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Abstract 

Context Species are expected to shift their distributions in response to global environmental 

changes and additional protected areas are needed to encompass the corresponding changes 

in the distributions of their habitats. Conservation policies are likely to become obsolete 

unless they integrate the potential impacts of climate and land-use change on biodiversity. 

Objectives We identify conservation priority areas for current and future projected 

distributions of Iberian bird species. We then investigate the extent to which global change 

informed priority areas are: (i) covered by existing protected area networks (national 

protected areas and Natura 2000); (ii) threatened by agricultural or urban land-use changes. 

Methods We use outputs of species distributions models fitted with climatic data as inputs 

in spatial prioritization tools to identify conservation priority areas for 168 bird species. We 

use projections of land-use change to then discriminate between threatened and non-

threatened priority areas. 

Results 19% of the priority areas for birds are covered by national protected areas and 23% 

are covered by Natura 2000 sites. The spatial mismatch between protected area networks 

and priority areas for birds is projected to increase with climate change. But there are 

opportunities to improve the protection of birds under climate change, as half of the priority 

areas are currently neither protected nor in conflict with urban or agricultural land-uses. 

Conclusions We identify critical areas for bird conservation both under current and climate 

change conditions, and propose that they could guide the establishment of new conservation 

areas across the Iberian Peninsula complementing existing protected areas. 

 

Keywords Bioclimatic envelope models • Breeding birds • Conservation planning • Land-

use change • Natura 2000 • Portugal • Protected areas • Reserve networks • Spain • 

Zonation software.  
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Introduction 

Protected areas are a popular planning instrument for conservation of natural ecosystems 

and biodiversity. They can be effective, if well managed, at stopping or reducing the 

negative effects of surrounding land uses (e.g., Eklund et al. 2011; ter Steege et al. 2015). 

However, the effectiveness of existing protected areas at minimising the negative effects of 

future climatic and land-use changes on biodiversity has been systematically questioned 

(e.g., Hannah et al. 2007; Alagador et al. 2014). The fact that protected areas are fixed in 

space makes them likely to undergo changes in their species composition and richness as 

climate changes (Hole et al. 2009; Araújo et al. 2011). Such changes in biodiversity are the 

result of different types of biological responses to climate change such as species range 

expansions, contractions, displacement, or elevational shifts (e.g., Davis and Shaw, 2001; 

Forero-Medina et al. 2011; Roth et al. 2014), as well as phenological and behavioural 

changes (e.g., Badeck et al. 2004). Even under scenarios of marked global environmental 

changes, protected areas are likely to remain important despite turnover in species 

composition and richness (Thomas et al. 2012; Thuiller et al. 2014a; Thomas and 

Gillingham 2015), because they are often the most pristine habitat in otherwise highly 

modified landscape matrices. 

The Iberian Peninsula is part of the Mediterranean biodiversity hotspot (Myers et al. 2000) 

and harbours as much as half of the European terrestrial vertebrate and plant species 

(Araújo et al. 2007) as well as a high proportion of endemic species (Williams et al. 2000). 

Such relatively high biodiversity is probably the outcome of several combined factors, 

chiefly among them the high environmental and geographical heterogeneity that generates 

opportunities for concatenation of niches in relatively small areas (Baselga and Araújo 

2010), and the role of Iberia as a glacial refugia for many European species during the 

Quaternary cold periods (Hewitt 2000). In addition, the Iberian Peninsula is recognized as 

one of the most vulnerable regions to climate change with expected extensive warming and 
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increase of droughts (IPCC 2014). Moreover, the Iberian Peninsula is a highly populated 

region with approximately 53 million people and plays a key role in the European 

agricultural production (Civantos et al. 2012). 

Iberia is covered by an extensive network of conservation areas that includes two major 

types: (i) nationally-designated protected areas; and (ii) European Union (EU)-designated 

Natura 2000 sites. Hereafter we use ‘conservation area networks’ to collectively refer to 

both types of conservation planning designations. The goal of the Natura 2000 network is to 

ensure the persistence of some of the most valuable species and habitats at the European 

level. It is comprised of Special Areas of Conservation (SACs) designated under the EU 

Habitats Directive to conserve rare and vulnerable non-bird animals, plants and habitats, 

and Special Protection Areas (SPAs) designated under the EU Birds Directive to preserve 

important sites for rare and vulnerable birds. The Iberian Peninsula plays a fundamental role 

in the Natura 2000 network. The network covers 27% of the Spanish territory, highest areal 

per country contribution across EU member countries (Europarc-España 2014), and 21% of 

the Portuguese territory (ICNF 2013). Despite the large extent of the Iberian conservation 

area networks, many species are still not covered by these areas. This is especially true for 

non-charismatic species groups like lichens or invertebrates which are usually 

underrepresented (e.g., Martínez et al. 2006; Araújo et al. 2007; Hernández-Manrique et al. 

2012). 

