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Abstract 

Conifers of the endemic species Araucaria humboldtensis on Mont Humboldt in New Caledonia 

exhibit extensive resin exudation. The resin flows of these threatened trees are here shown to be 

induced by two beetle species, which bore into branches and branchlets, leading to abundant 

outpouring of resin, which gradually solidifies into often drop-shaped resin bodies. The exudate is 

colonized by a resinicolous and likely insect-vectored ascomycete, Resinogalea humboldtensis, 

which is only known from Mont Humboldt. The fungus grows into fresh resin and eventually 

develops ascomata on the surface of solidifying resin. The solidified resin is also colonized by 

another fungus, a dematiaceous hyphomycete. Based on protein coding (CO1, CAD, ArgK) and 

ribosomal (LSU) genes, the larger branch-boring beetle is a weevil of the tribe Araucariini, which 

represents the sister group of all other cossonine weevils. The smaller beetle species belongs to 

the longhorn beetles (Cerambycidae). The strong host specificity of the Araucariini, along with the 

occurrence of two unique fungi, suggests that the resinassociated community is native and has 

evolved on the endemic conifer host. The formation of large amber deposits indicates massive 

resin production in the past, but the environmental triggers of exudation in Mesozoic and 

Cenozoic ecosystems remain unclear. Our observations from Mont Humboldt support the notion 

that the occurrences of small drop-shaped amber pieces in Triassic to Miocene amber deposits 

were linked to ancient insect infestations. 

  



Introduction 

 

Some conifers and angiosperms produce large amounts of resin from wounds in the wood in order 

to seal injuries and to prevent microbial infections and infestations by arthropods (Farrell et al. 

1991; Gershenzon and Dudareva 2007; Howe and Schaller 2008). Due to its compounds 

(terpenoids or phenolics), resin not only provides a mechanical barrier but also protects plants 

through its toxic properties (Bednarek and Osbourn 2009; Rautio et al. 2011; Sipponen and 

Laitinen 2011). 

Fossilized plant resins (ambers) date back to the Carboniferous 320 million years ago (Bray 

and Anderson 2009), but are found only in trace quantities until the Early Cretaceous (Schmidt et 

al. 2012). In contrast, massive amber deposits have been preserved in Cretaceous  (Barremian-

Campanian) and in Eocene to Miocene sediments (Penney 2010). Worldwide, accumulation of this 

amber occurred in widespread Cretaceous and Cenozoic forests with resinous tree species. 

However, it remains uncertain why the trees produced so much resin at these particular times. 

Climate changes, the advent of wood-infesting insects and microorganisms, and/or even the 

appearance of certain conifer or angiosperm species might have triggered the massive resin 

outpourings (Schmidt et al. 2012; Labandeira 2014; Dal Corso et al. 2015). 

Mesozoic resin-producing tree species typically include conifers of the Araucariaceae and the 

extinct family Cheirolepidiaceae (Langenheim 1995, 2003; Roghi et al. 2006a, b; Nohra et al. 2015). 

Later, probably since the Late Cretaceous and early Cenozoic, angiosperms such as 

Dipterocarpaceae (Rust et al. 2010) and Fabaceae (Langenheim 1995, 2003) started to contribute 

significantly to the amber fossil record. Among today’s gymnosperms, many Pinaceae and 

Araucariaceae produce large quantities of resin (Langenheim 1995, 2003). While species of the 

former family are widespread in the Northern Hemisphere, extant Araucariaceae are 

predominantly found in mid- and southern latitudes (Borneo, Philippines, Chile, Argentina, 

southern Brazil, New Caledonia, New Zealand, Norfolk Island, Australia and New Guinea) with a 

major diversity centre in New Caledonia (Eckenwalder 2009). The disjunct extant distribution and 

the fossil record of the latter family suggest that araucarian conifers were more widespread in the 

past and probably represented a major component of Mesozoic forest ecosystems in both 

hemispheres (e.g. Lele 1956; Miller 1977; Stockey 1982; Hill 1995; Kunzmann 2007). 

