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Introduction

Wild small mammals are considered an important reservoir of several different zoonotic agents and

the incidence of zoonoses associated with wildlife reservoirs are increasing (Jones et al. 2008).

Several foodborne pathogens, including Salmonella and Escherichia coli O157, have been isolated

from wild small mammals (Davies and Wray 1995, Cizek 1999, Garber 2003, Nielsen 2004,

Meerburg 2006, Zaytseva 2007). Also for enteropathogenic Yersinia spp. small mammals are

suspected to be an important reservoir but evidence is still insufficient.

Enteropathogenic Yersinia spp. including Y. enterocolitica and Y. pseudotuberculosis are important

foodborne zoonotic bacteria causing enteric yersiniosis, which is commonly reported among

humans in Europe (EFSA 2015). The mechanisms of pathogenicity in enteropathogenic

Yersinia spp. are complex, including several chromosomally and plasmid-located genes (Revell and

Miller 2001). One of the most important chromosomal virulence genes is the ail gene coding for the

Ail (attachment-invasion-locus) outer-membrane protein responsible for the colonization and

invasion of Y. enterocolitica to epithelial cells in the ileum during the initial stages of infection

(Revell and Miller 2001, Mikula et al. 2013). Y. enterocolitica strains can be biochemically divided

into six biotypes (1A, 1B and 2 to 5) whose pathogenicity varies widely: biotype 1A strains are

considered non-pathogenic due to the lack of most common chromosomal virulence genes and the

approximately 70-kb virulence plasmid (pYV), which are found in both the weakly pathogenic

strains of biotypes 2-5 and in the highly pathogenic biotype 1B strains (Bhagat and Virdi 2011). All

Y. pseudotuberculosis strains are considered pathogenic. Most environmental Yersinia spp. strains

are non-pathogenic. The ail gene is typically found only in pathogenic Y. enterocolitica strains and

it is the most commonly used target for polymerase chain reaction (PCR) detection of pathogenic

Y. enterocolitica (Nakajima et al. 1992, Fredriksson-Ahomaa and Korkeala 2003, Lambertz et al.



2008). All Y. enterocolitica and Y. pseudotuberculosis strains causing yersiniosis in humans and

animals carry the plasmid pYV, which is essential for these bacteria to survive and multiply in the

lymphatic tissue (Cornelis et al. 1998).

The role of wild small mammals in the epidemiology of enteropathogenic Yersinia spp. is still

obscure, even though several findings suggest the importance of small mammals. For instance,

grated carrots and lettuce, possibly contaminated by wild small mammals or other wildlife, have

been vehicles for Y. pseudotuberculosis epidemics in Finland (Nuorti et al. 2004, Jalava et al. 2006,

Kangas et al. 2008, Rimhanen-Finne et al. 2009). In addition, Yersinia spp. including human

pathogenic biotypes of Y. enterocolitica and Y. pseudotuberculosis, have been isolated from wild

rodents in Japan, where rodents also seem to play an important role in the epidemiology of

Y. enterocolitica bioserotype 1B/O:8 (Fukushima et al. 1990, Iinuma et al. 1992, Hayashidani

1995). Moreover, similar pathogenic Y. enterocolitica 4/O:3 strains were isolated from pigs and

rodents on Swedish pig farms but not from rodents outside the farms (Backhans et al. 2011).

Laukkanen et al. (2008) suggested that the higher prevalence of Y. pseudotuberculosis on organic

pig farms may be due to the higher number of pest and pet contacts with organic pigs than with pigs

in in-house conventional farming. In order to predict human epidemics, the role of wild small

mammals needs to be quantified.

The aim of our study was to clarify the role of small mammalian wildlife hosts as a reservoir for

Yersinia spp.

Materials and Methods

Study area



The study was conducted in an area of Finland (60-64o, 22-29o, Figure 1). Wild small mammals

were trapped from 37 trapping locations (Tables 1 and 2). Most of trapping locations (30) were

selected without earlier knowledge about the presence of Yersinia spp. and made two transects

across Southern and Central Finland. Additional five locations (locations 31-35 in the Table 2 and

Figure 1) were source farms of Y. pseudotuberculosis epidemics a year before trapping started. The

remaining two locations (locations 36-37) were specifically chosen for Borna virus research. All

trapping locations are shown in Figure 1. Habitats in trapping areas covered typical boreal (taiga)

forest (Norway spruce, birch and Scots pine) that covers most of the landscapes, wild meadows

(abandoned oldfields) and field edges.

