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Abstract  

The existing literature on the subsidy-efficiency nexus is almost exclusively based on static 
modelling and thus ignores the inter-temporal nature of production decisions. The present paper 
contributes to this literature by developing a dynamic stochastic frontier model, which is then 
estimated using a sample of French farms over the period 1992-2011. For comparison purposes, 
the static counterpart of the dynamic model is also estimated. The results indicate that, in the 
dynamic case as well as in the static one, public subsidies are negatively associated with farm 
technical efficiency. Nevertheless, these linkages are found to be weak, and they are much 
weaker when dynamic aspects are taken into account.    
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1. Introduction   

In the European Union (EU), in quest of a symbiosis between agricultural support policies and 
farming sustainability, the financial support to farmers has been gradually moved away from 
market price supports to coupled direct payments (production-related payments) and decoupled 
direct payments (European Commission, 2011). Compared to the market price supports and the 
production-related payments, the decoupled payments were intended to have no influence on 
farmers’ production decisions. However, Hennessy (1998) has theoretically demonstrated that 
the decoupled payments could alter farmers’ production decisions through an income-
stabilising effect. In addition, Ciaian and Swinnen (2009) mention that decoupled subsidies 
could influence farmers’ production decisions by reducing production constraints in allowing 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/286389632?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:j.minviel@envt.fr
mailto:timo.sipilainen@helsinki.fi


2 

 

farmers to cover operating costs, or in serving as collateral to credit access for credit constrained 
farmers.  

Hence, due to the potential influence of any kind of subsidies on farmers’ behaviour, a growing 
body of literature examines their impact on farmers’ production decisions, in order to enlighten 
policy makers. The current paper is rooted in this literature with a particular attention on the 
subsidy-efficiency link. The investigation of the subsidy-efficiency link is of crucial importance 
from a survival perspective of the agricultural sector (Shee and Stefanou, 2015). Indeed, it could 
inform policy makers on the extent to which subsidies drive the optimal use of resources and 
the competitiveness of farmers in the long-run (see European Commission, 2009; Latruffe, 
2010). In this view, it is worth mentioning that farms’ survival depends mainly on farmers’ 
ability to make efficient decisions over time (Choi et al., 2006). In this respect, an important 
issue of the existing studies on the subsidy-efficiency link is that they are almost exclusively 
based on a static view of the decision-making process1. Although the static framework provides 
useful insights for theoretical and empirical studies on efficiency analysis, it ignores some 
relevant practical aspects. Particularly, it ignores the time interdependence of production 
decisions (Serra et al., 2011), and thus provides only a limited view of productive efficiency 
(Sengupta, 1999). As a result, a dynamic framework seems to be necessary for analysing the 
subsidy-efficiency link. Along with the dynamic setting, the stochastic production conditions 
in which farms operate must be acknowledged.  

The dynamic efficiency literature is mainly built upon the adjustment cost framework (see 
Tsionas, 2006; Stefanou, 2009). More concretely, it relies on the principle that efficiency 
improvement requires adjustment decisions and thus incurs decision-makers to support 
adjustment costs for quasi-fixed inputs, or variable input reallocation costs (see Tsionas, 2006; 
Choi et al., 2006; Rungsuriyawiboon and Stefanou, 2007; Stefanou, 2009; Serra et al., 2011; 
Emvalomatis, 2012). This suggests that production decisions for improving current technical 
efficiency level depend on adjustment costs of quasi-fixed inputs, or on the level of variable 
input reallocation costs. In this case, public subsidies could help farmers to support adjustment 
costs for quasi-fixed inputs or variable input reallocation costs, if they face binding credit or 
liquidity constraints (see Ciaian and Swinnen, 2009; Latruffe et al., 2010). Nonetheless, it is 
also recognised that investment decisions are generally postponable and can be influenced by 
the elasticity of inter-temporal substitution (EIS) of the decision-makers (Pindyck, 1993; Lence, 
2000). The EIS can be thought here as an indicator of the willingness of decision-makers to 
smooth their wealth over time (see Weil, 2002) through investment decisions. In this respect, 

                                                            
1 To our knowledge the paper by Skevas et al. (2012) is the only exception. However, this paper uses a two-stage approach 
which is questionable (Simar and Wilson, 2011). The two-stage approach assumes that the input-output set is not influenced 
by subsidies. This assumption contrasts with theoretical studies which state that subsidies may influence the input-output space 
(see Hennessy, 1998; Serra et al., 2006). 
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since subsidies could help farmers to smooth their wealth over the states of nature and over 
time, they could distort the timing of investment decisions by distorting the EIS, and thus cause 
persistent technical inefficiency.  

In this context, this paper aims at examining the relationship between public subsidies and farm 
technical efficiency, using a dynamic stochastic framework. To do so, following Cuesta et al. 
(2009) and dynamic efficiency literature (e.g., Silva and Stefanou, 2007; Serra et al., 2011; 
Silva et al., 2015), this paper develops and estimates a stochastic dynamic frontier model. For 
comparison purposes, the static counterpart of this model is also estimated. Thus the paper 
contributes to the literature (i) by developing a stochastic dynamic frontier model and (ii) by 
providing the first analysis of the subsidy-efficiency nexus in a dynamic stochastic framework. 
The appealing feature of this framework is that it enables recovering the stochastic and dynamic 
nature of the agricultural production process.  

The remainder of the paper is structured as follows. The next section provides a succinct review 
of the existing literature on the parametric dynamic efficiency analysis. Section 3 presents the 
conceptual framework. Section 4 introduces the methodological framework and describes the 
data used. Section 5 presents the empirical results. Section 6 draws concluding remarks.  

2. Related literature   

The dynamic efficiency concept is built upon the notions of inter-temporal production 
technology and adjustment decisions for which Figure 1 provides some insights.    

 

 Figure 1. Inter-temporal production technology (Nemoto and Goto, 2003) 

 

 

 

 

Figure 1 shows that, in period 𝑡𝑡, variable inputs 𝑥𝑥𝑡𝑡 and quasi-fixed inputs 𝑘𝑘𝑡𝑡 are transformed 
by the production process 𝑃𝑃𝑡𝑡𝑜𝑜 into output 𝑦𝑦𝑡𝑡 and quasi-fixed inputs 𝑘𝑘𝑡𝑡+1 which may include 
gross investments 𝐼𝐼𝑡𝑡. These new quasi-fixed inputs 𝑘𝑘𝑡𝑡+1 and new variable inputs 𝑥𝑥𝑡𝑡+1 constitute 
the main inputs for the production process 𝑃𝑃𝑡𝑡+1𝑜𝑜  in the subsequent period 𝑡𝑡 + 1. In this setup, 
the inter-temporal links are built upon the path of the quasi-fixed inputs. The path of these 
inputs is governed by the physical depreciation rate of capital 𝛿𝛿 and investment decisions 𝐼𝐼𝑡𝑡.  

As previously stated, quasi-fixed input adjustment costs and variable input reallocation costs 
represent the core grounds of dynamic efficiency analysis (see, Choi et al., 2006; Stefanou, 
2009; Serra et al., 2011). Adjustment or transition costs can be seen as transaction costs or 
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reorganisation costs. Concretely, on the one hand, adjustment costs are additional costs that 
have to be supported by firms beyond acquisition costs (Stefanou, 2009). These costs may 
include credit costs, contractual costs, and learning or training costs. On the other hand, all 
variable inputs may not be instantaneously and costlessly reallocated to improve efficiency 
(Choi et al., 2006). This implies that, reallocation of variable inputs may require transition costs 
including learning or training costs and information search. It may also require a reorganisation 
or restructuring of the production activity, which may need adjustment of quasi-fixed inputs 
(Choi et al, 2006). Public subsidies could help farmers to support these costs, if they face 
binding credit constraints (see Ciaian and Swinnen, 2009; Latruffe et al., 2010). But they may 
also distort economic pressures to adjust input use, since they could help farmers to smooth 
their wealth over the states of nature and over time.  

In the econometric2 literature, dynamic efficiency analysis is carried out using either reduced-
form or structural dynamic models. The reduced-form dynamic models are mainly extensions 
of the standard stochastic frontier model through an autoregressive process of order 1 [AR (1)] 
for the inefficiency component (See Ahn et al., 2000; Tsionas, 2006; Emvalomatis et al., 2011; 
Emvalomatis, 2012; Galán et al., 2015). The dynamic structure of the reduced-form model 
relies on the AR (1) process for the inefficiency component which allows capturing inefficiency 
persistence. That is, it captures the part of the inefficiency that is transmitted from one period 
to the next. The inefficiency persistence is assumed to be related to high adjustment costs, 
sluggish adjustments, or uncertainty over future production conditions. From this viewpoint, 
Emvalomatis (2012) argues that the reduced-form dynamic models may allow capturing some 
dynamic aspects of firm’s behaviour. However, since reduced-form dynamic models do not 
model explicitly the dynamic structure of the decision making process, explicit structural 
models may be preferable.  

