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a b s t r a c t 

Background: Probing genetic dependencies of cancer cells can improve our understanding of tumour 

development and progression, as well as identify potential drug targets. CRISPR-Cas9-based and shRNA- 

based genetic screening are commonly utilized to identify essential genes that affect cancer growth. How- 

ever, systematic methods leveraging these genetic screening techniques to derive consensus cancer de- 

pendency maps for individual cancer cell lines are lacking. 

Finding: In this work, we first explored the CRISPR-Cas9 and shRNA gene essentiality profiles in 42 can- 

cer cell lines representing 10 cancer types. We observed limited consistency between the essentiality pro- 

files of these two screens at the genome scale. To improve consensus on the cancer dependence map, we 

developed a computational model called combined essentiality score (CES) to integrate the genetic essen- 

tiality profiles from CRISPR-Cas9 and shRNA screens, while accounting for the molecular features of the 

genes. We found that the CES method outperformed the existing gene essentiality scoring approaches in 

terms of ability to detect cancer essential genes. We further demonstrated the power of the CES method 

in adjusting for screen-specific biases and predicting genetic dependencies in individual cancer cell lines. 

Interpretation: Systematic comparison of the CRISPR-Cas9 and shRNA gene essentiality profiles showed 

the limitation of relying on a single technique to identify cancer essential genes. The CES method provides 

an integrated framework to leverage both genetic screening techniques as well as molecular feature data 

to determine gene essentiality more accurately for cancer cells. 

© 2019 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Interrogating the genetic dependencies of cancer cells provides

mportant evidence for target-based drug discovery [1] . Loss-of-

unction screens have emerged as powerful tools to introduce ge-

etic perturbations in vitro , providing new opportunities to identify

enes that are essential for cell survival and proliferation [2] . To

arry out a systematic exploration of genome-scale cancer depen-

ency profiles, these genetic screens rely on a library containing

arious synthetized short sequence constructs designed to target

pecific genes. Using an optimized delivery system, the library as a

hole can be efficiently introduced into a cell culture, resulting in

 mixture of cell subpopulations, each carrying one sequence con-

truct that triggers the depletion of a particular gene. During the
∗ Corresponding author. 

E-mail addresses: jing.tang@helsinki.fi, jing.tang@fimm.fi (J. Tang). 

l  

m  

w  

e

ttps://doi.org/10.1016/j.ebiom.2019.10.051 

352-3964/© 2019 The Authors. Published by Elsevier B.V. This is an open access article u

Please cite this article as: W. Wang, A. Malyutina and A. Pessia et al.

cancer dependency maps, EBioMedicine, https://doi.org/10.1016/j.ebiom
ulture period, the cell subpopulations depleted of essential genes

ill lose fitness, resulting in under-representation of their effector

equence constructs [3] . To quantify the degree of essentiality for

ndividual genes (i.e. the gene essentiality score), genomic DNA is

solated from the cell culture both at the initial condition and at

he end of the culture period. Using PCR and next-generation se-

uencing technologies, depletion of corresponding sequence con-

tructs can be determined subsequently. 

Over the last decade, short hairpin RNA (shRNA), together with

he more recently developed CRISPR-Cas9-based sgRNA (single

uide RNA) have been adopted as two major techniques to con-

uct genome-scale loss-of-function screens. The shRNA-based and

RISPR-based screens involve construction of synthetic oligonu-

leotide sequences that are delivered into cells to activate distinct

oss-of-function machineries: shRNA is directed to bind to its target

RNA in the cytoplasm via the RNAi (RNA interference) path-

ay, leading to degradation of the target mRNA and loss of gene
xpression without altering the genome of the cells (i.e. a transient 
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Research in context 

Evidence before this study 

Interrogating the genetic dependencies of cancer cells pro- 
vides important evidences for target-based drug discovery. 
RNAi-based shRNA and CRISPR-Cas9-based sgRNA have been 

commonly utilized in functional genetic screens to derive 
cancer dependence maps. However, previous studies sug- 
gested limited overlap of essentiality profiles based on the 
two technologies. Existing computational methods mainly fo- 
cused on estimation of true gene essentiality from genetic 
screens using single technologies, but integrative methods to 
combine the gene essentiality profiles from both CRISPR and 

shRNA screens are lacking. 