Rodents and shrews

Small mammals were trapped after the reproductive season from September to November in 2001-

2007. Voles undergo strong population cycles in Finland; generally, 2001 was an increase year,

2002 a peak year, 2003 was a crash, 2004 an increase and 2006 a peak. The 30 trapping sites in the

two transects across Finland remained the same through the study period with the exception that in

the crash year of the rodent cycle in 2003 only every second locality was trapped. At each trapping

locality, altogether 150 traps were set at five different sites, 30 traps in each, within 1 km2. Traps

were set in the afternoon of day 1, checked and animals collected on day 2, and animals collected

and traps removed on day 3. Most of the animals were trapped in the first night. At source farms of

Y. pseudotuberculosis epidemics 200-300 snap traps were used for 1-2 days. Locations for Borna

virus research were trapped once with 200 traps. Snap traps, which killed the animals immediately,

were used. During the trapping months, nighttime temperatures were already low, from -2oC to

+10oC and animals were frozen in dry ice immediately after trap checking. Oral cavity samples

including the tongue and larynx, and/or the intestine including the end of the colon and rectum were

later dissected in the rodent laboratory of Finnish Forest Research Institute (now Natural Resources



Institute Finland), and were subsequently investigated at the Department of Food Hygiene and

Environmental Health, University of Helsinki. The animals were stored at -25oC before dissection.

Intestinal and tongue samples were removed from partially thawed animals and immediately

refrozen at -20oC before culturing.

Ethical statement

In Finland, no ethical permit is needed for snap trapping because the Finnish Act on the Use of

Animals for Experimental Purposes (62/2006) and the Finnish Animal Experiment Board (16th

May, 2007) do not classify snap-trapping as an animal experiment. All trappings were done with the

permission of landowners. A permit (23/5317/2001) for capturing protected species (mainly shrews)

was granted by the Finnish Ministry of Environment. Other species captured are not protected in

Finland, and none of the captured species is included in the Red List of Finnish Species.

Culture methods

The intestinal samples (including feces) and tongue samples were cut into small pieces with scissors

and suspended in 4.5 ml of peptone-mannitol-broth (PMB). Direct culturing after 4-h incubation at

room temperature and cold enrichment for 7, 14 and 21 days at 4ºC were carried out according to

Laukkanen et al. (2008). After each incubation step, 100 µl of the PMB was spread on two selective

agar plates: cefsulodin-irgasan-novobiosin (CIN; Oxoid, Basingstoke, UK) and MacConkey

(Scharlau, Barcelona, Spain) plates. After cold enrichment the PMB was alkaline-treated with

0.25% potassium hydroxide (KOH) solution for 20 s before spreading on selective agar plates.

Small colonies (1 mm in diameter) with a deep red center surrounded by a colorless zone on CIN

and small colorless colonies on MacConkey were collected after 20–24 h incubation at 30ºC and

after further incubation at room temperature for 24 h. The typical colonies were inoculated on

tryptic-soy-agar (TSA; Difco, Maryland, USA) plates that were incubated at 30ºC for 24 h to create



pure cultures for further identification. Up to four colonies on the TSA plates were tested for

oxidase reaction (Pro-Lab Diagnostics, Richmond Hill, Canada) and oxidase-negative isolates were

further inoculated on urea agar slants. Urea-positive isolates were identified using the API 20E test

(BioMérieux, Marcy l’Etoile, France) incubated at 25ºC for 18–20 h.

Characterization

All suspected Yersinia spp. isolates identified by API 20E were biotyped using the following tests

according to Wauters et al. (1987): esculin hydrolysis, tween-esterase activity and pyrazinamidase

production, indole production, and salicin, xylose and trehalose fermentation. Suspected

Y. pseudotuberculosis isolates were biotyped with the raffinose and melibiose fermentation and

citrate utilization tests (Tsubokura and Aleksic 1995). Furthermore, the isolates were characterized

using a multiplex PCR assay targeting the 16S rRNA and ail genes of Y. enterocolitica according to

Wannet et al. (2001). All suspected Y. pseudotuberculosis isolates were confirmed by PCR targeting

a specific region of the inv of Y. pseudotuberculosis (Nakajima et al. 1992). All Y. enterocolitica

isolates confirmed by PCR targeting the 16S rRNA region and inv-positive Y. pseudotuberculosis

isolates were serotyped by slide agglutination using commercial antisera O:1, O:2, O:3, O;5, O:8

and O:9 for Y. enterocolitica and O:1-O:6 for Y. pseudotuberculosis (Denka Seiken, Tokyo, Japan).