In the meantime, the existing parametric structural dynamic efficiency models include (i) the 
dynamic models developed by Rungsuriyawiboon and Stefanou (2007) and Rungsuriyawiboon 
and Hockmann (2015) based on the shadow cost approach and (ii) the dynamic model 
developed by Serra et al. (2011) based on the distance function approach. Basically, the shadow 
cost approach consists in relating actual observed costs to shadow (or behavioural) costs 
obtained from an optimisation programme. The connection is established through a distortion 
factor which captures departure from optimal values (the shadow cost approach is readily 
available in Stefanou and Saxena, 1988). The model by Rungsuriyawiboon and Hockmann 
(2015) is an extension of the one developed by Rungsuriyawiboon and Stefanou (2007) which 
allows accounting for multiple quasi-fixed factors. However, as stated by Serra et al. (2011) 

                                                            
2 For the purpose of our analysis, we abstract from non-parametric dynamic efficiency models, since they are essentially 
deterministic (see Nemoto and Goto, 1999, 2003; Ouellette and Yan, 2008).  
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and recognised by Rungsuriyawiboon and Hockmann (2015), one issue of the shadow cost 
approach is that it does not specify the production technology directly. The structural model 
developed by Serra et al. (2011) is a dynamic directional input distance function derived from 
an inter-temporal cost minimisation programme, given the duality between input distance 
functions and cost functions. Since distance functions may provide a complete characterisation 
of a production technology (Chambers et al., 1998), it appears that, to date, the most suitable 
parametric approach for dynamic efficiency analysis is the distance function approach 
developed by Serra et al. (2011). As such, in this paper we follow a distance function approach. 
More precisely, we define a parametric dynamic hyperbolic distance function, based on the 
non-parametric dynamic hyperbolic efficiency measure defined by Silva and Stefanou (2007) 
and the (static) parametric hyperbolic framework proposed by Cuesta et al. (2009).  

3. Conceptual framework  

We define a dynamic efficiency model, based on the dynamic hyperbolic distance function 
defined by Silva and Stefanou (2007) and the (static) parametric hyperbolic distance function 
approach proposed by Cuesta et al. (2009). Indeed, assuming that farmers are cost-minimisers 
and that they do not always succeed in optimising their programme, Silva and Stefanou (2007) 
define a dynamic hyperbolic distance function to characterise their production decisions. In the 
Silva and Stefanou’s (2007) framework, and as usual in the dynamic efficiency literature (e.g., 
Serra et al., 2011; Silva and Oude Lansink, 2013; Kapelko et al., 2014; Kapelko et al., 2015; 
Silva et al., 2015; Baležentis, 2016), the inter-temporal (dynamic) links of production decisions 
are built upon gross investments (namely the dynamic factor). The dynamic hyperbolic 
technical efficiency measure defined by Silva and Stefanou (2007) can be expressed as follows:  

   𝐷𝐷𝐻𝐻𝑡𝑡�𝑦𝑦𝑡𝑡, 𝑥𝑥𝑡𝑡, 𝐼𝐼𝑡𝑡, 𝑘𝑘𝑡𝑡� = 𝑖𝑖𝑖𝑖𝑖𝑖{𝜃𝜃𝑡𝑡 > 0: (𝑥𝑥𝑡𝑡𝜃𝜃𝑡𝑡 , 𝐼𝐼𝑡𝑡θt−1)𝜖𝜖 𝑉𝑉(𝑦𝑦𝑡𝑡:𝑘𝑘𝑡𝑡)}                [1] 

 

where 𝑦𝑦𝑡𝑡 denotes the output level targeted by a farmer at time 𝑡𝑡, given a vector of variable 
inputs 𝑥𝑥𝑡𝑡, a vector of gross investments 𝐼𝐼𝑡𝑡, and a vector of initial capital stocks 𝑘𝑘𝑡𝑡 at time 𝑡𝑡. In 
addition, 𝑉𝑉(𝑦𝑦𝑡𝑡:𝑘𝑘𝑡𝑡) stands for the input requirement set for producing 𝑦𝑦𝑡𝑡 given the initial vector 
of capital stocks 𝑘𝑘𝑡𝑡. In expression [1], 𝜃𝜃 is a small positive scalar which allows a simultaneous 
expansion of gross investments and contraction of variable inputs, to reach the boundary of the 
production input requirement set 𝑉𝑉(𝑦𝑦𝑡𝑡: 𝑘𝑘𝑡𝑡). Silva and Stefanou (2007) state that the range of 
the hyperbolic distance function defined in [1] is 0 < 𝐷𝐷𝐻𝐻𝑡𝑡�𝑦𝑦𝑡𝑡, 𝑥𝑥𝑡𝑡, 𝐼𝐼𝑡𝑡, 𝑘𝑘𝑡𝑡� ≤ 1 and that it should 
be decreasing in 𝑥𝑥𝑡𝑡 and increasing in 𝐼𝐼𝑡𝑡. This efficiency measure is illustrated in Figure 2, which  
shows that, given an observed input vector 𝐿𝐿,  𝐷𝐷𝐻𝐻𝑡𝑡 contracts 𝑥𝑥𝑡𝑡 and expands 𝐼𝐼𝑡𝑡 at the rate 
following the hyperbolic path 𝐿𝐿𝐿𝐿∗ .  
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Figure 2. Technical efficiency of variable and quasi-fixed factors (Silva and Stefanou, 
2007)  

 

 

                                           

 

 

 

In the current paper, we extend the Silva and Stefanou’s (2007) model by defining an enhanced 
dynamic hyperbolic distance function to characterise farmers’ production decisions. Indeed, we 
assume that farmers are profitability (or profit) maximisers and that they may fail to optimise 
their inter-temporal programme. This implies that inputs, outputs and gross investments are 
decision variables. Also, in line with expression [1], our enhanced dynamic hyperbolic distance 
function can be expressed as follows (the time indicators are omitted for simplicity): 

    𝐷𝐷𝐸𝐸𝐻𝐻(𝑦𝑦, 𝑥𝑥,𝑘𝑘, 𝐼𝐼) = 𝑖𝑖𝑖𝑖𝑖𝑖{𝜃𝜃 > 0: (𝑦𝑦𝜃𝜃−1, 𝑥𝑥𝜃𝜃, 𝐼𝐼𝜃𝜃−1)𝜖𝜖 𝑇𝑇}         [2] 

In expression [2], 𝑦𝑦 is a vector of outputs, 𝑥𝑥 a vector of variable inputs,  𝑘𝑘 a vector of quasi-
fixed inputs, and 𝐼𝐼 a vector of gross investments. In addition, 𝜃𝜃 is a small positive scalar which 
allows a simultaneous expansion of outputs and investments and contraction of variable inputs, 
to reach the boundary of the technology set 𝑇𝑇. As in Silva and Stefanou (2007), Serra et al. 
(2011) and Silva et al. (2015), capital is not contracted; i.e., the dynamic distance function will 
be estimated conditionally to the current capital stock. It must be noticed that a hyperbolic3 
distance function similar to expression [2] has been developed and characterised by Cuesta et 
al. (2009) in a static context, i.e., without accounting for inter-temporal decisions. Hence, in 
line with Silva and Stefanou (2007) and Cuesta et al. (2009), we state the range of our dynamic 
hyperbolic distance function is 0 < 𝐷𝐷𝐸𝐸𝐻𝐻(𝑦𝑦, 𝑥𝑥, 𝑘𝑘, 𝐼𝐼) ≤ 1, and it satisfies the following properties:  

a. it is almost homogeneous:  𝐷𝐷𝐸𝐸𝐻𝐻(𝜆𝜆𝑦𝑦, 𝜆𝜆−1𝑥𝑥,𝑘𝑘, 𝜆𝜆𝐼𝐼) = 𝜆𝜆𝐷𝐷𝐸𝐸𝐻𝐻(𝑦𝑦, 𝑥𝑥,𝑘𝑘, 𝐼𝐼), 𝜆𝜆 > 0;   
b. it is non-decreasing in outputs: 𝐷𝐷𝐸𝐸𝐻𝐻(𝜆𝜆𝑦𝑦, 𝑥𝑥,𝑘𝑘, 𝐼𝐼) ≤ 𝐷𝐷𝐸𝐸𝐻𝐻(𝑦𝑦, 𝑥𝑥,𝑘𝑘, 𝐼𝐼), 0 ≤ 𝜆𝜆 ≤ 1; 
c. it is non-decreasing in investments: 𝐷𝐷𝐸𝐸𝐻𝐻(𝑦𝑦, 𝑥𝑥,𝑘𝑘, 𝜆𝜆𝐼𝐼) ≤ 𝐷𝐷𝐸𝐸𝐻𝐻(𝑦𝑦, 𝑥𝑥,𝑘𝑘, 𝐼𝐼), 0 ≤ 𝜆𝜆 ≤ 1;   
d. it is non-increasing in inputs: 𝐷𝐷𝐸𝐸𝐻𝐻(𝑦𝑦, 𝜆𝜆𝑥𝑥,𝑘𝑘, 𝐼𝐼) ≤ 𝐷𝐷𝐸𝐸𝐻𝐻(𝑦𝑦, 𝑥𝑥,𝑘𝑘, 𝐼𝐼), 𝜆𝜆 ≥ 1. 