Presently the island of Grande Terre in New Caledonia has 19 Araucariaceae species of which 

13 are endemic (Jaffré 1995; Gaudeul et al. 2012), and it has often been termed a Gondwanan 



refuge (Holloway 1979; Morat 1993a, b). However, recent studies suggest that the species 

richness of New Caledonia’s araucarians is rather a result of adaptive radiation in the post-Eocene 

era, mainly forced by unusual edaphic conditions, i.e. the widespread occurrence of ultramafic 

soils (Setoguchi et al. 1998; Gaudeul et al. 2012; Escapa and Catalano 2013; Kranitz et al. 2014; 

Grandcolas et al. 2015). Nevertheless, with an evolutionary history of more than 200 million years, 

Araucariaceae are among the oldest extant conifers (Kunzmann 2007). In this respect, the conifer 

forests of New Caledonia offer an optimal site for the study of plant–environment interactions 

that are responsible for triggering resin production, past and present. 

Here we show that the widespread and substantial resin exudation of Araucaria 

humboldtensis Buchholz 1949, an endangered (IUCN red list status) endemic New Caledonian 

mountain conifer, is induced by at least two species of beetles and that the exuded resin provides 

the habitat and nutrient source for at least two unique types of resinicolous fungi. Araucaria 

humboldtensis occurs sporadically in the montane forests of Mont Mou, Mont Kouakoué and 

Montagne des Sources, but only close to the summit of Mont Humboldt is it the dominant 

timberline species (Fig. 1a). Our analysis of the plant–animal–fungal interactions at this unique 

location indicates that the wood-boring beetles are not recently introduced species, but native to 

New Caledonia and ecologically important in providing continuous substrate for two endemic, 

potentially ancient fungi. Our overall observations also provide insights into possible means of 

resin production and amber formation in earth history: for example, the similarity between the 

Mont Humboldt resin droplets and those preserved as Triassic amber is striking. We propose that 

not all ancient resin productions should necessarily be interpreted as anomalies caused by specific 

triggers such as high humidity (Dal Corso et al. 2015) or fire, but may have accumulated over time 

in humid forest environments. There is some indication also that the ancient resin surfaces may 

have supported specialized communities rather similar to that now described from Mont 

Humboldt (McKellar et al. 2011; Tuovila et al. 2013). 

 

 

Materials and methods 

 

Field work 

Resin flows of Araucaria humboldtensis on Mont Humboldt were examined and photographed in 

October 2005 and in November 2011. Samples of resin with fungi and woodboring insects were 



taken on 9 November 2011 from trees close to the refuge (elevation 1345 m, coordinates 

21°52’57.52’’S, 166°24’46.20’’E), approximately 300 m north of the building (elevation 1320 m, 

coordinates 21°52’46.79’’S, 166°24’49.17’’E), and along the summit trail approximately 300 m east 

of the shelter (elevation 1380 m, coordinates 21°52’54.89’’S, 166°24’55.85’’E). Fungi were stored 

dry in sealed containers, and insects were preserved in 80% ethyl alcohol for storage and 

transport. 

 

Repository 

Specimens of Resinogalea humboldtensis are deposited in the herbaria at the MNHN Paris and in 

Helsinki (see Rikkinen et al. 2016). Lumps of resin with the dematiaceous hyphomycete are housed 

in the Geoscientific Collections of the Georg August University Göttingen (GZG.BST.21894a– e). 

Beetle specimens are housed in the collection of the laboratory Géosciences Rennes (University 

Rennes I), collection numbers VP-NC-221 (Araucariini) and VP-NC-202 (Cerambycidae). 

 

Microscopy and imaging 

Sampleswere investigated under a Carl Zeiss StereoDiscovery V8 dissection microscope, and under 

a Carl Zeiss AxioScope A1 compound microscope, each equipped with a Canon EOS 5D digital 

camera. In some instances, incident and transmitted light were used simultaneously. Figure 4a, c–

e shows digitally stacked photomicrographic composites of up to 150 individual focal planes, 

obtained by using the software package HeliconFocus 6.0 (HeliconSoft, http://www.heliconsoft. 

com) for an enhanced illustration of three-dimensional structures. 