The presence of the virulence plasmid was studied by PCR targeting the virF gene on the virulence

plasmid (pYV) (Nakajima et al. 1992, Joutsen et al. 2013). The virulence gene ail from six

Y. enterocolitica biotype 1A isolates (4 sucrose-positive and 2 sucrose-negative ones) and one

Y. kristensenii isolate was confirmed by sequencing in both directions. Sequencing data were

analysed with Bionumerics (Applied Maths).

Statistical analysis



The statistical analysis was conducted with SPSS software version 24 (IBM, Armonk, NY, USA).

The differences in the yearly proportion of Yersinia spp. positive voles, mice and shrews separately,

and in the isolation from oral or intestinal samples were analysed with Pearson´s Chi-square test.

Results

We investigated samples from 1840 wild small mammals for the presence of Yersinia spp.

including voles (1171), mice (376) and shrews (293), trapped in 2001-2007 from 37 trapping

locations in Finland (Table 1). The sample size in each trapping location in each year is presented in

Table 2. Most of the material comes from 30 trapping locations along two transect lines crossing

Southern Finland from the western coast to the eastern border (Figure 1). The isolates were

characterized and the presence of virulence gene ail studied to assess the distribution of different

Yersinia strains among wild small mammals captured at several locations over several years. From

1840 small mammals screened, a total of 641 Yersinia spp. isolates was obtained from 227 (12%)

wild small mammals (Table 3). Yersinia-positive animals were trapped from 78% (29/37) of the

trapping locations. Yersinia spp. were isolated more commonly (p<0.001) from intestinal samples

(60%, 407 isolates from 678 samples) than from oral samples (15%, 234 isolates from 1603

samples).

Y. enterocolitica was the most common species found in 142 (8%) animals (Table 3). Almost all

(358/359) Y. enterocolitica isolates belonged to the non-pathogenic biotype 1A and only one isolate

from intestinal sample of a field vole belonged to bioserotype 2/O:9, which is associated with

human and animal yersiniosis (Table 4). Some (14%; 50/359) Y. enterocolitica isolates were

sucrose negative and thus first identified as Y. kristensenii using API 20E; however, they were

confirmed to be Y. enterocolitica 1A after biotyping and PCR targeting the 16S rRNA region

specific for Y. enterocolitica. Biotype 1A isolates were of serotypes O:2, O:2,3, O:3, O:3,9, O:5,



O:8 or O:9. Using API 20E, 13 isolates from four shrews were identified as Y. pseudotuberculosis

(Table 3). However, only eight of these isolates, obtained from intestinal samples of two common

shrews were confirmed as Y. pseudotuberculosis after PCR targeting the species-specific region of

the inv gene (Table 4). All Y. pseudotuberculosis isolates belonged to biotype 1 and serotype O:2.

In total, 82 (23%) out of 358 Y. enterocolitica 1A isolates and 12 (6%) out of 213 Y. kristensenii

isolates carried the chromosomal virulence gene ail. The ail-positive Y. enterocolitica 1A and

Y. kristensenii isolates were isolated from 41 and four small mammals, respectively.

Y. enterocolitica 1A carrying the ail gene was isolated in most of the species studied (Table 5). The

house mouse and harvest mouse were the only species without any ail-positive Yersinia isolates but

their sample sizes were also the smallest. The ail-positive isolates were most frequently found in

field voles (9%) and sibling voles (10%), especially in 2005, which was a cyclic peak year of voles.

The proportion of Yersinia-positive voles was significantly higher (p<0.001) during the years 2005

and 2007 compared to other years, and also to other peak year of 2002. There were no significant

differences in the proportion of Yersinia spp. carrying animals between other years when voles were

trapped. Y. kristensenii carrying the ail gene was isolated from three bank voles and one common

shrew, which were all trapped in the same area in 2005. Small mammals carrying the ail-positive

Yersinia were trapped in 12 different locations (32%) (Table 5). Field voles excreting ail-positive

Yersinia were found in seven (28%) trapping locations (Table 5). The prevalence of ail-positive

Yersinia in the animals varied from 1% to 14% at the 12 positive trapping locations (Figure 2).

