothesis” (Eriksson 2005; Grube and Hawksworth 2007; Lipnicki 2015). 

However, lineages of Ascomycota that include lichenforming species originated sometime 

between the Devonian and the early Carboniferous (Lücking et al. 2009a; Gueidan et al. 2011; 

Prieto and Wedin 2013; Beimforde et al. 2014). Beimforde et.  al. (2013) estimated the crown age 

of all ascomycete classes that chiefly consist of lichenized forms at or after the Carboniferous: 
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Arthoniomycetes in the Permian, Lecanoromycetes in the Permian or Carboniferous, and the split 

of Coniocybomycetes and Lichinomycetes in the Triassic or Permian. The crown ages for 

Dothideomycetes and Eurotiomycetes that have a smaller percentage of lichenized species were 

estimated as being in the Carboniferous or Permian. This indicates that lichens—at least those 

related to extant lichen-forming fungi—have originated during the Carboniferous and suggests 

that the lichen’s lifestyle has evolved relatively recently in the fungal tree of life, which dates back 

to the Proterozoic (Lücking et al. 2009a). This means that when the first lichen-forming fungi 

evolved, land plants such as several bryophyte and pteridophyte groups and progymnosperms 

already existed. Subsequently, waves of diversification during the Jurassic and Cretaceous created 

the diversity at higher phylogenetic levels within the lichen-containing clades (Amo de Paz et al. 

2011; Prieto and Wedin 2013). Prieto and Wedin (2013) pointed out that the major diversi.cation 

in Lecanoromycetes (especially the speciesrich subclasses Lecanoromycetidae and 

Ostropomycetidae) coincides with the major diversi.cation events in angiosperms. Angiosperms 

provided many new environments for epiphytic lichens. Interestingly, the two most speciesrich 

families of lichen-forming fungi, Parmeliaceae and Graphidaceae (together almost 5000 spp.), 

contain a large percentage of species growing on angiosperm bark (Jaklitsch et al. 2015). While 

strict substrate speci.city is relatively rare in lichens, numerous epiphytic species are more or less 

confined to a rather narrow range of substrates in terms of bark pH, water capacity, and hardness 

of the substrate (Brodo 1973; Spier, van Dobben, and van Dort 2010; Ellis 2012). Angiosperms 

have a higher diversity of these characters and hence may have contributed to the explosive 

diversification (Givnish 2015) of these two families. Graphidaceae originated during the Jurassic, 

whereas the family Parmeliaceae appears to be much younger and originated in the Cretaceous 

(Amo de Paz et al. 2011; Rivas Plata 2011; Kraichak et al. 2015). However, the relatively recent 

bursts in speciation contributed mainly to the current species diversity in both families. In 

Graphidaceae, the genus Ocellularia, which is unique in having sterile tissue within its hymenium, 

a potential key innovation (Kraichak, Luecking, and Lumbsch 2015), started to increase its 

diversi.cation during the early Paleogene. In Parmeliaceae, the increase in speciation rates in the 

genera Usnea and Xanthoparmelia (however, the latter does not include epiphytic species) 

appears to have started in the Oligocene (Kraichak et.al. 2015). The higher-level diversity 

subsequently gave rise to the current species diversity, which mostly originated between the 

Eocene and Pleistocene, primarily during the Neogene. The temperate to boreal genus Biatora is 

comparatively old and seems to have predominantly diversified during the Eocene and Oligocene 
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(Printzen and Lumbsch 2000). In contrast, much of the current species diversity in lichen-forming 

fungi may be much younger. The majority of studies so far have indicated major species 

diversi.cation during the Neogene. The main diversification was estimated to have happened 

during the Miocene in the temperate to boreal genus Melanelixia (Leavitt et al. 2012b) and the 

chiefly Neotropical genus Oropogon (Leavitt, Esslinger, and Lumbsch 2012). The genera 

Flavoparmelia (Del-Prado et al. 2013), Melanohalea (Leavitt et al. 2012), Montanelia (Divakar et.al. 