Bird species have been the target of multiple climate change impact studies (e.g., Kujala et 

al. 2013; Thuiller et al. 2014b). Being a mobile group, birds often respond to climatic 

changes by shifting their distributions following climate. For example, Tellería et al. (2016) 

showed that some birds in the Iberian Peninsula are already responding to climate change. 

However, bird distribution shifts are reportedly lagging behind temperature shifts at the 

European level (Devictor et al. 2012). There is a large body of literature showing that 

beyond climatic tolerances, bird distributions and behaviour also depend on a variety of 
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factors related to life-history traits, availability of food, habitat and human disturbances, and 

the relative role of each of these factors can vary at different spatial and temporal scales 

(e.g., Triviño et al. 2013; Howard et al. 2015). For example, within the Iberian Peninsula, 

Triviño et al. (2011) showed that, at the spatial scale of 10 x 10 km, models for bird species 

fitted with climate data were always improved compared with models fitted with vegetation 

or landscape configuration variables. They also found that a large fraction of bird species 

would be highly exposed to future environmental changes: under A2 emission scenario 62% 

of the species were projected to contract their current distribution, while 38% were 

projected to experience range expansions. However, bird species projected to be highly 

exposed to future environmental changes in Iberia are, at the same time, less susceptible to 

local extinctions because they possess traits that increase their natural resilience (Triviño et 

al. 2013). An important question that remains to be answered is whether the current Iberian 

conservation area networks are adequate to conserve bird species under climate and land-

use changes and, if not, where future conservation priorities should be. 

There are two main strategies to incorporate concern for climate change within spatial 

conservation prioritization (Araújo 2009). Firstly, model species range dynamics and 

combine the outputs of the models with optimal conservation planning methodologies that 

seek to maximize species coverage within conservation areas (for a review see Alagador et 

al. 2016). Secondly, focus on geodiversity and climate change metrics as coarse filter 

strategy for the identification of climate resilient areas without recurring to complex 

modelling of individual species responses to climate change (e.g., Beier et al. 2015; Garcia 

et al. 2016). However, any of these approaches generally lacks consideration of the need of 

exploring trade-offs between climate change and land-use changes (but see Fordham et al. 

2013). Here, we develop an approach whereby spatial conservation priorities are identified 

by accounting for projections of individual species distributional shifts under climate 

change while addressing threats and opportunities brought by projected land-use changes. 
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We exemplify the approach using birds as focal taxa and the Iberian conservation area 

networks as the context in which the conservation planning approach is developed. As first 

step we identify optimal conservation areas that maximise representation of both current 

and projected future distributions of terrestrial bird species within the Iberian Peninsula. 

Following, we ask: (1) what proportion of the identified priority areas are already protected 

under existing legislation; (2) what proportion of the identified priority areas is more and 

less threatened by projected agricultural or urban land-use changes. With such analyses we 

were able to identify the areas suitable for bird conservation under climate change and that 

were neither protected nor threatened by current or future land-use change. 

Methods 

Species and climate data 

Assessments were undertaken using baseline and future projected distributions of 168 

terrestrial native breeding birds in the Iberian Peninsula. Details of the models are provided 

in a previous study (Triviño et al. 2011). Our analyses of bird distributions excluded species 

with less than 20 records to avoid problems of modelling species with small sample size 

(Stockwell and Peterson 2002). The distributions are based on presence-absence data 

extracted from the breeding birds atlases of Spain (Martí and del Moral 2003) and Portugal 

(Equipa Atlas 2008), across 5,923 10x10 km resolution grid cells. Baseline and projected 

future distributions were modelled using climatic variables (see below) and two modelling 

techniques: Random Forests and Boosted Regression Trees. The maximum number of trees 

was 700 for Random Forests and 3000 for Boosted Regression Trees. All models were run 

using default options of the BIOMOD package (Thuiller et al. 2009). For each time period 

the average across the two models was used as the final output since evidence exists that 

averaging across model outputs can cancel outliers and improve overall projections (Araújo 

et al. 2005). 
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Baseline (period 1971-1990) and future climatic data (period 2051-2080) included three 

variables: mean winter temperature (ºC), annual precipitation (mm) and accumulated degree 

days (January to August). The baseline climatic data were obtained from the Portuguese and 

Spanish meteorological agencies (IM and AEMET, respectively), interpolated to a UTM 

10×10 km grid (Araújo et al., 2012). Future climate scenarios from the EU framework 

program Assessing Large-scale environmental Risks for biodiversity with tested Methods 

(ALARM) were used. The chosen climate scenario was derived from a simulation with the 

global climate model HadCM3, using the BAMBU (Business As Might Be Usual) scenario 

(which corresponds to A2 SRES) of the ALARM project (see Triviño et al. 2011 for further 

details). 

We subdivided the 168 breeding bird species into two groups: ‘agricultural’ and ‘non-

agricultural’ species. The information was gathered from a Spanish Ornithological Society 

document (SEO/BirdLife, 2010) and complemented it by consultation with experts (see 

Appendix S4). In our study, there were 47 species associated with agricultural areas, 

representing 28% of the modelled species. Agricultural areas are more predominant in 

Natura 2000 sites than in national protected areas (croplands and permanent croplands 

represent 15% of the national protected areas whereas they represent almost 24% in Natura 

2000, see Table 2).  