Most of the ail-positive isolates (84%) were found in the intestines.

The partially sequenced ail-gene fragments (111 bp) from six Y. enterocolitica 1A isolates and one

Y. kristensenii isolate were identical to each other and had 98.8% similarity with previously isolated

ail gene from Y. enterocolitica biotype 1A (GenBank: FN812732.1).



Discussion

There are only few studies on the prevalence of Yersinia spp. in wild animals in Europe including

wild boars and deer but not wild small mammals (Fredriksson-Ahomaa et al. 2011, Joutsen et al.

2013, Bancerz-Kisiel et al. 2015). In our study, the prevalence of Yersinia spp. in Finnish wild

small mammal populations from several locations across southern Finland was studied during a

seven-year period. While most of the Yersinia isolates belonged to non-pathogenic species,

especially Y. kristensenii or to non-pathogenic Y. enterocolitica of biotype 1A, pathogenic

Y. pseudotuberculosis of bioserotype 1/O:2 and Y. enterocolitica of bioserotype 2/O:9, both of

which carried the virulence plasmid (pYV), were also isolated. Y. pseudotuberculosis was only

isolated from common shrews, suggesting shrews may be carriers for this enteropathogenic species

causing yersiniosis in both humans and animals. Multiple Y. pseudotuberculosis epidemics related

to vegetables have occurred in Finland (Nuorti et al. 2004, Jalava et al. 2006, Kangas et al. 2008,

Rimhanen-Finne et al. 2009). Wild small mammals with access to vegetables during harvest or

storage were suggested to be the potential source of contamination in one of these

Y. pseudotuberculosis –inflicted carrot epidemics (Jalava et al. 2006). Y. pseudotuberculosis was

isolated from a pooled sample of common shrew intestines from one of these epidemics-related

farms (Kangas et al. 2008). Long-term storage of carrots in cold temperatures favors the growth of

enteropathogenic Yersinia spp. if the vegetables are contaminated by small mammals during the

harvest or storage. The common shrew was the only species in our study known to excrete

Y. pseudotuberculosis in its feces. Common shrew is, unlike rodent species in this study, an

insectivore and eats a lot of worms (Churchfield 1990). Y. pseudotuberculosis thrives in cool soils,

and most probably worms continuously filtering soil accumulate bacteria, further contaminating

shrews.



The only pathogenic Y. enterocolitica isolate carrying the virulence plasmid belonged to

bioserotype 2/O:9 and was found in a field vole. This bioserotype is the second most common cause

of human yersiniosis but the reservoir remains unknown (EFSA 2007, Moriki et al. 2010). All these

enteropathogenic Yersinia carrying the virulence plasmid were isolated from intestinal samples

showing that wild small mammals sporadically excrete these pathogens in their feces. This may

suggest that wild small mammals play a previously unknown role in the epidemiology of human

yersiniosis by shedding pathogenic strains into the environment. In a previous study, it was shown

that laboratory mice can develop a persistent but asymptomatic Y. pseudotuberculosis infection in

the colon when infected with low doses of pathogen and shed the pathogen (Fahlgren et al. 2014).

Wild small mammals carrying and possibly amplifying and excreting pathogenic Yersinia spp. may

produce a risk if coming into contact e.g. with non-carrier domestic animals, food storages or

irrigation water sources. It is very typical in the strongly seasonal Finnish climate that wild small

rodents, and even shrews, invade human settlements in late autumn – early winter when the first

frosts appear. For example, the epidemic peak of hantaviral disease caused by Puumala hantavirus,

takes place in October – January in Finland (Brummer-Korvenkontio et. al. 1999, Kallio et al.

2009). However, further studies are needed to clarify the persistence of Yersinia infection and

shedding of enteropathogenic Yersinia spp. in small mammals.

Yersinia was an occasional finding in all wild small mammals, and Y. enterocolitica biotype 1A and

Y. kristensenii strains carrying the ail gene were isolated especially from voles. Bank and field voles

as well as common shrews are the most common small mammal species in Finland and they were

the most common species trapped during our study. Voles exhibit strong multiannual density

fluctuations, often called cycles, in Finland (Korpela et al. 2013). Therefore, the annual numbers of

trapped animals varied quite widely. Consequently the numbers of positive animals varied



multiannually, particularly because the sample sizes were low in cyclic decline years (2003, 2006).