The almost homogeneity property is of crucial interest since it allows deriving an estimable 
(parametric) form for the hyperbolic distance function [2]. This property, 

                                                            
3 The term hyperbolic reflects the hyperbolic path followed by the distance function toward the production frontier. 
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𝐷𝐷𝐸𝐸𝐻𝐻(𝜆𝜆𝑦𝑦, 𝜆𝜆−1𝑥𝑥, 𝑘𝑘, 𝜆𝜆𝐼𝐼) = 𝜆𝜆𝐷𝐷𝐸𝐸𝐻𝐻(𝑦𝑦, 𝑥𝑥,𝑘𝑘, 𝐼𝐼), 𝜆𝜆 > 0, states that if the set of outputs is increased by a 
given proportion, the set of variable inputs is reduced by the same proportion, and the set of 
gross investments is increased by the same proportion, then the distance function will increase 
by that same proportion (see Cuesta and Zofío, 2005; Cuesta et al., 2009, for more details). 
Hence, an estimable (parametric) form for the hyperbolic distance function [2] can be derived 
by setting 𝜆𝜆 = 1 𝑦𝑦𝑀𝑀⁄  (where 𝑦𝑦𝑀𝑀 is the Mth output). 

In a similar way, Serra et al. (2011) derive a parametric dynamic directional input distance 
function from an inter-temporal cost minimisation programme, using the translation property 
of Shephard (1953, 1970). However, as pointed out by Serra et al. (2011), it may be quite 
difficult to account for the effect of exogenous drivers, such as public subsidies, in a dynamic 
directional distance function. This may be related to the complex structure of the empirical 
model (see Serra et al., 2011, for more details). Hence one advantage of our parametric 
hyperbolic distance function is that it can easily account for contextual drivers (see, Henningsen 
et al., 2014; Glass et al., 2014; Mamardashvili et al., 2016, for the static case). The main 
difference between the directional distance function and the hyperbolic distance function is that 
the latter is based on the multiplicative homogeneity property of the Shephard’s (1953; 1970) 
distance function, while the former is characterised by the translation property which is the 
additive analogue of the multiplicative homogeneity property (see Färe et al., 2005; Cuesta and 
Zofío, 2005; Cuesta et al., 2009, for more details).   

 

4. Estimation procedure and data  

4.1. Estimation procedure   

To estimate the dynamic hyperbolic distance function defined in [2], we chose a stochastic 
translog specification since it complies with the almost homogeneity property of the hyperbolic 
distance functions (Cuesta and Zofío, 2005; Cuesta et al., 2009). For a case of Q outputs (𝑦𝑦), N 
variable inputs (𝑥𝑥), P quasi-fixed inputs (𝑘𝑘), and H gross investments (𝐼𝐼), the stochastic translog 
specification is given by:   

  ln𝐷𝐷𝐸𝐸𝐻𝐻𝑖𝑖𝑡𝑡(𝑦𝑦, 𝑥𝑥, 𝑘𝑘, 𝐼𝐼) = 𝛼𝛼0 + ∑ 𝛼𝛼𝑞𝑞ln𝑦𝑦𝑞𝑞,𝑖𝑖𝑡𝑡
𝑄𝑄
𝑞𝑞=1 + 1

2
∑ ∑ 𝛼𝛼𝑞𝑞𝑞𝑞′ln𝑦𝑦𝑞𝑞,𝑖𝑖𝑡𝑡

𝑄𝑄
𝑞𝑞′=1

𝑄𝑄
𝑞𝑞=1 ln𝑦𝑦𝑞𝑞′,𝑖𝑖𝑡𝑡 +  ∑ 𝛼𝛼𝑖𝑖ln𝑥𝑥𝑖𝑖,𝑖𝑖𝑡𝑡

𝑁𝑁
𝑖𝑖=1 +

1
2
∑ ∑ 𝛼𝛼𝑖𝑖𝑖𝑖′

𝑁𝑁
𝑖𝑖′=1

𝑁𝑁
𝑖𝑖=1 ln𝑥𝑥𝑖𝑖,𝑖𝑖𝑡𝑡ln𝑥𝑥𝑖𝑖′,𝑖𝑖𝑡𝑡 + ∑ 𝛼𝛼𝑝𝑝ln𝑘𝑘𝑝𝑝,𝑖𝑖𝑡𝑡

𝑃𝑃
𝑝𝑝=1 + 1

2
∑ ∑ 𝛼𝛼𝑝𝑝𝑝𝑝′

𝑃𝑃
𝑝𝑝′=1

𝑃𝑃
𝑝𝑝=1 ln𝑘𝑘𝑝𝑝,𝑖𝑖𝑡𝑡ln𝑘𝑘𝑝𝑝′,𝑖𝑖𝑡𝑡 + ∑ 𝛼𝛼ℎ𝐻𝐻

ℎ=1 ln𝐼𝐼ℎ,𝑖𝑖𝑡𝑡 +
1
2
∑ ∑ 𝛼𝛼ℎℎ′

𝐻𝐻
ℎ′=1

𝐻𝐻
ℎ=1 ln𝐼𝐼ℎ,𝑖𝑖𝑡𝑡ln𝐼𝐼ℎ′,𝑖𝑖𝑡𝑡 + ∑ ∑ 𝛼𝛼𝑞𝑞𝑖𝑖𝑁𝑁

𝑖𝑖=1
𝑄𝑄
𝑞𝑞=1 ln𝑦𝑦𝑞𝑞,𝑖𝑖𝑡𝑡ln𝑥𝑥𝑖𝑖,𝑖𝑖𝑡𝑡 + ∑ ∑ 𝛼𝛼𝑞𝑞𝑝𝑝𝑃𝑃

𝑝𝑝=1
𝑄𝑄
𝑞𝑞=1 ln𝑦𝑦𝑞𝑞,𝑖𝑖𝑡𝑡ln𝑘𝑘𝑝𝑝,𝑖𝑖𝑡𝑡 +

∑ ∑ 𝛼𝛼𝑞𝑞ℎ𝐻𝐻
ℎ=1

𝑄𝑄
𝑞𝑞=1 ln𝑦𝑦𝑞𝑞,𝑖𝑖𝑡𝑡ln𝐼𝐼ℎ,𝑖𝑖𝑡𝑡 + ∑ ∑ 𝛼𝛼𝑖𝑖𝑝𝑝𝑃𝑃

𝑝𝑝=1
𝑁𝑁
𝑖𝑖 ln𝑥𝑥𝑖𝑖,𝑖𝑖𝑡𝑡ln𝑘𝑘𝑝𝑝,𝑖𝑖𝑡𝑡 + ∑ ∑ 𝛼𝛼𝑖𝑖ℎ𝐻𝐻

ℎ=1
𝑁𝑁
𝑖𝑖=1 ln𝑥𝑥𝑖𝑖,𝑖𝑖𝑡𝑡ln𝐼𝐼ℎ,𝑖𝑖𝑡𝑡 +

∑ ∑ 𝛼𝛼𝑝𝑝ℎ𝐻𝐻
ℎ=1

𝑃𝑃
𝑝𝑝=1 ln𝑘𝑘𝑝𝑝,𝑖𝑖𝑡𝑡ln𝐼𝐼ℎ,𝑖𝑖𝑡𝑡 + 𝜐𝜐𝑖𝑖𝑡𝑡                             [3] 
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where 𝜐𝜐𝑖𝑖𝑡𝑡 is a symmetric error term representing the usual statistical noise and unexpected 
stochastic change in production environment; 𝑖𝑖 denotes individual indices; and 𝑡𝑡 represents time 
indices. As stated earlier, this hyperbolic distance function must be almost homogeneous of 
degrees 1, -1, 1, 1. That is, if the set of outputs is increased by a given proportion, the set of 
variable inputs is reduced by the same proportion, and the set of gross investments is increased 
by the same proportion, then the distance function will increase by that same proportion (see 
Cuesta and Zofío, 2005; Cuesta et al., 2009, for more details). This property is required for 
econometric estimations, since the dependent variable in expression [3] is a latent variable. 