Conservation areas data 

We used two conservation areas datasets: the nationally-designated protected areas network 

and the European Union-designated Natura 2000 network (ICNF 2013; MAGRAMA 2013). 

We excluded areas that were solely designated by international conventions like UNESCO 

World Heritage sites (UNESCO Man and Biosphere reserves and Ramsar Wetlands of 

International Importance), because most international conventions have no regulatory 
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power to enforce protection (Jenkins and Joppa 2010). Auxiliary analyses with the excluded 

areas are provided in the supplementary material (Appendix S1). 

Land-use data 

The projected land-use change scenarios were based on the Coordination of Information on 

the Environment (CORINE Land Cover 2000; EEA, 2000). CORINE 2000 dataset was used 

as a baseline for the downscaling of the future scenarios (2080) at a spatial resolution of 250 

meters (see Rounsevell et al. 2006 and Dendoncker et al. 2007 for methodological details). 

The forty-four land cover classes from CORINE were aggregated into six classes: urban, 

cropland, permanent crops, grasslands, forest and others (for a complete description of the 

methodology see Dendoncker et al. 2007, despite in this reference they use the PELCOM 

dataset, CORINE 2000 dataset was used for this study). We further aggregated those six 

land-use categories into three coarse types (natural, agricultural and urban) that can 

reasonably be used as surrogates for threat because the association between land-use 

intensification and declines in bird populations has been well documented (e.g., Verhulst et 

al. 2004). We define ‘natural’ lands as those classified as natural vegetation (e.g., grasslands 

and forests) as well as others categories (e.g., bare rocks and burnt areas). We define 

‘agricultural’ lands as those classified as croplands and permanent croplands. To have a 

better understanding of the composition of the two agricultural land-use types we calculated 

the percentage of surface covered by the land-use categories of CORINE Land Cover 2000 

(see Appendix S2). Finally, we define ‘urban’ lands as those as built-up land cover 

categories. 

Conservation prioritization 

We identified areas of high bird conservation priority using the spatial prioritization 

software Zonation (Moilanen et al. 2012 and references therein) and accounting for: (i) the 

baseline and potential future distributions of all 168 bird species; and (ii) the connectivity 
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between species’ baseline and projected future distributions to facilitate the anticipated 

species range shifts under changing climatic conditions similarly to Kujala and colleagues 

(2013). Zonation is a conservation support tool that identifies areas that maximize the 

representation and habitat quality for multiple species across large regions. It produces a 

hierarchical ranking of sites across the entire study area, where increasing rank values 

indicate increasing priority for conservation and a relatively small proportion of the top-

ranked sites typically represent most or all biodiversity features and their core habitats (Fig. 

1). We used the core area zonation (CAZ) algorithm to determine the conservation value in 

each cell. All species were weighted equally and we did not include cost of land to the 

analyses. We note that here the term ‘core’ refers to areas of highest value or, as in this 

study, areas of highest climatic suitability, within each species distribution, without 

reflecting any geographical positioning. 

To account for connectivity between baseline and projected future distributions, we used the 

‘species interactions’ technique of Zonation, which allows calculation of connectivity 

between two distributions (Moilanen and Kujala 2008). This technique is based on the 

metapopulation connectivity measure, in which connectivity of any given focal site is 

dependent on its distance to other sites, the local value of both focal and other sites, and the 

dispersal ability of the respective species (Hanski 1998; Moilanen and Nieminen 2002). 

Based on information on observed bird range shifts in the last decades (Brommer and 

Møller 2010), we set the dispersal distance of all species to 11 km/decade, corresponding to 

a dispersal distance of 77.3 km for the time period considered in our study. We carried out a 

sensitivity analysis using different dispersal rates to analyse how dispersal affects the results 

(Appendix S3). 
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Fig. 1 Flow chart showing the five spatial conservation prioritization carried out. Modelled 

species distribution maps for baseline and future were created using the modelling techniques 

Random Forests and Boosted Regression Trees. Connectivity maps were created based on the 

baseline and future layers. The rest of the analyses and graphs are based on the top 17% priorities of 

each Zonation result. 

We used two spatial connectivity measures per species to identify priority areas that 

facilitate dispersal to projected future distribution areas. The first connectivity was 

calculated from the baseline period to the future period, whereby highest values were given 

to areas within baseline distribution that are climatically most suitable for the species and 

geographically close to the expected future distribution given species dispersal limitations. 

Under climate change, these areas are expected to act as sources from where dispersal to 

future distributions takes place (hereafter called ‘source areas’). For the second measure, 

connectivity was similarly calculated from future to baseline, and highest values were given 

to those highly suitable future areas that are well connected to baseline areas and, thus, are 
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expected to help species reach the core areas of their future distribution (hereafter called 

‘stepping stones’). 