The proportions of animals carrying ail-positive Yersinia spp. were higher during the peak years

while during years of lowest densities no ail-positive isolates were detected. However, with the

prevalence of peak year ail-positives, it was not very probable to find positives in low-density

years. Furthermore, the prevalence of animals excreting ail-positive Yersinia isolates was high in

some trapping areas (locations 4, 9, 24 and 34) suggesting that horizontal transmission of the ail

gene between the pathogenic and non-pathogenic Y. enterocolitica and between Y. enterocolitica

and Y. kristensenii isolates may have occurred in wildlife in these areas. This will be studied further.

ail-positive small mammals were found in the study localities across Finland, suggesting there is no

geographic clustering of them.

Pathogenic Y. enterocolitica strains attach and invade the host tissue cells with the help of ail

(Pierson and Falkow 1993). The ail-positive Y. enterocolitica 1A and Y. kristensenii isolates are

possibly able to invade the intestinal cells of small mammals and persist there despite a lack of the

virulence plasmid needed for full virulence and infection. However, further studies are needed to

evaluate the full virulence of these ail-positive isolates including the functionality of the ail gene.

The ail gene is typically associated only with pathogenic Y. enterocolitica strains (Miller et al.

1989). ail-positive Y. enterocolitica has sporadically been found in wild animals, food and humans

with diarrhea (Sihvonen et al. 2009, Cheyne et al. 2010, Kraushaar et al. 2011, Liang et al. 2014,

Bancerz-Kisiel et al. 2015). PCR detection of ail is commonly used in the detection of pathogenic

Y. enterocolitica (Fredriksson-Ahomaa and Korkeala 2003, Lambertz et al. 2008), but the presence

of ail also in non-pathogenic Y. enterocolitica and other Yersinia spp. questions the usefulness of

this gene alone in PCR detection.



The identification of Yersinia species was challenging during our study. Differentiating between

sucrose-negative Y. enterocolitica and Y. kristensenii isolates was impossible using only API 20E,

and PCR targeting the 16S rRNA was needed for correct identification. Identification of

Y. pseudotuberculosis was also impossible with API 20E and thus confirmation was performed

using a PCR targeting the species-specific region of the inv gene in Y. pseudotuberculosis. The

identification of environmental presumptive Y. pseudotuberculosis strains has been shown to be

potentially incorrect when using biochemical tests (Niskanen et al. 2009). Typically, correctly

identified Y. pseudotuberculosis isolates can be serotyped and they carry the virulence plasmid. All

Y. pseudotuberculosis isolates in our study were of bioserotype 1/O:2, which is one of the

bioserotypes found in wild birds and boars in Europe (Niskanen et al. 2003, Fredriksson-Ahomaa et

al. 2011). The Y. pseudotuberculosis isolates also carried the virulence plasmid indicating full

pathogenicity of these isolates.

Conclusions

Y. pseudotuberculosis of bioserotype 1/O:2 was isolated from two common species of  shrew and

Y. enterocolitica 2/O:9 from one species of field vole, indicating that wild small mammals could

carry enteropathogenic Yersinia spp. and thus could also act as possible contamination sources of

vegetables. Non-pathogenic Y. enterocolitica of biotype 1A frequently carried the ail gene typically

found only in pathogenic Y. enterocolitica of biotypes 1B and 2 to 5, hampering the identification

of pathogenic Y. enterocolitica isolates. Surprisingly, the ail gene was also detected sporadically in

non-pathogenic Yersinia species Y. kristensenii.
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Figure 1. Trapping sites in Finland. The number refers to trapping locations in the Table 2 and the

size of the circle to the number of trapped animals.

Figure 2. Trapping sites with ail-positive Yersinia spp. carrying animals in Finland. The number

refers to trapping locations in the Table 2 and the size of the circle to the percentage of ail-positive

Yersinia spp. carrying animals.