Choosing the q0-th output for normalising in order to satisfy the almost homogeneity condition, 
we get the following empirical specification: 

ln �𝐷𝐷𝐸𝐸𝐻𝐻𝑖𝑖𝑡𝑡 𝑦𝑦𝑞𝑞0,𝑖𝑖𝑡𝑡� � = 𝛼𝛼0 + ∑ 𝛼𝛼𝑞𝑞ln𝑦𝑦𝑞𝑞,𝑖𝑖𝑡𝑡
∗𝑄𝑄

𝑞𝑞=1 + 1
2
∑ ∑ 𝛼𝛼𝑞𝑞𝑞𝑞′ln𝑦𝑦𝑞𝑞,𝑖𝑖𝑡𝑡

∗𝑄𝑄
𝑞𝑞′=1

𝑄𝑄
𝑞𝑞=1 ln𝑦𝑦𝑞𝑞′,𝑖𝑖𝑡𝑡

∗ +  ∑ 𝛼𝛼𝑖𝑖ln𝑥𝑥𝑞𝑞,𝑖𝑖𝑡𝑡
∗𝑁𝑁

𝑖𝑖=1 +
1
2
∑ ∑ 𝛼𝛼𝑖𝑖𝑖𝑖′

𝑁𝑁
𝑖𝑖′=1

𝑁𝑁
𝑖𝑖=1 ln𝑥𝑥𝑖𝑖,𝑖𝑖𝑡𝑡

∗ ln𝑥𝑥𝑖𝑖′,𝑖𝑖𝑡𝑡
∗ + ∑ 𝛼𝛼𝑝𝑝ln𝑘𝑘𝑝𝑝,𝑖𝑖𝑡𝑡

𝑃𝑃
𝑝𝑝=1 + 1

2
∑ ∑ 𝛼𝛼𝑝𝑝𝑝𝑝′

𝑃𝑃
𝑝𝑝′=1

𝑃𝑃
𝑝𝑝=1 ln𝑘𝑘𝑝𝑝,𝑖𝑖𝑡𝑡ln𝑘𝑘𝑝𝑝′,𝑖𝑖𝑡𝑡 + ∑ 𝛼𝛼ℎ𝐻𝐻

ℎ=1 ln𝐼𝐼ℎ,𝑖𝑖𝑡𝑡
∗ +

1
2
∑ ∑ 𝛼𝛼ℎℎ′

𝐻𝐻
ℎ′=1

𝐻𝐻
ℎ=1 ln𝐼𝐼ℎ,𝑖𝑖𝑡𝑡

∗ ln𝐼𝐼ℎ′,𝑖𝑖𝑡𝑡
∗ + ∑ ∑ 𝛼𝛼𝑞𝑞𝑖𝑖𝑁𝑁

𝑖𝑖=1
𝑄𝑄
𝑞𝑞=1 ln𝑦𝑦𝑞𝑞,𝑖𝑖𝑡𝑡

∗ ln𝑥𝑥𝑖𝑖,𝑖𝑖𝑡𝑡
∗ + ∑ ∑ 𝛼𝛼𝑞𝑞𝑝𝑝𝑃𝑃

𝑝𝑝=1
𝑄𝑄
𝑞𝑞=1 ln𝑦𝑦𝑞𝑞,𝑖𝑖𝑡𝑡

∗ ln𝑘𝑘𝑝𝑝,𝑖𝑖𝑡𝑡 +

∑ ∑ 𝛼𝛼𝑞𝑞ℎ𝐻𝐻
ℎ=1

𝑄𝑄
𝑞𝑞=1 ln𝑦𝑦𝑞𝑞,𝑖𝑖𝑡𝑡

∗ ln𝐼𝐼ℎ,𝑖𝑖𝑡𝑡
∗ + ∑ ∑ 𝛼𝛼𝑖𝑖𝑝𝑝𝑃𝑃

𝑝𝑝=1
𝑁𝑁
𝑖𝑖=1 ln𝑥𝑥𝑖𝑖,𝑖𝑖𝑡𝑡

∗ ln𝑘𝑘𝑝𝑝,𝑖𝑖𝑡𝑡 + ∑ ∑ 𝛼𝛼𝑖𝑖ℎ𝐻𝐻
ℎ=1

𝑁𝑁
𝑖𝑖=1 ln𝑥𝑥𝑖𝑖,𝑖𝑖𝑡𝑡

∗ ln𝐼𝐼ℎ,𝑖𝑖𝑡𝑡
∗ +

∑ ∑ 𝛼𝛼𝑝𝑝ℎ𝐻𝐻
ℎ=1

𝑃𝑃
𝑝𝑝=1 ln𝑘𝑘𝑝𝑝,𝑖𝑖𝑡𝑡ln𝐼𝐼ℎ,𝑖𝑖𝑡𝑡

∗ + 𝜐𝜐𝑖𝑖𝑡𝑡                        [4] 

where 𝑦𝑦𝑞𝑞,𝑖𝑖𝑡𝑡
∗ = 𝑦𝑦𝑞𝑞,𝑖𝑖𝑡𝑡 𝑦𝑦𝑞𝑞0𝑖𝑖𝑡𝑡⁄ ; 𝑥𝑥𝑛𝑛,𝑖𝑖𝑡𝑡

∗ = 𝑥𝑥𝑛𝑛,𝑖𝑖𝑡𝑡 × 𝑦𝑦𝑞𝑞0𝑖𝑖𝑡𝑡; 𝐼𝐼ℎ,𝑖𝑖𝑡𝑡
∗ = 𝐼𝐼ℎ,𝑖𝑖𝑡𝑡 𝑦𝑦𝑞𝑞0𝑖𝑖𝑡𝑡⁄ . Furthermore, recall that 0 <

𝐷𝐷𝐸𝐸𝐻𝐻𝑖𝑖𝑡𝑡(𝑦𝑦, 𝑥𝑥,𝑘𝑘, 𝐼𝐼) ≤ 1, which implies that ln𝐷𝐷𝐸𝐸𝐻𝐻𝑖𝑖𝑡𝑡 ≤ 0. Hence, moving ln𝐷𝐷𝐸𝐸𝐻𝐻𝑖𝑖𝑡𝑡  to the right-hand 
side of the equation [4] and defining 𝑢𝑢𝑖𝑖𝑡𝑡 = −ln𝐷𝐷𝐸𝐸𝐻𝐻𝑖𝑖𝑡𝑡 ≥ 0 as the usual inefficiency term in the 
stochastic frontier framework, we get the following empirical model:   