Hence, for each species, there were four types of distributions relevant for the conservation 

prioritization: the modelled baseline distribution, hereafter called ‘baseline cores’ (BC), the 

modelled future distribution, hereafter called ‘future cores’ (FC), source areas (S) and 

stepping stones (SS). Using Zonation we produced conservation prioritizations for the 

Iberian Peninsula across all species by: (i) separately accounting for each of the relevant 

distributions per species (hence, four different solutions); and (ii) simultaneously 

accounting for all four relevant distributions per species (one solution, hereafter called ‘All 

together’, Alt). We assigned to each top priority cell within the ‘All together’ a value from 

the previous categories (BC, FC, S or SS) depending on which had the highest average 

value across the species. From each of these five prioritization results we selected the 

highest 17% ranking areas, corresponding to the Nagoya meeting goal of protecting 17% of 

terrestrial ecosystems by 2020 (Convention Biological Diversity 2010). See Fig. 1 for an 

illustrative diagram of the prioritization procedure. 

Overlap between conservation priorities and conservation area networks 

We measure the extent to which the identified bird conservation priorities are protected. We 

analysed how well the conservation area networks represented the important areas for birds 

by overlapping each conservation network with the identified conservation priority areas. 

We calculated three types of measure: (i) the percentage of priority cells that overlap with 

protected areas or Natura 2000 sites, (ii) the percentage of cells that overlap more than 50% 

and (iii) the mean percentage of overlap area. 

We reanalysed the level of protection separately for the two groups of species: ‘agricultural’ 

and ‘non-agricultural’. We repeated both the spatial prioritization and the percentage of 

overlap analyses. 
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Land-use threats and potential for conservation 

We used three broad land-use types (natural, agricultural and urban) as a surrogate to the 

threats for bird species posed by habitat loss. We considered natural as no threat and the two 

other land-use types as threat. 

To determine the spatial distribution of land-use change we calculated the difference 

between the baseline and future projection in the proportion of area covered by natural, 

agricultural and urban areas within each one of the following categories: (i) protected (PAs 

and Natura 2000), (ii) non-protected (which refers to all areas outside PAs and Natura 2000 

sites) and (iii) identified priority areas (All together, Baseline Cores and Future Cores). 

Finally, we identified areas with potential for conservation which are identified as priorities 

for bird species conservation under climate change but are neither protected nor projected to 

be threatened by agricultural or urban land-use change. 

Results 

Conservation priorities for Iberian bird species 

Models projections showed that bird species generally shift ranges towards mountainous 

regions (most future cores are located in the Pyrenees) (Fig. 2). There was high spatial 

congruence between conservation priorities identified for ‘all species’ (N = 168) and ‘non-

agricultural species’ (N = 121), although ‘stepping stones’ were notably lacking for the 

prioritization undertaken with ‘non-agricultural species’. The spatial distribution of the 

conservation priorities for ‘agricultural species’ (N = 47) was more aggregated and compact 

across cropland areas (Fig. 2). Sensitivity analyses of how different dispersal rates affected 

conservation priorities showed that connectivity was only important for species with 

intermediate dispersal rates (50-77.3 km, estimates for the time period considered in our 

study). Lower dispersal rates meant that species were unable to track climatic changes, 



13 

whereas species with higher dispersal rates did not require corridors or stepping-stones to 

disperse to future areas of suitable climate (see Appendix S3). 

 

Fig. 2 Top conservation priority areas for Iberian bird species. These include baseline and future 

modelled distributions under climate change and the respective connectivity measures for the 

estimated mean dispersal distance of 77.3 km. Colours represent the classification of the top 17% 

priorities into their relative importance as baseline cores, future cores, sources and stepping stones. 

Overlap between conservation priority areas and conservation area networks 

The extent to which existing conservation networks covered key priority areas for Iberian 

birds under climate change depended on the species pool considered. Across all species, 

Natura 2000 sites covered the bird conservation priorities better (23% of mean overlap) than 

PAs (19%). However, when agricultural and non-agricultural species groups were analysed 

separately, Natura 2000 sites covered priorities of agricultural species better (28%) than 
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those of the non-agricultural group (14%). In contrast, the PAs covered better the priorities 

for non-agricultural species (19%) than for agricultural species (12%) (Table 1). 

Table 1. Overlap between conservation priority areas and conservation area networks. 

Three measures of overlap (proportion of cells with any overlap; proportion of cells with >50% 

overlap, and the mean percentage of overlap) between identified conservation priority areas and the 

two conservation area networks: nationally-designated protected areas (PAs) and Natura 2000 

(Natura). Overlaps are shown for three of the prioritization results (Alt = All together; BC = baseline 

distributions only; FC = future distributions only) and for all species and subsets of agricultural and 

non-agricultural species. 