Table 1. Number of screened animals per species and year

Animal species Number of

locations

Number of trapped animals

All 2001 2002 2003 2004 2005 2006 2007

Voles (Arvicolinae) 34 1171 8 765 16 18 228 76 60

 Field vole

(Microtus agrestis)

25 281 7 214 0 4 34 9 13

 Bank vole

(Myodes glareolus)

33 811 1 503 16 14 163 67 47

 Sibling vole

(Microtus levis)

7 79 0 48 0 0 31 0 0

Mice (Murinae) 29 376 26 63 2 184 64 13 24

 Striped field mouse

(Apodemus agrarius)

6 52 0 2 0 30 20 0 0

 Yellow-necked mouse

(Apodemus flavicollis)

19 225 21 51 2 114 32 1 4

 Harvest mouse

(Micromys minutus)

18 46 5 4 0 17 6 7 7

 House mouse

(Mus musculus)

8 53 0 6 0 23 6 5 13

Shrews (Soricidae) 29 293 4 106 1 86 51 15 30

 Common shrew

(Sorex araneus)

29 293 4 106 1 86 51 15 30

All 37 1840 38 934 19 288 343 104 114



Table 2. Sample sizes and number of Yersinia and ail-positive Yersinia carrying animals in

2001-2007

Trapping location

(No. of animals)

Trapping year No. (%) of animals positive for

2001 2002 2003 2004 2005 2006 2007 Yersinia spp. ail-pos.

Yersinia

1. a Mustasaari (46) 0 5 0 7 34 b 0 0 6 (13.0) 2 (4.3)

2. Laihia (79) 0 10c 0 12 57 0 0 4 (5.1) 0

3. Ilmajoki (41) 0 16 0 5 20 0 0 3 (7.3) 0

4. Nurmo (27) 0 6 0 13 6 2 0 2 (7.4) 2 (7.4)

5. Alavus (93) 0 89 0 4 0 0 0 2 (2.2) 2 (2.3)

6. Ähtäri (47) 0 40 0 7 0 0 0 1 (2.1) 0

7. Multia (63) 0 28 0 20 15 0 0 4 (6.3) 0

8. Uurainen (23) 0 15 0 8 0 0 0 1 (4.3) 0

9. Laukaa (49) 0 33 0 16 0 0 0 11 (22.4) 8 (16.3)

10. Hankasalmi (2) 0 2 0 0 0 0 0 0 0

11. Pieksamäki (49) 0 42 0 7 0 0 0 1 (2.0) 0

12. Virtasalmi (65) 0 65 0 0 0 0 0 7 (10.8) 3 (4.6)

13. Rantasalmi (34) 0 31 0 1 2 0 0 3 (8.8) 0

14. Savonlinna (12) 0 11 0 1 0 0 0 2 (16.7) 1 (8.3)

15. Punkaharju (7) 0 6 0 1 0 0 0 0 0

16. Parikkala (13) 0 0 0 13 0 0 0 2 (15.4) 0

17. Rautjärvi (24) 0 10 6 8 0 0 0 0 0

18. Joutseno (29) 0 11 0 0 18 0 0 3 (10.3) 1 (3.4)

19. Lappeenranta (91) 0 71 3 10 7 0 0 4 (4.4) 1 (1.1)

20. Savitaipale (60) 0 42 0 18 0 0 0 11 (18.3) 0

21. Valkeala (44) 0 29 0 13 2 0 0 0 0

22. Jaala (20) 0 10 0 3 7 0 0 0 0

23. Asikkala (54) 0 50 1 3 0 0 0 0 0



24 Hauho (22) 0 21 1 0 0 0 0 0 0

25. Valkeakoski (67) 0 50 0 17 0 0 0 6 (9.0) 0

26. Vesilahti (61) 0 55 1 4 1 0 0 1 (1.6) 0

27. Hämeenkyrö (50) 0 41 0 9 0 0 0 6 (12.0) 0

28. Sastamala (55) 0 40 0 7 8 0 0 3 (5.5) 2 (3.6)

29. Kokemäki (123) 38 71 7 7 0 0 0 6 (4.9) 0

30. Ulvila (71) 0 34 0 26 11 0 0 5 (7.0) 0

31.d Himanka (107) 0 0 0 0 38 45 24 39 (36.4) 0

32.d Toholampi (55) 0 0 0 0 0 30 25 11 (20.0) 0

33.d Ylihärmä (22) 0 0 0 0 0 7 15 10 (45.5) 1 (4.5)

34.d Myrkky (156) 0 0 0 0 117 9 30 63 (40.4) 21 (13.5)

35.d Loppi (31) 0 0 0 0 0 11 20 7 (22.6) 1 (3.2)

36. Mäntsälä (22) 0 0 0 22 0 0 0 0 0

37. Suitia (26) 0 0 0 26 0 0 0 3 (11.5) 0

Total (1840) 38 934 19 288 343 104 114 227 (12.3) 45 (2.4)

a The number refers to trapping locations marked on Figures 1 and 2.

b Bold and italic numbers include samples of ail-positive animals.

c Bold numbers include Yersinia-positive animals.

d Localities 31-35 were selected due to known earlier Yersinia spp. occurrence.