  −ln𝑦𝑦𝑞𝑞0𝑖𝑖𝑡𝑡 = 𝛼𝛼0 + ∑ 𝛼𝛼𝑞𝑞ln𝑦𝑦𝑞𝑞,𝑖𝑖𝑡𝑡
∗𝑄𝑄

𝑚𝑚=1 + 1
2
∑ ∑ 𝛼𝛼𝑞𝑞𝑞𝑞′ln𝑦𝑦𝑞𝑞,𝑖𝑖𝑡𝑡

∗𝑄𝑄
𝑞𝑞′=1

𝑄𝑄
𝑞𝑞=1 ln𝑦𝑦𝑞𝑞′,𝑖𝑖𝑡𝑡

∗ +  ∑ 𝛼𝛼𝑖𝑖ln𝑥𝑥𝑞𝑞,𝑖𝑖𝑡𝑡
∗𝑁𝑁

𝑖𝑖=1 +
1
2
∑ ∑ 𝛼𝛼𝑖𝑖𝑖𝑖′

𝑁𝑁
𝑖𝑖′=1

𝑁𝑁
𝑖𝑖=1 ln𝑥𝑥𝑖𝑖,𝑖𝑖𝑡𝑡

∗ ln𝑥𝑥𝑖𝑖′,𝑖𝑖𝑡𝑡
∗ + ∑ 𝛼𝛼𝑝𝑝ln𝑘𝑘𝑝𝑝,𝑖𝑖𝑡𝑡

𝑃𝑃
𝑝𝑝=1 + 1

2
∑ ∑ 𝛼𝛼𝑝𝑝𝑝𝑝′

𝑃𝑃
𝑝𝑝′=1

𝑃𝑃
𝑝𝑝=1 ln𝑘𝑘𝑝𝑝,𝑖𝑖𝑡𝑡ln𝑘𝑘𝑝𝑝′,𝑖𝑖𝑡𝑡 + ∑ 𝛼𝛼ℎ𝐻𝐻

ℎ=1 ln𝐼𝐼ℎ,𝑖𝑖𝑡𝑡
∗ +

1
2
∑ ∑ 𝛼𝛼ℎℎ′

𝐻𝐻
ℎ′=1

𝐻𝐻
ℎ=1 ln𝐼𝐼ℎ,𝑖𝑖𝑡𝑡

∗ ln𝐼𝐼ℎ′,𝑖𝑖𝑡𝑡
∗ + ∑ ∑ 𝛼𝛼𝑞𝑞𝑖𝑖𝑁𝑁

𝑖𝑖=1
𝑄𝑄
𝑞𝑞=1 ln𝑦𝑦𝑞𝑞,𝑖𝑖𝑡𝑡

∗ ln𝑥𝑥𝑖𝑖,𝑖𝑖𝑡𝑡
∗ + ∑ ∑ 𝛼𝛼𝑞𝑞𝑝𝑝𝑃𝑃

𝑝𝑝=1
𝑄𝑄
𝑞𝑞=1 ln𝑦𝑦𝑞𝑞,𝑖𝑖𝑡𝑡

∗ ln𝑘𝑘𝑝𝑝,𝑖𝑖𝑡𝑡 +

∑ ∑ 𝛼𝛼𝑞𝑞ℎ𝐻𝐻
ℎ=1

𝑄𝑄
𝑞𝑞=1 ln𝑦𝑦𝑞𝑞,𝑖𝑖𝑡𝑡

∗ ln𝐼𝐼ℎ,𝑖𝑖𝑡𝑡
∗ + ∑ ∑ 𝛼𝛼𝑖𝑖𝑝𝑝𝑃𝑃

𝑝𝑝=1
𝑁𝑁
𝑖𝑖=1 ln𝑥𝑥𝑖𝑖,𝑖𝑖𝑡𝑡

∗ ln𝑘𝑘𝑝𝑝,𝑖𝑖𝑡𝑡 + ∑ ∑ 𝛼𝛼𝑖𝑖ℎ𝐻𝐻
ℎ=1

𝑁𝑁
𝑖𝑖=1 ln𝑥𝑥𝑖𝑖,𝑖𝑖𝑡𝑡

∗ ln𝐼𝐼ℎ,𝑖𝑖𝑡𝑡
∗ +

∑ ∑ 𝛼𝛼𝑝𝑝ℎ𝐻𝐻
ℎ=1

𝑃𝑃
𝑝𝑝=1 ln𝑘𝑘𝑝𝑝,𝑖𝑖𝑡𝑡ln𝐼𝐼ℎ,𝑖𝑖𝑡𝑡

∗ + 𝜐𝜐𝑖𝑖𝑡𝑡 + 𝑢𝑢𝑖𝑖𝑡𝑡                       [5] 

where it is assumed that the inefficiency term 𝑢𝑢𝑖𝑖𝑡𝑡 follows a truncated normal distribution 
with 𝑢𝑢𝑖𝑖𝑡𝑡~𝑁𝑁+( 𝜇𝜇𝑖𝑖𝑡𝑡,𝜎𝜎𝑢𝑢2). It is further assumed that 𝜇𝜇𝑖𝑖𝑡𝑡 is function of exogenous drivers (𝑧𝑧𝑖𝑖𝑡𝑡), 
including public subsidies, such that 𝑢𝑢𝑖𝑖𝑡𝑡~𝑁𝑁+(𝑧𝑧𝑖𝑖𝑡𝑡𝛿𝛿,𝜎𝜎𝑢𝑢2), where 𝛿𝛿 is a vector of unknown 
parameters to be estimated.   

The marginal effect of each exogenous variable (𝑧𝑧𝜅𝜅𝑖𝑖𝑡𝑡), on technical efficiency is given by 
(Kumbhakar and Lovell, 2003):   

    𝜕𝜕𝑇𝑇𝐸𝐸𝑖𝑖𝑡𝑡 𝜕𝜕𝑧𝑧𝜅𝜅𝑖𝑖𝑡𝑡⁄ = 𝜕𝜕𝐸𝐸[exp (−𝑢𝑢𝑖𝑖𝑡𝑡)] 𝜕𝜕𝑧𝑧𝜅𝜅𝑖𝑖𝑡𝑡⁄ = 𝑇𝑇𝐸𝐸𝑖𝑖𝑡𝑡𝜓𝜓𝛿𝛿𝜅𝜅          [6] 

              with   𝜓𝜓 = 𝜎𝜎𝜀𝜀−1 �𝜎𝜎𝜀𝜀 + ϕ(𝜌𝜌)
1−Φ(ρ)

− ϕ(𝜎𝜎𝜀𝜀+𝜌𝜌)
1−Φ(𝜎𝜎𝜀𝜀+ρ)

� and 𝜌𝜌 = 𝜎𝜎𝜀𝜀−1[∑𝑧𝑧𝜅𝜅𝑖𝑖𝑡𝑡𝛿𝛿𝜅𝜅] 
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where Φ denotes the cumulative distribution function of the standard normal distribution and 
ϕ the probability density function of the standard normal distribution.    

The econometric estimation of distance functions may be subject to endogeneity issues (see 
Atkinson et al., 2003; Färe et al., 2005; Sauer and Latacz-Lohmann, 2015). These endogeneity 
issues arise mainly from the fact that some regressors are functions of the dependent variable 
(and thus they are function of the error term); implying that they cannot be assumed to be 
exogenous. However, for the hyperbolic distance function, Cuesta and Zofío (2005) argue that 
the almost homogeneity condition implies that some regressors are directly affected by error 
term while others are inversely affected; and thus the ratios and products regressors can be 
considered as exogenous.  

As suggested by Cuesta and Zofío (2005), before applying the normalisation procedure to 
comply with the almost homogeneity property, each variable in expression [3] is divided by its 
geometric mean. This allows interpreting the estimated first-order parameters as elasticities at 
the sample mean and avoiding convergence issues (Cuesta et al., 2009). 

 

4.2. Data description  

The dataset used is an unbalanced panel of 10,690 observations on 1,132 French mixed farms 
(crop and livestock farms) located in the French region Meuse from 1992 to 2011, and concerns 
farmers who are voluntary enrolled in a regional accounting office so as to be guided in their 
management practices. These data are very similar to European Farm Accountancy Data 
Network (FADN); in fact, they are used to produce FADN data, but they are a bit more detailed 
than FADN data (they contain a few more variables). Our dataset includes information on farm 
production structure, farm financial results, and agricultural subsidies. The empirical 
applications are conducted using two outputs, three variable inputs, one quasi-fixed input, and 
some contextual factors. The inter-temporal links are modelled using gross investment in 
capital. The dataset contains observations with zero values for investments. Hence in the 
estimation procedure, for the investment variable, we use the hyperbolic sine transformation: 
ln (𝐼𝐼 + √𝐼𝐼2 + 1). In the existing literature, the hyperbolic sine transformation is usually used to 
consider the logarithm of negative and zero values (see Ductor and Grechyna, 2015). The 
output, input, and contextual variables are chosen in line with earlier literature (e.g., Bojnec and 
Latruffe, 2009; Bakucs et al., 2010; Zhu et al., 2011; Kumbhakar et al., 2014; Baležentis and 
De Witte, 2015), and regarding information available in our dataset.  

The two outputs include crop and livestock production values measured in Euros. The three 
variable inputs are intermediate inputs in Euros; the total labour used in annual working units 
(AWU) which are full-time yearly equivalents, and the utilised agricultural area (UAA) in 
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hectares. The utilised agricultural area and labour are assumed to be variable since we estimate 
our model over a long period (20 years). The quasi-fixed input is the value of the farm capital 
in Euros. Our main interest in contextual factors lies on the total subsidy received by farmers 
(excluding investment subsidies) on a per hectare basis. In order to account for observed 
heterogeneity, we have also incorporated in our efficiency model covariates like financial 
structure (defined as the ratio of debt to assets), organisational form (an indicator variable for 
individual farms) and time factor, which in earlier studies have been significantly associated 
with technical efficiency (e.g., Bojnec and Latruffe, 2009; Bakucs et al., 2010; Zhu et al., 2011; 
Kumbhakar et al., 2014; Baležentis and De Witte, 2015). For instance, variables related to the 
financial structure of farms (e.g., debt to asset ratio) have been used in Davidova and Latruffe 
(2007), Zhu and Oude Lansink (2010) and Zhu et al. (2011); the variable ″organisational form″ 
has been applied in Mathijs et al. (1999) and Bakucs et al. (2010); the time trend variable has 
been used in Bojnec and Latruffe (2009), Kumbhakar et al. (2014); Baležentis and De Witte 
(2015). The indicator variable for individual farms enables us to investigate the efficiency 
discrepancy between individual and corporate farms (see Gorton and Davidova, 2004; Bakucs 
et al., 2010). More precisely, this variable allows investigating the association of governance 
structure with farm performance. Many other contextual variables like age or education could 
be important determinants of technical efficiency (see the aforementioned papers), but the 
choice of determinants is subject to the variables available in our dataset. 

Since our dataset covers three reforms (or regimes) of the European Common Agricultural 
Policy (CAP), time trend variable may allow observing the evolution of the efficiency scores 
over the policy regimes. In fact, initially, the CAP was based on market price supports which 
provide a minimum price (guaranteed prices) for commodities. In 1992, the CAP has undergone 
a first reform (the MacSharry reform) which initiates a reduction in the price support scheme 
in favour of direct payments to farmers, coupled to production decisions. In 2000, the CAP has 
undergone a second reform (the Agenda 2000) which pursues the reduction of the guaranteed 
prices in favour of an increase in the direct payments. The third reform of the CAP (the 
Luxembourg reform), adopted in 2003 and implemented in France in 2006, introduces a 
decoupling of the direct payments, but some payments are still linked to production.  