 

Cultivation of resinicolous fungi 

For in vitro cultivation experiments, mycelia of the dematiaceous hyphomycete and spores from 

the mazaedium of Resinogalea were extracted and transferred to diverse sugar-based media: malt 

yeast extract agar (MYA, Ahmadjian 1967), malt extract agar (MEA, Blakeslee 1915) and potato 

dextrose agar (PDA, Roth). Additionally, Canada balsam and/or small pieces of Araucaria 

humboldtensis resin were provided as potential nutrient sources for the fungi. 

 

DNA extraction and amplification 

DNA was isolated using DNeasy Blood and Tissue Kit (Qiagen) by following the manufacturer’s 

protocol for tissue samples. For the beetles, we amplified and sequenced fragments of the 



mitochondrial gene cytochrome oxidase 1 (COI), the D2–D3 segment of the nuclear large 

ribosomal subunit (28S), the nuclear protein arginine kinase (ArgK) and carbamoyl-phosphate 

synthase 2—aspartate transcarbamylase—dihydroorotase (CAD). The ITS region of the 

resinicolous fungi was amplified using primers ITS1F and ITS4. All primers used in this study are 

provided in supplementary information (Table S1). PCRs were performed in a 25-ll volume 

containing final concentrations of 0.5 lM of each primer, 0.5 lM of each dNTP, 1.25 units of GoTaq 

Hot Start DNA polymerase (Promega), Green PCR buffer with a final concentration of 1.5 mM 

MgCl2 and 1–2 ll template DNA. A typical PCR cycle consisted of 2 min initial heating to activate 

the DNA polymerase and to ensure that the template DNA has denatured, 40 cycles of 94°C for 

45–60 s of denaturation, 50–56°C for 45–60 s of annealing, and 72°C for 45–60 s of elongation and 

a final elongation step at 72°C for 10 min. PCR products were purified using Quick PCR Purification 

Kit from Qiagen. PCR products were sequenced in both directions with a MegaBACE 1000 

automated sequencing machine and DYEnamic ET Primer DNA Sequencing Reagent (Amersham 

Biosciences, Little Chalfont, UK). All sequences were assembled and edited using BioEdit version 

5.0.9 (Hall 1999) and SeaView 4 (Gouy et al. 2010). 

 

Phylogenetic analysis of the beetles 

Since no adults of the two beetle species were available for species identification, we 

substantiated morphological diagnostics with comprehensive molecular phylogenetic analysis. We 

combined our DNA sequence data obtained from four genes (CO1, LSU, ArgK and CAD) of the large 

beetle species and from the CO1 gene for the small beetle species with data from the National 

Center for Biotechnology Information (NCBI). All accession numbers are provided in 

supplementary notes (Table S2). Data sets for each gene were aligned separately using MAFFT 

version 6 (Katoh and Toh 2008) with subsequent manual adjustment to minimize the number of 

possible false homologies using BioEdit 5.0.9. (Hall 1999) and SeaView 4 (Gouy et al. 2010). 

Unalignable regions and introns were excluded by using the mask function in BioEdit 5.0.9. All 

genes were subsequently combined in a super matrix using BioEdit 5.0.9. Bayesian analyses were 

performed using Markov chain Monte Carlo (MCMC) in MrBayes 3.1.2 (Ronquist and Huelsenbeck 

2003). Evolutionary models with six substitution rates, gamma distributed rate variation and a 

proportion of invariable sites (GTR + I + G) were applied to each gene separately by allowing 

MrBayes to estimate specifications for the gamma shape parameter, proportion of invariance and 



rate matrix for each partition. Phylogenetic analyses were performed using two parallel runs, each 

with four chains, for 10 million generations and sampling parameters every 1000 generations. 

Most likely trees were sampled by using a burn-in of 25%, and a 50% majority rule consensus 

tree was generated. All analyses were performed on the freely available computational resource 

CIPRES (Miller et al. 2010). Assessing convergence and sufficient chain mixing (effective sample 

sizes[200) was observed using Tracer 1.5 (Rambaut and Drummond 2009). Resulting trees were 

visualized using FigTree (Rambaut 2006–2009, http://tree. bio.ed.ac.uk/software/figtree/). 