  
All species Agricultural species Non-agricultural species 

  
%  

cells 

% cells 

> 50% 

Mean % 

overlap 

%    

cells 

% cells 

> 50% 

Mean % 

overlap 

%    

cells 

% cells > 

50% 

Mean % 

overlap 

 Alt 48.0% 18.0% 18.8% 33.9% 11.0% 11.9% 47.2% 18.0% 18.8% 

PAs 
BC 49.0% 18.6% 19.4% 34.6% 10.9% 11.7% 50.7% 19.3% 20.3% 

 
FC 41.0% 14.6% 15.3% 34.0% 14.0% 14.2% 41.1% 14.6% 15.3% 

 
Alt 51.6% 22.2% 22.9% 77.3% 24.8% 27.9% 27.4% 14.0% 14.1% 

Natura 
BC 83.7% 37.3% 39.2% 77.4% 24.8% 27.9% 84.5% 38.6% 40.1% 

 
FC 75.3% 27.8% 29.8% 77.7% 29.4% 31.3% 75.4% 28.1% 30.0% 

 

If we separate the overlap of the two networks, based on the baseline and the future 

potential distributions, current conservation networks had a higher overlap with baseline 

cores than with future cores (Fig. 3). Under climate change the expected decrease in the 

protection of core areas for all and non-agricultural species was higher for the Natura 2000 

(9.4% and 10.1% respectively) than for the nationally-designated protected area network 

(4.1% and 5.0% respectively) (Table 1). However, agricultural species were projected to 

gain protection under climate change both in Natura 2000 (3.4%) and in the nationally-

designated protected area network (2.5%) (Table 1). 
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Fig. 3 Overlap between top conservation priority areas and conservation area networks. The 

maps show the overlap between identified priority areas for all species in the baseline (Baseline 

cores) and future (Future cores) time period and the two conservation area networks: Protected Areas 

(PAs) and Natura 2000 (Natura). 

Land-use threats and potential for conservation 

Using the three land-use categories (‘natural’, ‘agricultural’ and ‘urban’) to calculate the 

spatial distribution of threats, i.e., considering everything not natural as a threat, we found 

that half of the non-protected area, and approximately 40% of the identified conservation 

priority areas were currently threatened by land-use practices. Within the conservation 

networks, the majority of the land is in natural state (76% within Natura 2000 sites and 84% 

within PAs), but notably almost one-quarter of the Natura 2000 network is dominated by 

agricultural and urban zones. While agricultural lands currently overlap most extensively 

with conservation areas, their extent is expected to decrease in the future (Table 2). Urban 

areas constitute only a small fraction of current and future threats, but their role is 
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nevertheless expected to increase by the year 2080. Natural forests and grasslands currently 

cover over 50% of all analysed areas and their proportion is expected to further increase in 

the future. Overall, in all land types (‘protected’, ‘non-protected’, ‘priority areas’) natural 

areas are expected to increase whereas agricultural and urban areas are expected to decrease 

and remain relatively stable, respectively, by 2080. This change coincides to some degree 

with species estimated range shifts, as the future cores are expected to experience the 

steepest increase in natural lands (5.1%) and highest decrease in ‘agricultural’ areas (5.2%) 

in comparison to the current state of these locations. Despite these favourable 

developments, one-third of all identified priority areas are projected to be threatened by 

land use in the future (Table 2). 

Table 2. Spatial distribution of land-use change. 

Natural area is represented by Grasslands, Forests and Others land-use categories; Agricultural area 

is represented by Croplands and Permanent Croplands land-use categories and Urban areas is 

represented by Urban land-use category. Non-protected refers to all areas outside Protected Areas 

(PAs) and Natura 2000 sites. 

  % Natural area % Agricultural area % Urban area 

Zone Area (km2) 2080 Change 

2000-2080 

2080 Change 

2000-2080 

2080 Change 

2000-2080 

PAs 65,771 86.45% 2.02 12.89% -2.20 0.66% 0.22 

Natura 2000 155,805 78.73% 2.66 20.89% -2.73 0.39% 0.08 

Non-protected 497,302 55.26% 4.74 42.69% -5.00 2.05% 0.26 

Conservation priorities       

  All together 102,800 64.18% 3.01 34.66% -2.99 1.17% -0.01 

  Baseline Cores 102,800 64.49% 3.30 33.96% -3.20 1.55% 0.10 

  Future Cores 102,800 66.28% 5.14 32.40% -5.16 1.31% 0.01 

When estimating the level of protection and land-use threats for conservation we found only 

small differences between the five types of identified conservation priorities. Among all 

priority areas, the percentage of protection was lower than 20% and the level of threat posed 

by current land-use practices was close to 40%. Over 50% of all identified priority areas 
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were not protected and currently not threatened by land-uses, future cores having the 

greatest potential for conservation (55.5%) (Table 3). These areas were mainly located in 

mountainous regions like the southern part of the Pyrenees or the Cantabrian as well as in 

the southwest of the Iberian Peninsula (Fig. 4). 

Table 3. Reclassification of conservation priority areas to show potential for conservation. 