All monetary values are expressed in 1992 constant Euros, using specific price indices from the 
French National Institute of Statistics and Economic Studies (INSEE). Summary statistics for 
the main variables used are presented in Table 1. Notice that monetary values for inputs and 
outputs are widely used in efficiency analysis due to their availability. However, one should 
keep in mind that efficiency scores estimated using monetary values reflect a mixture of 
technical and allocative efficiency. To attenuate price effects, we have deflated the monetary 
values; but this procedure does not necessarily convert them to real physical quantities. 
However, as mentioned in Sipiläinen and Oude Lansink (2005) and Zhu et al. (2011), this 
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procedure assumes that farmers face the same prices and allows recovering implicit physical 
quantities for inputs and outputs variables measured in value.  

 
Table 1. Summary statistics for the main variables used   

 Mean Std. Dev. 
Crop output (Euros)  93,833.69 76,766.19 
Livestock output (Euros)   135,630.50 120,913.30 
Capital(Euros)   255,916.30 160,475.70 
Gross investment (Euros) 34,260.93 49,350.34 
Intermediate consumption (Euros) 194,907.70 114,044.90 
UAA (hectares)  184.53 97.54 
Labour (AWU)  2.23 1.09 
Subsidy per farm (Euros) 37,284.27 29,363.04 
Subsidy per hectare 202.94 104.70 
Debt to assets  0.50 10.68 
Individual farm (dummy) 0.39 0.48 
Number of observations 10,690  

 

4.3. Theoretical approaches to the relationship between technical efficiency and 
contextual variables   

 

Financial structure and technical efficiency: Three main theoretical approaches, namely 
agency theory, free cash flow, and credit evaluation, are usually used to link financial structure 
with performance (Davidova and Latruffe, 2007).  The agency theory is based on Jensen and 
Meckling’s (1976) agency cost concept, which emphasises the costs of lenders to monitor 
borrowers. Since these costs are generally transferred to borrowers, highly indebted farmers 
might incur higher costs and, thus, may appear less technically efficient. The free cash flow 
approach (Jensen 1986) suggests that indebted farms need to meet their repayment obligations 
and, therefore, are motivated to improve their efficiency. Hence, a positive association between 
indebtedness and technical efficiency could be expected. The credit evaluation approach 
postulates that banks prefer borrowers who bear a low risk of repayment. Consequently, the 
more efficient firms might have higher indebtedness because of their lower repayment risk. In 
this line of thought, a positive association between indebtedness and technical efficiency could 
be expected.  In sum, the relationship between indebtedness and technical efficiency could be 
either positive or negative (see, Davidova and Latruffe, 2007; Latruffe et al., 2017).  

 

Organisational form and technical efficiency: The mechanisms that link organisational form 
to technical efficiency can be found in the Principal-Agent theory. In fact, as argued in Mathijs 
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et al. (1999), technical efficiency of a decision-making unit (DMU) is determined by its intrinsic 
characteristics and socioeconomic environment within which it operates. Intrinsic 
characteristics include the available resources and the way these resources are combined 
(organisational form). For a farm, the organisational form relies mainly on the organisation of 
labour resources (Mathijs et al., 1999). Hence, the agency (transaction cost) problem arises 
when costly supervision is needed for monitoring and controlling workers’ effort. To improve 
the level of technical efficiency, farms should minimise their transaction costs of labour 
monitoring.  Family farms can be seen as a transaction-cost minimising farm structure, since 
they do not rely heavily on hired labour (which generally requires higher supervision costs) and 
there are less or no moral hazard costs associated with family workers (Mathijs et al., 1999; 
Gorton and Davidova, 2004). In contrast, corporate farms are heavily dependent on hired 
labour. Hence, the lack of self-enforcing incentive structure in corporate farms may induce 
higher costs for monitoring and controlling workers’ effort, and thus, lower technical efficiency. 
Therefore, family farms could be more technically efficient than corporate ones because of self-
enforcing incentive of family workers to work efficiently and low transaction costs (see, Carter, 
1984).   

 

However, technical efficiency is also associated with availability of resources. In this line of 
thought, corporate farms can be more technically efficient than family farms. Indeed, 
partnership may increase the possibility of corporate farms to better utilise the existing 
production technology by alleviating binding production constraints. In other words, family 
farms may have the highest capital costs, as they lack the pool of resources that is available to 
corporate farms from their owners (Gorton and Davidova, 2004). To sum up, the relationship 
between organisational structure (corporate vs family farms) and technical efficiency could be 
either positive or negative (see Gorton and Davidova, 2004; Bakucs et al., 2010).  

 

Public subsidies and technical efficiency: Theoretically, there exist several mechanisms by 
which public subsidies could influence production decisions, and thus technical efficiency (see 
Martin and Page, 1983; Serra et al., 2008; Zhu and Oude Lansink, 2010; Kumbhakar and Lien, 
2010). They could influence input use and output supply by changing relative prices of inputs 
and outputs. In fact, the production-related subsidies (coupled subsidies) ensure or increase 
profitability of production of subsidised products, and as such, they change relative 
prices/revenues of the outputs and impact on production levels. Indeed, it is well known that 
farmers take prices/revenues as decision-making factors and that farmers usually shift the use 
of inputs to higher profit crops and increase their efforts on the production of crops that provide 
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higher anticipated gross revenue. For instance, if wheat production is subsidised or if the price 
of wheat increases more than the price of barley, farmers will adjust production practices 
accordingly and wheat yield will increase since farmers will allocate more of their available 
resources to wheat production to maximise their profit (see Bor and Bayaner, 2009).  

 

Additionally, decoupled subsidies could influence investment decisions and on- and off-farm 
labour supply, through an income effect, and they could mitigate the level of risk faced by 
producers, through an insurance effect.  Decoupled subsidies should, by definition, not affect 
farmers’ production decisions if the markets are perfectly competitive, if there are no economies 
of scale and if producers are risk neutral. However, since these conditions are rarely held in 
practice, decoupled subsidies are expected to affect production decisions (Kumbhakar and Lien, 
2010). Combined with farmer-specific characteristics (e.g. managerial ability and preferences), 
the income (or wealth) and insurance effect could change farmers’ working motivation (i.e. 
quality of on-farm labour supply), investments in new technologies and allocation of inputs and 
outputs (Zhu and Oude Lansink, 2010). All these mechanisms could lead to changes in farms’ 
technical efficiency (Zhu and Oude Lansink, 2010; Kumbhakar and Lien, 2010). In addition, 
as stated in the introduction, in order to improve their current level of technical efficiency 
farmers need to cover adjustment costs of quasi-fixed inputs, and reallocation costs of variable 
inputs. In this case, public subsidies could help them to cover these costs when they face binding 
credit or liquidity constraints (see Ciaian and Swinnen, 2009; Latruffe et al., 2010). 
Nonetheless, it is also recognised that investment decisions can generally be postponed and they 
can be influenced by the elasticity of inter-temporal substitution (EIS) of the decision-makers 
(Pindyck, 1993; Lence, 2000). The EIS can be seen as an indicator of the willingness of 
decision-makers to smooth their wealth over time (see Weil, 2002) through investment 
decisions. In this respect, since subsidies could help farmers to smooth their wealth over the 
states of nature and over time, they could distort the timing of investment decisions by distorting 
the EIS, and thus cause persistent technical inefficiency.  

Subsidies may have both positive and negative effects on efficiency through a wealth effect (by 
increasing farmers’ income) and insurance effect (by stabilising farmers’ income). Subsidies 
are expected to increase technical efficiency if they provide farmers with the necessary financial 
means to keep technologies up to date or to invest in efficiency-improving technologies, in 
cases of binding financial constraints. On the other hand, subsidies may impact negatively on 
technical efficiency if farmers are less motivated to work efficiently as they decide to substitute 
subsidy income for market income (see Skevas et al., 2012). If farmers are risk averse, any 
measures (like subsidisation) that reduce risk or increase expected income will have effects on 
production (Lopez, 2001; Zhu and Oude Lansink, 2010). Hennessy (1998), for example, 
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showed that agricultural income support policies directly affect the decisions of risk-averse 
farmers in the presence of uncertainty. In the same vein, Serra et al. (2008) show that decoupled 
subsidies are likely to increase (decrease) DARA (IARA) farmers’ technical inefficiencies if 
variable inputs are risk decreasing. If the inputs are risk increasing, inefficiencies could either 
increase or decrease. 