2012), Macaronesian species of Nephroma (Sérusiaux et al. 2011), and the Xanthoparmelia pulla 

group (Amo de Paz et al. 2012) appear to have diversified during the Miocene and Pliocene. 

In some lichen groups, such as the temperate to boreal genera Letharia, Diploschistes, and 

North American Xanthoparmelia species, the major diversifcation was estimated to have occurred 

in the even more recent past, during the Pleistocene (Rivas Plata 2011; Leavitt et al. 2013; 

Altermann et al. 2014). While improved methods of using relaxed molecular clocks have improved 

age estimates, and the estimates from recent studies seem to coalesce around similar times, these 

methods are dependent on using fossil evidence for calibration, and as discussed below, the fossil 

record for lichens is far from being complete or easy to interpret. In addition, it is known that 

branch lengths in a chronogram are not only influenced by the age of a taxon but also by other 

factors such as different substitution rates, which are often caused by differences in generation 

time (Lumbsch et al. 2008), switches of nutritional mode (Lutzoni and Pagel 1997), or frequency of 

founder effects in speciation processes (Wang et al. 2010). All these have been demonstrated to 

occur in fungi, and hence, we should keep in mind that an age estimate derived from molecular 

data should always be regarded only a hypothesis. 

 

 

3 THE FOSSIL RECORD 

 

The fossil record seems at odds with the molecular dating approaches, with fossils being 

interpreted as lichens such as Thucomyces (Hallbauer and van Warmelo 1974; Hallbauer, Jahns, 

and Beltman 1977) and lichen-like fossils (Yuan, Xiao, and Taylor 2005) from the Proterozoic, the 

genus Farghera from the Cambrian-Ordovician boundary (Retallack 2009), and thalloid 

impressions from the early Silurian (Tomescu and Rothwell 2006)—all of them existed well before 

the classes originated that contain extant lichens. In addition, the Paleozoic Prototaxites (Taylor 
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and Osborn 1996; Selosse 2002; Boyce et.al. 2007; Edwards, Axe, and Honegger 2013; Retallack 

and Landing 2014) has been repeatedly suggested to represent a lichen-like organism. 

The reasons for this incongruence of molecular and fossil evidences are multifold. First, given 

the relatively unspecific morphology of lichens, identifying a structure in the fossil record as a 

lichen is difficult and virtually impossible if both the fungal and algal partners are not present and, 

in addition, a thallus is formed (Taylor, Krings, and Taylor 2015). Second, the relationships of fungi 

and algae can vary a lot, as discussed above, and hence, the presence of fungal hyphae in close 

proximity of algae or cyanobacteria does not necessarily mean that this relationship was lichen-

like but could also represent other types of relationships such as algicolous fungi, which are found 

in numerous different groups of ascomycetes. Third, even if some of the early fossils represent 

mutualistic relationships of fungi and algae or cyanobacteria, this does not mean that those fungi 

were related to extant lichenized fungi. It is logical to assume that fungi suffered mass extinctions 

similar to other organismal groups, but we lack the fossil evidence mainly because of the simplicity 

and often highly ephemeral nature of structures in these organisms. For example, within 

Ascomycota, the early diverging subclass Taphrinomycotina consists of only about 100 species in 5 

classes with vastly different morphology and ecology (Jaklitsch et.al. 2015): Archaeorhizomycetes, 

which are sterile hyphae in soil; Neolectales, which are terrestrial fungi morphologically 

resembling Leotiales; parasites in the lungs of vertebrates that are placed in 

Pneumocystidomycetes; fission yeasts in Schizosaccharomycetes; and plant parasites in 

Taphrinomycetes. It appears that these current species are likely remnants of an originally much 

larger group. Hence, it cannot be ruled out that many early lichen-like associations were formed 

by fungi that have since become extinct. 