‘Protected’: mean average overlap between the priority areas and the nationally-designated protected 

area network; ‘Threatened’: percentage of cells of each one of the priority areas that overlap with 

agricultural and urban areas from baseline time period; ‘Potential for conservation’: percentage of 

cells that are neither protected nor threatened at the baseline time period. Note that numbers in each 

row do not necessarily sum up to 100% as the percentage of protected was calculated as the mean 

average overlap whereas the percentage of threatened was calculated as the percentage of cells that 

overlap with agricultural and urban areas. 

 Protected Threatened Potential for conservation 

Alt 18.8% 38.8% 54.1% 

BC 19.4% 38.6% 54.3% 

FC 15.3% 38.9% 55.5% 

S 18.1% 40.0% 53.2% 

SS 17.9% 40.0% 53.1% 
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Fig. 4 Reclassification of top conservation priority areas to show potential for conservation. 

The maps show the top conservation priority areas for Iberian bird species reclassified into three 

categories: ‘Protected’: priority areas that overlap with the nationally-designated protected area 

network; ‘Threatened’: priority areas that overlap with baseline agricultural and urban areas; 

‘Potential for conservation’: priority areas that are neither protected nor threatened at the baseline 

period. The five panels represent the five different conservation prioritization options. 
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Discussion 

We present an approach to identify priorities for climate change adaptation and explore 

threats and opportunities posed by land-use changes. Our results highlight a spatial 

mismatch between the established Iberian conservation area networks and the identified 

priority areas for birds under climate change. We also found that there are several 

opportunities to improve the protection of bird species under climate change, as half of the 

identified conservation priority areas are currently not protected and do not conflict with 

urban or agricultural land-uses. Finally, land-use pressures are predicted to decrease in both 

conservation area networks towards the end of the century potentially creating opportunities 

to alleviate some of the negative impacts of climate change. Climate change, on the other 

hand, will increase the spatial mismatches between established protected areas and the 

newly identified priorities, particularly for non-agricultural bird species. 

Are conservation priority areas for birds well represented within Iberian conservation 

area networks? 

Previous studies have shown that Iberian bird species are currently reasonable well 

represented within the conservation area networks (Carrascal and Lobo 2003; Araújo et al. 

2007). However, when taking into account the needs of birds under climate change we 

found that existing conservation networks were insufficient to account for both current and 

future potential distributions of these species. Our study highlights that only 19% of the 

conservation priority areas, which cover the core climatic conditions of species’ current and 

future potential distributions as well as the connectivity between them, are protected. We 

also found that the overlap of Natura 2000 sites with both baseline and future conservation 

priority areas was higher than for the nationally-designated protected areas. This difference 

in coverage can be partly attributed to the larger extent of the Natura 2000 network which is 

more than double the size of the nationally-designated protected area network. Another 
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explanation is that Natura 2000 specifically targets bird conservation, as Natura 2000 sites 

include Special Protection Areas (SPAs), designated under the Birds Directive (Assunção-

Albuquerque et al. 2012; Regos et al. 2016). On the other hand, the level of protection of 

Natura 2000 sites is usually lower than that of protected areas as a wide range of human 

activities are allowed within the network. Furthermore, as more flatlands are generally 

included in Natura 2000 sites than in protected areas (Araújo et al. 2011), species inhabiting 

Natura 2000 network sites are expected to be more vulnerable as proportional range losses 

under climate change are greater there (Peterson 2003). 

Does the effectiveness of Iberian conservation networks decrease under climate change? 

Since conservation networks are generally designed to isolate current species distributions 

from existing external threats, it comes with no surprise that they would represent baseline 

priority areas better than future ones. This finding is in line with earlier studies that showed 

that current protected areas would generally not retain suitable climatic conditions for many 

of the species for which they were originally designated under scenarios of climate change 

(Araújo et al. 2004; Huntley et al. 2008; Hole et al. 2009; Lung et al. 2014; Garden et al. 

2015). Within Iberia the same pattern holds true: future bird priority areas display a small 

level of overlay with existing conservation networks owing to projected shifts in the 

distributions of Iberian birds as a result of climatic, land-use, vegetation and fire regimes 

changes (Triviño et al. 2011; Araújo et al. 2012; Regos et al. 2016). When examining 

patterns for species with specific habitat requirements, we found that forest bird species are 

expected to be less vulnerable to climate change because models project increases in forest 

cover, hence there will be more opportunities for colonisation (Araújo et al. 2008) and 

because forests could serve as a possible buffer to the impacts of climate change (Jarzyna et 

al. 2016). Species favouring agricultural lands were expected to be able to track climatic 

changes, but land-use projections indicate a decrease of agricultural area in the future. 

Therefore, while agricultural species seems to have great ability to colonise new areas as 
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they become suitable they will also require active management of the countryside if suitable 

habitat is to be maintained for them. 

Threats posed by land-use pressures 

Our results show that a substantial percentage of conservation priority areas are threatened 

by land-use pressures both currently (~40%) and in the future (~30%). Urban areas are 

expected to expand in the future whereas agricultural areas are expected to decrease, which 

is in line with previous studies (Araújo et al. 2008; Underwood et al. 2009). At the same 

time, natural areas are expected to expand, following an increase in forest cover. Indeed, the 

Iberian Peninsula is already experiencing large scale forest regeneration due to 

abandonment of agricultural areas and this trend is expected to continue (Rey Benayas et al. 