Nevertheless, Chambers and Voica (2017) showed that if farmers have off-farm investment and 
employment opportunities, production decisions are independent from decoupled subsidies in 
the presence of risk and uncertainty. But they underline that the effects isolated by Hennessy 
(1998) are real and concern marginal consumption and leisure choices, which in a general-
equilibrium setting can impinge upon other economic choices (including production decisions).  
However, Just and Kropp (2013) have theoretically and empirically demonstrated that, even in 
the absence of risk aversion, decoupled payments are potentially production distorting in a 
similar magnitude as production-related subsidies. Their idea is that since some farming 
activities are not eligible to decoupled payment schemes, this may generate production 
distortions because farmers have no incentives to respond to market signals if prices (or 
demand) of non-eligible products increase.  These findings suggest that the impact of decoupled 
payments on farmers’ behaviour remains an open debate. 

5. Empirical results and discussion  

Parameter estimates for the dynamic model are reported in Table 2. As a baseline for 
comparisons, Table 2 also reports parameter estimates for the static counterpart of the dynamic 
model. The dynamic model differs from the static one mainly in the fact that it accounts for 
investment decisions and that it does not contract capital stock. The first-order parameters for 
outputs, investments, and inputs are significant at the 1 percent level and have their expected 
sign. These parameters are estimated to be positive for outputs and investments, and negative 
for inputs. These results suggest that the monotonicity conditions for the hyperbolic distance 
functions are fulfilled at the sample geometric mean (see Cuesta and Zofío, 2005). This is due 
to the fact that before applying the normalisation procedure to comply with the almost 
homogeneity property, each variable in expression [3] was divided by its geometric mean (see 
Cuesta and Zofío, 2005; Cuesta et al., 2009). Furthermore, in the dynamic case, they indicate 
that, as expected, the dynamic hyperbolic distance function is non-increasing in inputs and non-
decreasing in outputs and investments at the geometric mean of the data. Although the 
monotonicity properties of hyperbolic distance functions are often evaluated at the geometric 
mean of the data (see Cuesta and Zofío, 2005; Cuesta et al., 2009), here we also check it at all 
sample data point. For the dynamic model, we find that the monotonicity properties are fulfilled 
at 99.3% of the sample for the outputs, 99.5% for the investments, 73.6% for the utilised 
agricultural area (UAA), 99.8% for the labour, 100% for the intermediate consumption, and 
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98% for the capital. Similar monotonicity properties are found for the static model (see also, 
Vu and Turnell, 2012; Henningsen et al., 2014). It is well known that regularity conditions can 
be imposed in translog (hyperbolic) distance functions using Bayesian techniques (see Griffin 
and Steel, 2007; Vu and Turnell, 2012). However, this is not straightforward here given the size 
of our sample (more than 10,000 observations).  

 

Table 2. Estimated parameters for the dynamic model and its static counterpart   

 Dynamic model  Static model 
 Estimated 

value 
Std. Error   Estimated 

value 
Std. Error  

Distance function      
Intercept 2.01E-01 *** 3.66E-03  1.88E-01 ***  3.49E-03 
Output  2.13E-01 *** 1.81E-03   2.16E-01 *** 1.28E-03 
Land  -4.30E-02 *** 6.74E-03  -1.71E-02 *** 4.55E-03 
Labour  -5.55E-02 *** 4.17E-03   -5.65E-02 *** 2.85E-03 
Intermediate inputs  -4.22E-01 *** 7.19E-03   -4.46E-01 *** 4.94E-03  
Capital   2.94E-02 *** 3.61E-03   -1.93E-02***   2.63E-03 
Investments   1.60E-02 *** 2.70E-03  / / 
Output x output  -6.43E-02 *** 1.08E-03   -6.62E-02 *** 8.85E-04 
Output x land  -1.65E-02 *** 4.27E-03  -2.37E-02***  3.77E-03 
Output x labour  3.41E-03 2.67E-03  -2.27E-04  2.34E-03 
Output x intermediate 
inputs 

1.43E-02 *** 4.98E-03  2.21E-02 *** 4.35E-03 

Output x capital    2.80E-03 1.88E-03  1.67E-03 1.65E-03 
Output x investment  1.82E-03  1.46E-03  / / 
Land x land  1.73E-01*** 1.88E-02  1.91E-01*** 1.83E-02 
Land x labour  -5.89E-04 1.12E-02  1.06E-02 1.04E-02 
Land x Intermediate 
inputs 

-1.59E-01 *** 1.78E-02  -1.72E-01*** 1.73E-02 

Land x capital   -4.66E-03  8.18E-03  -3.09E-03 7.49E-03 
Land x investment   -2.01E-02***  5.58E-03  / / 
Labour x labour    4.15E-02 *** 1.06E-02  4.82E-02*** 9.81E-03 
Labour x intermediate 
input  

-4.46E-02*** 1.35E-02  -5.49E-02*** 1.27E-02 

Labour x capital  -8.58E-03  6.38E-03  4.51E-03 5.89E-03 
Labour x investment  -2.03E-03 3.33E-03  / / 
Intermediate input x 
intermediate input  

 1.79E-01 *** 2.49E-02  1.91E-01 ***  2.34E-02 

Intermediate input x 
capital  

1.03E-02  9.80E-03  -2.55E-06 8.98E-03 

Intermediate input x 
investment  

  6.65E-03  6.01E-03   / / 

Capital x capital  8.94E-03 *** 2.56E-03  3.14E-03 2.71E-03 
Capital x investment  -4.26E-03 2.85E-03  / / 
Investment x 
investment  

  -5.44E-03*** 2.28E-03   / / 

Time trend    2.40E-03 *** 7.17E-04  2.46E-02 ** 1.18E-02 
Inefficiency effects       
Subsidy per ha  3.28E-04 *** 1.43E-05  9.88E-04 *** 1.04E-05 
Debt to assets -3.49E-05 *** 1.05E-05  -1.98E-04 * 1.02E-04 
Individual farm -5.84E-03***   2.15E-03    -3.49E-03 *  2.02E-03   
Time trend   3.68E-04  6.84E-04  2.23E-02 * 1.18E-02 
Mean technical efficiency (TE)      0.88   0.73 
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Marginal effects of subsidies -2.71E-04***   -7.18E-04*** 
LR test (no inefficiency vs inefficiency)   3,980.90***   4,192.70*** 
BIC -22,072.27   -21,622.89 
Welch test comparing mean TE  149.19***   
Correlation between the two TE vectors   
                          Pearson’s correlation                             0.19 ***  
                          Spearman’s correlation                              0.23***  
Number of observations  10,690      10,690 

Level of significance: *** 1%; **5%; * 10%. 

The likelihood ratio test (LR test4: no inefficiency vs inefficiency) reject the null hypothesis of 
no inefficiency at the 1% significance level for the dynamic and the static model. This suggests 
the existence of significant technical inefficiency in production decisions of farmers in our 
sample. But, by comparing the static efficiency model with the dynamic one, using the Bayesian 
Information Criterion (BIC5), it appears that the dynamic framework is more appropriate for 
analysing farmers’ production decisions for our sample of French farms.  

The average estimated dynamic technical efficiency score is of 0.88 while the static one is of 
0.73. In the dynamic case, the estimated scores suggest that farmers, in our sample, could 
improve their technical efficiency level by 12 percent on average without increasing their input 
use. In the static case, the estimated scores suggest that farmers could improve their technical 
efficiency level by 27 percent on average without increasing their input use. The Welch test, 
reported in Table 2, indicates the dynamic and the static efficiency scores are significantly 
different. As the dynamic efficiency scores are higher, this suggests that, in our sample, the 
static model over-estimates the inefficiency scores. Similar results have been found in Dakpo 
and Oude Lansink (2015) in a nonparametric framework. This finding is also supported by 
Table 3 and Figure 3.  

In what concerns the dynamic model, Table 3 shows that for 25% of the observations, the 
efficiency scores are below 0.84 and that 75% of the observations have efficiency scores below 
0.94. As for the static model, Table 3 shows that for 25% of the observations, the efficiency 
scores are below 0.67 and that 75% of the observations have efficiency scores below 0.78. On 
the other hand, the Spearman’s rank-order correlation coefficient (0.23) and the Pearson’s 
correlation coefficient (0.19), reported in Table 2, show a quite weak positive link between the 
dynamic and the static technical efficiency scores. This suggests that there are considerable 
differences between the efficiency scores estimated by the dynamic and the static model. These 
differences could be explained by the fact that the static model ignores investment adjustment 

                                                            
4 The likelihood-ratio test statistic is -2[logL(Ho) - logL(H1)]; where logL(Ho) is the log-likelihood value of the restricted model 
(no inefficiency or OLS model) and logLik(H1)] the log-likelihood value of the unrestricted model (stochastic frontier model). 
This test statistic is approximately distributed according to a mixed chi-square distribution (see Battese and Coelli, 1995; 
Pantzios et al., 2002; Coelli and Henningsen, 2017). 
5 BIC= -2logL+QlogN, where L is the likelihood of the model, Q is the number of parameters in the model, and N is the number 
of observations. Smaller (or more negative) values of BIC generally indicate better-fitting models (see Raftery, 1995; 
Kopsakangas-Savolainen and Svento, 2011).  
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costs, and considers their effects as inefficiency. Another explanation is that the static model 
assumes that farms adjust quasi-fixed inputs to their long term optimal values instantaneously 
and thus considers dynamic aspects as inefficiency (see Gardebroek and Oude Lansink, 2008, 
for more details).   