 

 

Results and discussion 

 

Field observations 

A large proportion of Araucaria humboldtensis trees on Mont Humboldt exhibited conspicuous 

resin outpourings that were commonly associated with the death of branchlets or sometimes even 

entire branches (Fig. 1b, c). There was no indication of damage caused by high winds or any other 

external mechanical impact. The Araucaria humboldtensis forest is located between approximately 

1250 and 1500 m elevation, a region with daily fog and rainfall ensuring constant high humidity 

year-round. Consequently, while wildfires are common on the lower slopes of Mont Humboldt, 

the timberline forest is not subjected to fire, which is another possible trigger of enhanced resin 

production (Scott 2000; Brasier et al. 2009; Najarro et al. 2010). Instead, we observed that the 

resin outpourings consistently occurred on branches that had been infested by wood-boring 

beetles (Figs. 1, 2, 3). 

Two differently sized species of wood-boring beetles were identified from the resin-exuding 

branches and branchlets. Larvae of both species caused substantial damage to the interior of the 

branch. Larvae of the smaller beetle species were predominantly found in the distal thin green 

branchlets (Figs. 2a–c, 3e), whereas larvae and pupae of the larger species occurred in the wider 

woody parts of mature branches (Figs. 1c, 3a–d). The boring activity of the smaller species induced 

the production of abundant resin drops of predominantly 3–4 mm size that solidified on the leaves 

and branchlet tips. Borings of the larger species often led to the death of distal branch ends or of 

entire branches (Fig. 1c). This is likely because the maximum width of the mature larvae is only 

slightly smaller than mature branches of Araucaria humboldtensis so that both xylem and phloem 

are heavily damaged by the insect larvae (Fig. 3a, b). 



Resin flows induced by the larger beetle species were drop-shaped to irregular, sometimes 

forming masses surrounding an entire branch (Fig. 1c). These larger resin outpourings commonly 

consist of several successive resin flows and obviously persist over many months, possibly even 

years (Figs. 1c, 4b). 

 

Wood-boring beetles 

The larger beetle species represents a weevil (family Curculionidae). According to our Bayesian 

analysis (Fig. 5), it belongs to the subfamily Cossoninae and likely represents a member of the 

Araucariini group, a tribe erected by Kuschel (1966) and presently accommodating the neotropical 

genus Araucarius Kuschel 1966, and the four Oceanian genera Coptocorynus Marshall 1947, 

Mastersinella Lea 1896, Xenocnema Wollaston 1973 and Inosomus Broun 1882 (Alonso-Zarazaga 

and Lyal 1999). The phylogenetic analysis placed the smaller beetle species clearly outside the 

Curculionidae, and the morphological features of the larvae are characteristic for the family 

Cerambycidae. However, because of insufficient molecular data in public databases, we were not 

able to assign the smaller species to any group with any certainty. 

The phylogenetic relationships of the Cossoninae (Fig. 5) revealed by our analysis are 

congruent with the results of Jordal et al. (2011). The monophyletic Araucariini tribe forms the 

sister group to the remaining Cossoninae, and the Mont Humboldt weevil constitutes the first-

order sister clade to the remaining Araucariini. Although only ambiguously supported (0.79 pp, Fig. 

5),  the affiliation of the weevil from Mont Humboldt to the Araucariini group is conceivable 

because multiple independent Bayesian analysis with different taxon samplings for the Cossoninae 

all grouped the weevil from Mont Humboldt to the Araucariini tribe (data not shown). 

Jordal et al. (2011) recently confirmed that the subfamily Cossoninae is monophyletic and 

includes the tribe Araucariini. Within the Cossoninae, only members of the monophyletic 

Araucariini are restricted to araucarian host plants, while the remaining Cossoninae comprise 

lineages feeding on angiosperms or Pinaceae. Both larvae and adults of Araucariini live inside the 

bark and phloem of their araucarian hosts (Mecke et al. 2005). Since mature branches of Araucaria 

humboldtensis were only slightly larger in diameter than the larvae and pupae of the weevil 

specimens within (Fig. 3a, b), it is difficult to deduce the preferred food of the larvae. However, 

phloem tissue was certainly included in their diet. 