Table 3. Distribution of different Yersinia spp. in voles, mice and shrews

Animal

species

(number of animals)

Number of Yersinia-positive animals  using PCR (number of isolates)

Yersinia

spp.

Yersinia

enterocolitica

Yersinia

kristensenii

Yersinia

mollaretii/

bercovieri

Yersinia

frederiksenii

Yersinia

rohdei

Yersinia

intermedia

Yersinia

pseudotuber-

culosis

Voles (1171) 152 (421) 103 (259) 57 (144) 7 (14) 2 (4) 0 0 0

Field vole (281) 41 (116) 36 (93) 8 (18) 2 (5) 0 0 0 0

Bank vole (811) 98 (277) 58 (144) 46 (122) 4 (7) 2 (4) 0 0 0

Sibling vole (79) 13 (28) 9 (22) 3 (4) 1 (2) 0 0 0 0

Mice (376) 50 (138) 30 (73) 12 (29) 12 (27) 2 (4) 1 (2) 2 (3) 0

Striped field

mouse (52)

13 (36) 9 (22) 4 (11) 1 (1) 1 (1) 0 1 (1) 0

Yellow-necked

mouse (225)

30 (81) 18 (44) 6 (13) 9 (22) 0 0 1 (2) 0

Harvest mouse

(46)

2 (6) 0 1 (3) 0 1 (3) 0 0 0

House mouse (53) 5 (15) 3 (7) 1 (2) 2 (4) 0 1 (2) 0 0

Common shrew (293) 25(82) 9 (27) 15 (40) 0 1 (2) 0 0 2 (8)

All 227 (641) 142 (359) 84 (213) 19 (41) 5 (10) 1 (2) 2 (3) 2 (8)



Table 4. Identification of 641 Yersinia spp. isolated from voles, mice and shrews

Yersinia spp. Biotype

Number of isolates (number of animals)

Identified by

API 20E

16S rRNAa

positive

ailb

positive

invc

positive

Y. enterocolitica 359 (142) 359 (142) 83 (41) NDd

 sucrose positive 1A 308 (119) 308 (119) 53 (24)

2 1 (1) 1 (1) 1 (1)

 sucrose negative 1A 50 (26) 50 (26) 29 (18)

Y. kristensenii 213 (84) 0 (84) 12 (4) ND

Y. mollaretii/bercovieri 41 (19) 0 (19) 0 (19) ND

Y. rohdei 2 (1) 0 (1) 0 (1) ND

Y. frederiksenii 10 (5) 0 (5) 0 (5) ND

Y. intermedia 3 (2) 0 (3) 0 (3) ND

Y. pseudotuberculosis 13 (4) ND ND 8 (2)

All isolates 641 (227) 359 (142) 95 (45)

a 16S rRNA sequence studied only in Y. enterocolitica

b ail sequence typically found only in Y. enterocolitica strains of biotypes 1B, 2–5

c inv sequence studied only in Y. pseudotuberculosis

d ND Not determined



Table 5. Distribution of ail-positive Yersinia enterocolitica and Yersinia kristensenii in voles,

mice and shrews

Animal speciesa Number
of animals

Number of ail-positive

 Animals Yersinia enterocolitica Yersinia
kristensenii

Trapping
locations

Biotype 1A Biotype 2

Field vole 281  25 (8.9%) b 25 1 0 7 (28.0%) c

Bank vole 811  6 (0.7%) 3 0 3 3 (9.1%)

Sibling vole 79  8 (10.1%) 8 0 0 1 (14.3%)

Striped field mouse 52  1 (1.9%) 1 0 0 1 (16.7%)

Yellow-necked mouse 225  3 (1.3%) 3 0 0 2 (10.5%)

Common shrew 293  2 (0.7%) 1 0 1 1 (3.4%)

All animals 1741  45 (2.5%) 41 1 4 12 (31.6%)

a Only species with ail-positive Yersinia spp. isolations

b Percentage of ail-positive animals in a species

c Percentage of trapping locations with ail-positive animal species out of locations where species

was captured