Table 3. Distribution of technical efficiency   

 Min 1st quartile  Median  Mean  3rd quartile Max 

Dynamic efficiency 0.83 0.84 0.85 0.88 0.94 0.97 

Static efficiency 0.50 0.67 0.72 0.73 0.78 0.97 

  

Figure 3 indicates that the yearly averages of technical efficiency scores from the dynamic 
model are higher than those from the static model. On the other hand, for the dynamic and the 
static model, Figure 3 shows that, in comparison with the MacSharry reform6 and the 
Luxembourg reform, the estimated efficiency scores are lower for the Agenda 2000 reform. 
However, one should keep in mind that these differences between the periods of policy reforms 
do not necessarily imply causal effects.   

 

 

 

 

 

 

 

 

 

 

 

 

  

                                                            
6 Recall that the MacSharry reform has initiated a reduction in the price support scheme in favour of direct payments to farmers, 
coupled to production decisions. The Agenda 2000 pursued the reduction of the guaranteed prices in favour of an increase in 
the direct payments. The Luxembourg reform introduced a decoupling of the direct payments, but some payments are still 
linked to production. 
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Figure 3. Yearly average of technical efficiency  

 

Regarding the effects of the contextual drivers, a positive (negative) sign indicates a positive 
(negative) association with technical inefficiency, and thus reveals a negative (positive) 
relationship with technical efficiency. In this respect, the estimation results for the dynamic 
model indicate that public subsidies are negatively associated with farm technical efficiency. 
This may be due to sluggish adjustments which potentially result from the fact that public 
subsidies could distort the timing of adjustment decisions. In a sense, this result supports the 
idea of Matthews (2013) who argues that “subsidies could slow down the rate at which 
resources are reallocated to more productive use in response to new technologies or market 
conditions”. As in the dynamic case, the static model shows a negative link between public 
subsidies and farm technical efficiency. This result is consistent with earlier findings (e.g. Zhu 
and Oude Lansink, 2010; Kumbhakar et al., 2012; Bojnec and Latruffe, 2013; Sipiläinen et al., 
2014). Overall, these negative effects could be explained by the fact that extra incomes brought 
by subsidisation may distort farmers’ incentive to work efficiently as they may decide to 
substitute subsidy income with farm (or market) income (Skevas et al., 2012). 

In this respect, our results suggest that public subsidies could distort optimal input use when 
dynamic aspects are taken into account as well as when these aspects are ignored (static model). 
However, the mean marginal effects of public subsidies on the dynamic and the static technical 
efficiency reported at the bottom of Table 2 as well as the distribution of these marginal effects 
plotted in Figure 4 highlight that the static framework overestimates the association between 
efficiency and subsidies. More precisely, for the dynamic model the mean marginal effect is of 
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2.71E-04, suggesting that an increase of 1 Euro in the amount of subsidy per hectare would be 
associated with 0.027% decrease in technical efficiency. While for the static model, the mean 
marginal effect is of 7.18E-04; this suggests that an increase of 1 Euro in the amount of subsidy 
per hectare would be associated with 0.072% decrease in technical efficiency. Compared to 
other studies (e.g., Latruffe and Desjeux, 2016), these marginal effects seem to be relatively 
low7, but similar marginal effects for public subsidies could be found in Skevas et al. (2012) 
for the dynamic case and in Zhu et al. (2012) for the static one.  

The small marginal effects found in this study may be an interesting result for policy-makers. 
Indeed, public subsidies do not explicitly aim at improving technical efficiency (Minviel and 
Latruffe, 2017). In this line, our results seem to be interesting since they suggest that the link 
between public subsidies and farm technical efficiency is weak, although negative. Therefore, 
the small marginal effects found in this study highlight that it is not sufficient to interpret only 
the sign and the significance of the effects of subsidies, as it is common practice in the existing 
empirical literature.  

Figure 4. Marginal effects of public subsidies on farm technical efficiency 

         

 

 

 

 

 

 

 

The results regarding indebtedness signal that the higher the debt to assets ratio, the higher the 
farm technical efficiency. Although the literature on the relationship between indebtedness and 
technical efficiency is inconclusive (see Davidova and Latruffe, 2007; Mugera and Nyambane, 

                                                            
7 According to the marginal effect of subsidy (0,00027) in the dynamic case, one euro per hectare increase in 
subsidy will reduce the value of sales return at the sample mean by 61,96 euros and increase intermediate input 
costs by 52,63 euros when subsidy increases at the farm level by 184,53 euros. Thus, there is in the dynamic case 
some compensation (69,94 euros) for more inefficient use of other inputs. But in the static case the net effect of 
the one euro per hectare increase in subsidy is negative (-120,07 euros) even when we only take into account the 
changes in sales return and intermediate input costs. This is because in the static case the marginal effect of subsidy 
on technical inefficiency is almost three times larger than in the dynamic case. 
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2014), the positive association of debt with farm technical efficiency could be explained using 
the free cash flow approach (Jensen 1986). This approach suggests that indebted farms need to 
meet their repayment obligations and, therefore, are motivated to improve their efficiency. In 
other words, under the free cash flow approach, the positive association between indebtedness 
and technical efficiency signals that indebted farmers tend to work more efficiently to ensure 
their production to avoid defaulting on debt obligations. 

 

As regard the governance structure (organisational form), Table 2 shows that individual farms 
are more efficient than partnership or company ones. The existing literature provides no clear 
cut conclusion on the linkage between individual firms and performance (see Gorton and 
Davidova, 2004; Bakucs et al., 2010). However, the positive association found in the present 
study could be explained from the Principal-Agent theory (Mathijs and Vranken, 2000; Gorton 
and Davidova, 2004). Indeed, for a farm, the organisational form relies mainly on the 
organisation of labour resources (Mathijs et al., 1999). As such, the agency (transaction cost) 
problem arises when costly supervision is needed for monitoring and controlling workers’ 
effort. Hence, since company farms rely heavily on hired labour, their lack of self-enforcing 
incentive structure may induce higher costs for monitoring and controlling workers’ effort, and 
thus, lower technical efficiency. As for the trend variable, the estimates indicate that technical 
efficiency decreases over time in the static model; but no clear cut conclusion can be drawn 
from the dynamic model for this variable. In fact, it can be seen from Figure 3 that the dynamic 
technical efficiency scores decrease until 2005, and after that they increase and reach a level 
similar to the scores of the early 90s.  

 

6. Concluding remarks   

 
The existing literature on the subsidy-efficiency nexus is almost exclusively based on static 
modelling and thus ignores the inter-temporal nature of production decisions. The current study 
departs from the static modelling by developing a dynamic stochastic framework to investigate 
the relationship between public subsidies and farm technical efficiency. This framework allows 
accounting for the stochastic and dynamic nature of the environment in which farms operate. 
But, for comparison purposes, we also estimate the static counterpart of our dynamic frontier 
model. The dataset used for the estimations is a sample of French farms located in the French 
Region Meuse over 20 years.   

In the dynamic case, as well as in the static case, the estimation results show that public 
subsidies are negatively associated with farm technical efficiency. In the static case, our results 
support previous research which highlights that public subsidies are generally detrimental to 
farms’ technical efficiency (see Minviel and Latruffe, 2017, for a meta-analysis).  But overall, 
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we find that the marginal effects of public subsidies on technical efficiency are relatively small. 
This may be an interesting result for policy-makers. Indeed, public subsidies do not explicitly 
aim at improving technical efficiency (Minviel and Latruffe, 2017). In this line, our results seem 
to be interesting since they suggest public subsidies have only a small negative marginal effect 
on farm technical efficiency. Another interesting result is that our dynamic model, which 
accounts for the stochastic and dynamic nature of the agricultural production process, suggests 
that the static framework overestimates the association of public subsidies with technical 
efficiency. This result may be interesting for policy-makers, since it reveals that there is only a 
weak, although negative linkage between subsidies and technical efficiency, and it is much 
smaller when dynamic aspects are taken into account. We, however, should note that especially 
in the static model the net income effect of subsidies at the margin was in most cases negative. 

In this study, we used a stochastic frontier approach in which risk and uncertainty are 
confounded with statistical noises (see O’Donnell et al., 2010; Nauges et al., 2011). An 
alternative approach could be the state-contingent production framework (Chambers and 
Quiggin, 2000), which explicitly models uncertain production conditions through a set of states 
of nature.  
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