New Caledonia’s Araucariaceae are believed to have diversified in post-Eocene times, mainly 

in response to the highly unusual edaphic conditions on the island (Setoguchi et al. 1998; Kranitz 



et al. 2014; Grandcolas et al. 2015). Not surprisingly, Mecke et al. (2005) also showed that New 

Caledonia harbours a wide variety of largely undescribed weevil species that associate with 

different Araucaria species. Due to their specialization on araucarian hosts and basal position 

within the Cossoninae, the Araucariini are suspected to represent an archaic lineage within the 

Cossoninae (Kuschel 1966, 2000; Sequeira and Farrell 2001; Sequeira et al. 2000). The extreme 

host specificity may in turn be related to the stable morphology and anatomy of its araucarian 

hosts. Fossil data demonstrate that the phloem anatomy of araucarians has not changed 

significantly since Cretaceous times (Stockey 1994), and the trees are also known to have 

produced resin by the mid-Cretaceous (Nohra et al. 2015). Concurrently, resin flows of araucarian 

conifers in humid forest ecosystems have existed for tens of millions of years and potentially 

allowed the evolution of highly specialized resinicolous organisms and associations (see Mecke et 

al. 2005). 

 

Resinicolous fungi 

The semi-solid resin of Araucaria humboldtensis on Mont Humboldt provided suitable substrate 

for at least two unique species of resinicolous fungi (Fig. 4). The first fungus (Fig. 4a), a 

teleomorphic ascomycete, was recently described as new and named Resinogalea humboldtensis 

Rikkinen et A. R. Schmidt 2016. The pale mycelium grows immersed in semi-solidified resin of A. 

humboldtensis (Fig. 4a, lower left), and ascomata are formed when the substrate solidifies. As the 

mycelium grows entirely submerged in the resin and because individual hyphae grow in random 

orientations, the fungus seems to utilize resin as a food source. For more details on the ecology, 

anatomy and taxonomy of R. humboldtensis, see Rikkinen et al. (2016). 

While ascomata of Resinogalea were found in only a small minority of resin flows on Mont 

Humboldt, almost all hardening and solidified resin surfaces were colonized by a highly 

conspicuous dematiaceous hyphomycete (Fig. 4b– e). The dark hyphae of the fungus grew only on 

the hardened resin surface and did not penetrate into semi-solidified resin. Synnemata consisting 

of aggregated hyphae produce simple acropetal chains of rounded to ovoid ornamented conidia 

4–7 lm long (Fig. 4e). Sometimes the conidiophores are reduced to mere conidiogenous cells with 

simple acropetal chains of more rounded conidia (Fig. 4d). On the basis of ITS sequences, the 

fungus belongs to the Mycosphaerellaceae, but its closer affinities remain unresolved. 

Resinicolous fungi represent a polyphyletic ecological assemblage including, for example, 

many ascomycetes of the order Mycocaliciales (e.g. Rikkinen 1999, 2003a, b; Rikkinen et al. 2014, 



2016; Tuovila et al. 2011a, b, 2012, 2013; Tuovila 2013). Many resinicolous mycocalicioids are 

highly substrate specific, a feature most likely related to the unique chemical compositions of 

many plant exudates (Lagenheim 2003). Chaenothecopsis neocaledonica from Agathis ovata (C. 

Moore ex Vieill.) Warb. 1900 is the only resinicolous mycocalicioid fungus so far known from 

araucarian exudates (Rikkinen et al. 2014). However, considering the high diversity of 

Araucariaceae in New Caledonia, many new resinicolous fungi may still await discovery on the 

island. 

 

A resinous community 

Araucaria humboldtensis is the dominant tree species in the timberline forest of Mont Humboldt. 

The trees produce a steady supply of fresh resin induced by at least two woodboring beetle 

species. The phylogenetic placement of the weevil species within the Araucariini tribe suggests a 

longlasting interaction between the narrow endemic conifer host and the beetle species that has 

specialized to bore into its branches and feed on their internal tissue. Interestingly, the occurrence 

of Resinogalea further indicates that the beetle-induced resin outpourings must have been 

common and continuous enough to allow the evolution and continued existence of a unique 

ascomycete species specific to this unusual substrate. It is also likely that Resinogalea 

humboldtensis and possibly the dematiaceous hyphomycete are dispersed by adult beetles. The 

ascomata of Resinogalea have long and slender stalks and well-developed mazaedia (spore 

masses), which both represent typical calicioid features that are suspected to promote insect 

dispersal. Mature ascospores accumulate into the mazaedium and are then easily attached to 

roaming insects (Rikkinen 1995, 2003a; Tuovila et al. 2011a; Prieto and Wedin 2013). Also, the 

widespread production of synnemata by the anamorphic stages of many ascomycetes (e.g. Seifert 