In addition, some of the fossil evidence is incomplete and therefore difficult to interpret. For 

example, in Thucomyces, no photobiont could be found, and the structures have also been 

interpreted as abiotic pseudofossils or filaments of bacteria, making the report at least doubtful. 

The 400 Mya lichen-like fossils from the Proterozoic show a close contact of fungal hyphae and 

cyanobacterial cells (Yuan, Xiao, and Taylor 2005), but the exact nature of the association is 

unclear, since modern fungal hyphae regularly occur in cyanobacterial biofilms on soil or rocks and 

the fossil could also represent an algicolous fungus. In addition, the phylogenetic placement of the 

fungal partner in this fossil remains unclear. In the case of the genus Farghera (Retallack 2009), 

and the thallus-like impressions from the early Silurian (Tomescu and Rothwell 2006), the evidence 

is incomplete, since, in both cases, the presumed photobiont has not been documented and the 
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structures have also been interpreted differently by other authors (Taylor, Krings, and Taylor 

2015). Currently, there is no unambiguous evidence for the presence of lichen symbioses in the 

fossil record before the Devonian. 

Devonian fossils that were interpreted as lichens include the genus Winfrenatia (Taylor, 

Hass, and Kerp 1997; Karatygin, Snigirevskaya, and Vikulin 2009). However, the thallus structure of 

this fossil is not very well defined and does not resemble that of extant lichens. Further, different 

types of cyanobacteria were found, and an alternative interpretation could be that the fossilized 

structure represents a biofilm with cyanobacterial cells and fungal hyphae. In any case the hyphae 

do not appear to belong to an ascomycete, since they do not show septa. In addition, the 

Devonian fossils Flabellitha (Jurina and Krassilov 2002) and Spongiophyton (Taylor et.al. 2004) are 

difficult to interpret, since the photobiont presence remains uncertain and the fungal structures 

do not closely resemble those of extant lichens. 

The three oldest fossils that morphologically agree with extant lichens are 

Cyanolichenomycites devonicus and Chlorolichenomycites salopensis from the Devonian 

(Honegger, Edwards, and Axe 2013) and Honeggeriella from the lower Cretaceous (Matsunaga, 

Stockey, and Tomescu 2013). Cyanolichenomycites is a sterile, dorsiventral thallus, apparently 

formed by an ascomycete and a nostocoid photobiont, whereas Chlorolichenomycites, albeit 

similar in structure, is formed by an ascomycete, with a photobiont that appears to be a 

eukaryotic alga. Both species have a stratified thallus similar to those found in extant foliose 

lichens. Based on the septate hyphae, they were tentatively interpreted as belonging to 

Pezizomycotina. These fossils were so well preserved that in Chlorolichenomycites, even 

endolichenic bacteria and fungi were identified (Honegger, Axe, and Edwards 2013). These two 

fossils are estimated 415 Myr. Given their age, they either could represent a clade of lichenized 

Pezizomycotina that became extinct or might be seen as support for the hypothesis that 

lichenization evolved well before the split of the major extant classes with lichenized species and 

that some of the crown ascomycetes would thus be derived from lichenized ancestors (Kranner 

and Lutzoni 1999; Lutzoni, Pagel, and Reeb 2001). Unfortunately, the next oldest fossil that has so 

far been confidently identified as lichen, that is, Honeggeriella, is more than 300 Myr younger. 

While it is not yet possible to trace the early evolution of lichenized ascomycetes from the fossil 

record, Honegeriella lived during the Cretaceous, when all major higher-level clades of lichenized 

fungi already existed (Beimforde et al. 2014). Thus, it fills an important gap between the Devonian 

fossils and the much younger amber fossils. Honeggeriella is a stratified foliose or squamulose 
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lichenized ascomycete, with an alga as photobiont, and anatomical studies could show the 

mycobiont-photobiont interfaces characterized by intracellular haustoria. However, once again, its 

exact affinities to extant lichens cannot be determined, since it only represents a vegetative 

thallus, and similar thallus anatomies have independently evolved in unrelated groups of 

ascomycetes. 