2007; Gil-Tena et al. 2009; Álvarez-Martínez et al. 2011). Such changes are likely to favour 

expansion of forest bird species, especially forest specialists, but not species associated with 

traditional agricultural systems (Gil-Tena et al. 2007). In this study we assumed all 

agricultural practices, as identified by CORINE land cover data (Table S4 in Appendix S2), 

to be threats to the studied bird species. We acknowledge that not all agricultural species 

will be impacted by these practices in the same way: a more realistic approach would 

differentiate between traditional and intense agricultural practices. However, in order to 

capture the differences between traditional agricultural practices (beneficial for 

conservation) and intense agricultural practices a more detailed data on land-use categories 

would be needed. In addition, in the Mediterranean region of the Iberian Peninsula fire 

plays a key role in the maintenance of bird diversity by enhancement of open habitats and 

landscape heterogeneity (e.g., Vallecillo et al. 2008; Regos et al. 2016). We acknowledge 

that there are other threats affecting Iberian birds besides climate and land-use changes such 

as roads (Torres et al. 2011), poison or human disturbance of nest sites among others 

(Madroño et al. 2004). However, these threats are beyond the scope of our study and not 

manageable at this spatial resolution. 
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Potential for conservation for Iberian bird species under climate change 

The fact that climate change may increase the spatial mismatch between already established 

protected areas and conservation priority areas urgently calls for adaptive conservation 

measures. A common strategy to reduce the negative impacts of climate change on 

biodiversity will certainly include the establishment of new protected areas to increase the 

available habitat for species and ensure the existence of suitable pathways for species 

dispersal (Heller and Zavaleta 2009; Mawdsley et al. 2009). The large proportion of natural 

or semi-natural land within projected important areas for bird conservation that is still not 

protected could be viewed as a conservation opportunity. It would probably be cost-efficient 

to implement conservation actions on the areas that we identified being of high value for 

bird conservation and low conflict with other land-uses. On the other hand, land sharing 

(Fischer et al. 2014) could be a good strategy for areas with high conservation value but in 

high conflict with other land-uses. Studies, like this one, that combine forecasts of species 

range shifts under climate change with spatial conservation planning tools are needed to 

respond proactively to the new conservation challenges (Williams et al. 2005; Phillips et al. 

2008; Carroll et al. 2010). However, given the many sources of uncertainty and the 

complexities, dialogs and compromises encountered in conservation decision making, we 

acknowledge that solutions proposed need to be flexible enough, yet highlight important 

conservation needs that can easily be accounted for. Finally, we acknowledge that our 

approach is centered on a climate adaptation strategy which promotes the conservation of 

species. However, there are other approaches for adapting conservation to climate change 

that are also worth considering such as identifying spaces of climatic resilience, without the 

need of projecting species specific responses (e.g., Beier et al. 2015). 
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Appendix S1: Analyses including both national and international designated 

protected areas. 

 

We carried out an additional analysis to calculate the overlap between identified bird 

conservation priorities and extensive protected area network including both national and 

international designated sites. 

 

Table S1 Three measures of overlap (proportion of cells with any overlap; proportion of cells 

with > 50% overlap, and the mean percentage of overlap) between identified conservation priority 

areas for the 168 bird species (Zonation results) and the protected area networks including 

national and international designated sites. 

 

 
% cells % cells > 50% Mean overlap 

All together 51.5% 22.0% 22.9% 

Baseline Cores 53.5% 23.4% 24.3% 

Future Cores 44.5% 17.9% 18.6% 
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Table S2 Spatial distribution of land-use changes through time. Natural area is represented 

by Grasslands, Forests and Others land-use categories; Agricultural area is represented by 

Croplands and Permanent Croplands land-use categories and Urban areas is represented by 

Urban land-use category. This table includes the broad protected area network which includes the 

national and international designated sites (Broad PAs). 

 

 

  % Natural area % Agricultural area % Urban area 

Zone Area (km2) 2080 Change 

2000-2080 

2080 Change 

2000-2080 

2080 Change 

2000-2080 

Broad PAs 80,656 82.13% 4.18 17.27% -4.32 0.60% 0.14 

Natura 2000 155,805 78.73% 2.66 20.89% -2.73 0.39% 0.08 

No protected 497,302 55.26% 4.74 42.69% -5.00 2.05% 0.26 

All together 102,800 64.18% 3.01 34.66% -2.99 1.17% -0.01 

Baseline 

Cores 

102,800 64.49% 3.30 33.96% -3.20 1.55% 0.10 

Future Cores 102,800 66.28% 5.14 32.40% -5.16 1.31% 0.01 
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Table S3 Spatial distribution of land-use changes in conservation priority areas inside and 

outside protected areas through time This table includes the identified conservation priority 

areas (‘Alt’: All together; ‘BC’: Baseline Cores and ‘FC’: Future Cores) divided into two subsets: 

inside and outside the broad conservation area network (including national and international 

areas). 