1985) is undoubtedly partly explained by adaptations for animal dispersal. Thus, the two unique 

fungi on A. humboldtensis resin may depend on the woodboring beetles, not only for the 

production of suitable substrate, but also in their dispersal. 

Despite repeated efforts, we could not induce the ascospores of Resinogalea humboldtensis 

to germinate and were thus unable to culture the fungus. The dematiaceous hyphomycete did 

grow, but very slowly and exclusively on the original substrate, i.e. small pieces of Araucaria 

humboldtensis resin. No growth was observed on sugar-based media or Canada balsam (Pinaceae 

resin). When small pieces of the natural substrate and sugar were provided, growth was restricted 

to the resin. This strongly suggests an inability to metabolize sugar-based carbohydrates and 



exemplifies the level of substrate specialization in resinicolous fungi. The inability to use Pinaceae 

resin together with the apparent narrow endemism in New Caledonia suggests that the 

dematiaceous hyphomycete may only occur on the resin of this one Araucaria species or that it is 

at least restricted to New Caledonia. 

A concurrent example of extreme substrate specificity of a resinicolous fungus to a narrowly 

endemic conifer host was previously reported from California, where Mycocalicium sequoiae only 

lives on the resinous exudate that issues from the exposed heartwood of fire-scarred but still living 

trunks of Sequoiadendron giganteum (Bonar 1971). Two collections of the fungus have also been 

reported from Sequoia sempervirens, but their identity should be confirmed by molecular 

methods. 

We conclude that the wood-boring beetles that cause highly conspicuous resin flows on 

Araucaria humboldtensis are not introduced species and probably do not pose a serious threat to 

the existence of the critically endangered tree species. Conversely, they induce and maintain a 

continuum of substantial resin flows that apparently provide the only substrate for two species of 

unique resinicolous fungi. There is reason to believe that the ‘triangle association’ between the 

endemic conifer host, the endemic weevil and the two endemic fungi evolved in the humid forests 

of New Caledonia and may be of considerable antiquity. Divergence time estimates by Kranitz et 

al. (2014) suggest that the New Caledonian Araucaria species diversified in the Miocene–Pliocene 

between 19 and 3 Ma and that A. humboldtensis appears to be approximately 5 Ma old, 

suggesting that the common history of the association may date back to the early Pliocene or even 

further. 

 

Palaeoecological implications 

We propose that the extant Araucaria humboldtensis forest offers a model for a type of enhanced 

resin production in ancient ‘amber forests’, i.e. past forest ecosystems from which amber deposits 

derive. 

The reasons for massive Mesozoic and Cenozoic amber accumulations remain obscure. It has 

been suggested that the evolution of certain wood-boring insect species and subsequent large-

scale insect outbreaks might have caused substantial tree damage followed by enhanced resin 

release (McKellar et al. 2011; Peris et al. 2015). Concurrently, it has been suggested that 

Coleoptera were unlikely to have been inducers for the resin outpourings that resulted in early–

middle Cretaceous ambers, based on the sparse record of wood-boring beetle families such as 



Curculionidae, Cerambycidae or Buprestidae in these ambers (Peris et al. 2016). However, this is 

based on the scarcity of adult specimens preserved and does not consider the possibility of larval 

stages boring into branchlets, which would have a low probability of being engulfed by resin flows. 

Our current observations from Mont Humboldt show that even a moderate population of 

specialized insects can trigger and maintain the continuous production of considerable amounts of 

resin. Ambers are known to vary in size from tiny droplets to massive pieces of up to 10 kg (e.g. 