Fossils preserved in Cenozoic amber have shown that several lineages of lichen-forming 

fungi have conserved their morphological adaptations (Figure 2), which indicates that numerous 

genera have remained phenotypically stable over the last million years—this includes Anzia, 

Calicium, and Chaenotheca in Baltic amber (Rikkinen and Poinar 2002; Rikkinen 2003; Beimforde 

et al. 2014), estimated approximately 40 Myr (Poinar 1992; Standke 1998); Phyllopsora and 

parmelioid lichens in Dominican amber (Poinar, Peterson, and Platt 2000; Rikkinen and Poinar 

2008), estimated to be between 15 and 20 Myr (Schlee 1990; Iturralde-Vincent and MacPhee 

1996); and also an alectorioid or oropogonoid lichen in Bitterfeld amber (Kaasalainen et al. 2015), 

which is at least 23.8 Myr old. Hence, while even well-preserved amber fossils can be very difficult 

to place (Hartl et al. 2015; Kettunen et.al. 2015), the interpretation of others can be made, with 

some confidence, to generic level or at least groups of genera. These fossils fall within the 

estimated dates for diversification of those genera using molecular markers. 

However, morphological similarity with extant lichens does not rule out misinterpretations. 

Recently, it was shown that the Baltic amber fossil Alectoria succini (Mägdefrau 1957), which has 

been used as a calibration point in molecular clock analyses (Amo de Paz et al. 2011; Prieto and 

Wedin 2013), is in fact not a lichen but probably root material (Kaasalainen et al. 2015). This 

reminds us that great care should be taken when selecting fossils, since the use of age constraints 

has significant effects on divergence time estimates (Taylor and Berbee 2006). 

 

 

4 CONCLUSIONS 

 

Thanks to recent spectacular discoveries of well-preserved fossils from the Devonian and 

Cretaceous and a series of discoveries of amber fossils, in tandem with improved molecular clock 

analyses and larger taxon sampling in molecular studies, our knowledge of the evolution of lichens 

improved dramatically over the last decades. The earliest fossils that can be unambiguously 

identified as lichens and the results from molecular clock approaches indicate that extant lichens 
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may have originated during the Devonian. On the other hand, there is also a growing body of 

evidence that many extant lichens are not ancient but have evolved relatively recently in the 

fungal tree of life. In any case, there are still many uncertainties and especially the early fossils 

should be interpreted in a holistic framework that keeps in mind the extant diversity of symbiotic 

associations between fungi and phototrophic organisms. Both intensive search for fossils that 

bridge the large gaps between the known lichen fossils and new molecular phylogenies that 

include more lichenized taxa of uncertain phylogenetic placement, such as the enigmatic 

Aphanopsidaceae, Thelocarpaceae, and Vezdaeceae (Reeb, Lutzoni, and Roux 2004; Lumbsch, 

Zimmermann, and Schmitt 2009; Printzen et.al. 2012; Flakus and Kukwa 2014) or the basically 

unknown Moriolaceae (Hedlund 1895; Keissler 1934), will be necessary to further elucidate the 

evolution of these symbiotic organisms. 
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FIGURES 

 

 
 

Figure 1 Examples of extant lichens. (a) Closely appressed foliose lichen (Parmeliopsis hyperopta, 

Lecanorales). (b) Apothecia of crustose epiphytic lichen (Lecanora argentata, Lecanorales). (c) 

Green algal photobionts of epiphytic lichen (Parmelia sulcata, Lecanorales). 
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Figure 2 Examples of fossil lichens. (a) Closely appressed foliose lichen preserved in Bitterfeld 

amber. (b).Apothecium of crustose epiphytic lichen preserved in Bitterfeld amber. (c) Green algal 

photobionts of foliose epiphytic lichen (Phyllopsora dominicanus) preserved in situ in Dominican 

amber. 