 

 % Natural area % Agricultural area % Urban area 

Zone 2080 Change 

2000-2080 

2080 Change 

2000-2080 

2080 Change 2000-

2080 

Alt (Inside) 92.40% 0.81 7.38% -0.82 0.22% 0.01 

Alt (Outside) 57.58% 3.47 41.03% -3.45 1.39% -0.02 

BC (Inside) 91.72% 1.15 8.06% -1.14 0.22% -0.01 

BC (Outside) 57.86% 3.53 40.27% -3.65 1.88% 0.13 

FC (Inside) 93.42% 1.27 6.21% -1.22 0.37% -0.05 

FC (Outside) 61.30% 5.83 37.22% -5.85 1.49% 0.03 
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Appendix S2: Detailed composition of agricultural land-use data 

 

To have a better understanding of the composition of the two agricultural land-use types we 

calculated the percentage of surface covered by the land-use categories of CORINE Land 

Cover 2000. 

 

 

Table S4: Detailed composition of the two agriculture land-use categories corresponding to the 

land-use categories of CORINE Land Cover 2000. 

 

Permanent croplands Percentage of surface 

Vineyards 13.97% 

Fruit trees and berry plantations 12.12% 

Olive groves 27.57% 

Annual crops associated with permanent crops 6.05% 

Agro-forestry areas 40.29% 

Croplands  

Non-irrigated arable lands 60.88% 

Permanently irrigated land 13.38% 

Rice fields 1.03% 

Complex cultivation patterns 24.71% 
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Appendix S3: Dispersal sensitivity analyses. 

 

We tested the effect of using different dispersal rates, instead of 77.31 km, on the results of 

conservation priority areas. Here we show that connectivity affects the results only at 

intermediate levels of dispersal (50-80 km, see also Fig. 4 in the main text). At other dispersal 

levels Sources are similar to Baseline Cores and Stepping Stones to Future Cores, essentially 

indicating that at low rates of dispersal (10 and 40 km) the species are not able to move far 

enough from the core areas in order to make the crossing. Similarly, at high dispersal rates 

(90 km) they can cross the distance of baseline and future cores easily and connectivity 

between these sites does not have much influence. 

To account for connectivity between baseline and projected future distributions, we assume 

an average dispersal rate of 11 km per decade for all species, which is derived from recent 

observations on bird distribution shifts. However, these shifts have been the response to 

milder climatic changes than expected for the end of the century. 
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Appendix S4: Breeding bird species associated with agricultural areas 

 

List of 47 species associated with agricultural areas from the total of 168 breeding bird species 

included in the study. The information was gathered from a document from SEO Bird Life 

(SEO/BirdLife, 2010) and complemented by consultation with an expert: Sergio Pérez Gil. 

References: 

SEO/BirdLife, 2010. Estado de conservación de las aves en España en 2010. SEO/BirdLife, 

Madrid. 

Common name Scientific name 

Skylark Alauda arvensis 

Red-legged Partridge Alectoris rufa 

Tawny Pipit Anthus campestris 

Little Owl Athene noctua 

Eurasian Thick-knee Burhinus oedicnemus 

Linnet Carduelis cannabina 

European Goldfinch Carduelis carduelis 

White Stork Ciconia ciconia 

Northern Harrier Circus cyaneus 

Montagu's Harrier Circus pygargus 

Zitting Cisticola Cisticola juncidis 

European Roller Coracias garrulus 

Jackdaw Corvus monedula 

Common Quail Coturnix coturnix 

Corn Bunting Emberiza calandra 

Rock Bunting Emberiza cia 

Cirl Bunting Emberiza cirlus 

Yellowhammer Emberiza citrinella 

Ortolan Bunting Emberiza hortulana 
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Lesser Kestrel Falco naumanni 

Common Kestrel Falco tinnunculus 

Crested Lark Galerida cristata 

Thekla Lark Galerida theklae 

Red-rumped Swallow Hirundo daurica 

Red-backed Shrike Lanius collurio 

Woodchat Shrike Lanius senator 

Calandra Lark Melanocorypha calandra 

European Bee-eater Merops apiaster 

White Wagtail Motacilla alba 

Yellow Wagtail Motacilla flava 

Black-eared Wheatear Oenanthe hispanica 

Great Bustard Otis tarda 

Spanish Sparrow Passer hispaniolensis 

Tree Sparrow Passer montanus 

Rock Sparrow Petronia petronia 

Magpie Pica pica 

Pin-tailed Sandgrouse Pterocles alchata 

Black-bellied Sandgrouse Pterocles orientalis 

Whinchat Saxicola rubetra 

African Stonechat Saxicola torquata 

European Serin Serinus serinus 

Turtle Dove Streptopelia turtur 

Spotless Starling Sturnus unicolor 

Starling Sturnus vulgaris 

Little Bustard Tetrax tetrax 

Hoopoe Upupa epops 

Northern Lapwing Vanellus vanellus 

 