Weitschat and Wichard 2002; Krumbiegel and Krumbiegel 2005), and their primary shape depends 

on resin viscosity and how and where the resin was produced on the ancient source trees. The 

shape and size of the resin droplets produced by Araucaria humboldtensis correspond closely to 

those of certain amber pieces, such droplets from the Triassic Heiligkreuz Formation in the Italian 

Dolomites (Fig. 2d, Roghi et al. 2006a, b; Schmidt et al. 2006, 2012), Late Cretaceous (Turonian-

Santonian) of north-western and southern France (Saint Martin et al. 2013; Néraudeau et al. 2017) 

and from the Eocene of the Baltic area (Fig. 2e). 

The occurrence of Triassic amber exclusively in a narrow Carnian-aged time horizon 

exemplifies a probable connection between enhanced resin production and climate change 

(Schmidt et al. 2012), and a connection to the Carnian Pluvial Event (Breda et al. 2009; Roghi et al. 

2010), a global episode of atmospheric perturbation with dramatic changes in a monsoonal 

climate due to massive volcanism (Roghi et al. 2010; Preto et al. 2010; Dal Corso et al. 2012). 

Previously, Langenheim (1994) suggested that resin production can be enhanced in response to 

increased water availability, and so on Mont Humboldt the continuous high atmospheric humidity 

may well promote resin exudation responses during insect infestations. We presume, however, 

that massive resin productions during particular periods of Earth history were unlikely to be 

caused by any single event or trigger, but more likely reflect complex organismal interactions in 

humid forests, involving not only trees and wood-boring insects but potentially also many other 

resin-associated organisms, including resinicolous ascomycetes. This is supported by the fact that 

resinicolous Chaenothecopsis species have been found in Palaeogene ambers of Europe 

(Beimforde et al. 2014; Rikkinen and Poinar 2000; Tuovila et al. 2013), demonstrating that their 

special mode of nutrition was already developed at least 35 million years ago. 
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FIGURES 

 

 

Fig. 1 Resinous Araucaria humboldtensis on Mont Humboldt in New Caledonia. a Cloud forest of 

Mont Humboldt with A. humboldtensis as dominating tree species. b Tree with resin outpourings 

on several branches. c Massive resin outpouring and death of distal branch end after infestation 

by weevil larvae of the Araucariini tribe 



 

Fig. 2 Drop-shaped resin pieces on Araucaria humboldtensis (a– c) and from Triassic and Eocene 

amber deposits (d, e). a Resin droplets on branchlets exuded after infestation by small beetles. b, c 

Small resin outpourings composed of several resin droplets. d Amber droplets from the Triassic 

(Carnian) Heiligkreuz Formation in the Italian Dolomites. e Drop-shaped piece of Eocene Baltic 

amber. Scale bars 5 mm 

 



 

Fig. 3 Beetle infestation in Araucaria humboldtensis. a Fragment of a branch with branchlets died 

off after erosion of the branch’s interior by weevil larvae. b Weevil larva feeding the tissue of a 

branch. c, d Larva (c) and pupa (d) of a weevil of the Araucariini tribe. e Small beetle larvae, a 

representative of the Cerambycidae, from the interior of the branchlet. Scale bars 1 cm (a), 5 mm 

(b–d) and 1 mm (e) 



 

Fig. 4 Resinicolous fungi from Araucaria humboldtensis. a Ascoma of Resinogalea humboldtensis 

exposing ascospores on top. Hyphae inside the resin are visible in the lower left of the image. b 

Solidified resin densely overgrown by a dematiaceous hyphomycete. C. Closeup of (b) showing the 

dark hyphae. d Growing young colony of the dematiaceous hyphomycete with formation of 

conidia. e Conidiophores of the dematiaceous hyphomycete arising forming aggregated superficial 

hyphae and bearing simple acropetal chains of conidia. Scale bars 200 lm (a), 1 mm (b), 100 µm (c, 

d) and 50 µm (e) 

 



 

Fig. 5 50% majority rule consensus phylogram from Bayesian analyses (MrBayes) showing 

phylogenetic relationships of the Cossoninae based on nuclear ribosomal (LSU) and protein coding 

(CO1, ArgK, CAD) sequence data of 18 Cossoninae species and two Cryptorhynchinae species used 

as outgroup. Numbers at nodes indicate posterior probabilities (pp) for node support. Node 

supports of 1.0 pp and less are shown 