Added value of this study 

In the current study, we developed a computational approach 

called combined gene essentiality score (CES) to integrate 
CRISPR and shRNA gene essentiality profiles and the molecu- 
lar features of cancer cells. We showed that CES significantly 
improved the performance of gene essentiality prediction for 
shared genetic dependencies across multiple cell lines as well 
as for therapeutic targets that are selective for a specific can- 
cer cell line. 

Implications of all the available evidence 

The CES approach provides an effective data integration 

strategy to allow improved estimation of cancer dependency 
maps, which may facilitate the discovery of therapeutic 
targets for personalized medicine. Although we have focused 

on the genetic screens that are largely restricted for the 
cell growth phenotype, the CES modelling strategy itself is 
applicable to interrogate genes that are essential for other 
image-based or antibody-based phenotypes, thus further 
accelerating the translation from biomedical discoveries to 
novel therapeutic development. 
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knockdown effect). In contrast, sgRNA utilizes the CRISPR pathway

to direct the Cas9 protein to cut genomic DNA in the nucleus, trig-

gering the non-homologous end joining (NHEJ) pathway to intro-

duce permanent loss-of-function mutations, which result in com-

plete and permanent knockout of the target genes [2,4,5] . Despite

the relative simplicity in experimental setups, the efficiency and

specificity of shRNA and sgRNA constructs need to be optimized

for reliable detection of cancer essential genes. For example, ev-

idence suggests that both shRNAs and sgRNAs may affect addi-

tional off-target genes due to partial sequence complementarity,

and therefore introduce experimental noise that masks the actual

cellular response to the intended gene depletions [1,6] . Differences

in gene-depletion efficiency may also contribute to the experimen-

tal variability in shRNA screens [7] as well as CRISPR-Cas9 screens

[8] . To optimize the design of the sequence library, computational

methods have been developed to predict the on-target efficiency

and off-target activity of shRNA or sgRNA sequences [8–10] . 

To further improve the accuracy of functional genetic screens,

another class of computational methods has focused on the esti-

mation of true gene essentiality from noisy experimental results,

while accounting for confounding factors. For example, recent pub-

lications have reported that increased genomic amplification and

TP53 mutation status may confound the gene essentiality estimates

in CRISPR screens [11–14] . A computational method called CERES

has been developed to adjust for the inflated essentiality scores of
Please cite this article as: W. Wang, A. Malyutina and A. Pessia et al.
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enes in genomic amplification regions [11] . On the other hand,

omputational methods including DEMETER [15] have been pro-

osed to adjust the off-target effects mediated by micro-RNA path-

ays, which are known to be more prominent in shRNA screens

han in CRISPR screens. 

With the increasing maturity and wide application of both

RISPR and shRNA screening technologies, attempts have been

ade to integrate their gene essentiality profiles in order to de-

ive a more unbiased cancer dependence map [16–18] . However, it

s reported that the identified essential genes from the two tech-

iques overlapped only partially. Two recent studies carried out

RISPR and shRNA screens in parallel for several human cancer

ell lines [4,19] , with different conclusions being made in terms of

he accuracy for detecting truly essential genes. For example, Evers

t al. reported a superior prediction accuracy with CRISPR screens

ompared to shRNA screens [19] , whereas Morgens et al. observed

 similar level of prediction performance [4] . However, Morgens

t al. showed that a large proportion of essential genes identified

y CRISPR screens were not replicated in shRNA screens and vice

ersa, suggesting the presence of complex confounding factors that

re inherently distinct between these two technologies. Moreover,

hese comparative studies were conducted on a few genes and cell

ines; therefore, it remains unclear whether their conclusions can

e generalized. For example, Evers et al. investigated the essen-

iality profiles for a set of 46 essential and 47 non-essential genes

n two cancer cell lines (RT-112 and UM-UC-3), whereas Morgens

t al. analysed a larger gene set including 217 essential and 947

on-essential genes, but the comparison was made using only one

ell line, K562. 

In this study, we carried out a systematic comparison for

RISPR- and shRNA-based gene essentiality profiles across a larger

ollection of cancer cell lines. We found that the CRISPR and

hRNA-based gene essentiality profiles showed limited consistency

t the genome-wide level. To improve the estimation of true es-

entiality, we developed a computational approach called com-

ined gene essentiality score (CES) to integrate CRISPR and shRNA

ene essentiality profiles as well as the molecular features of can-

er cells. We showed that CES significantly improved the perfor-

ance of gene essentiality prediction for shared genetic depen-

encies across multiple cell lines as well as for therapeutic targets

hat are selective for a specific cancer cell line. The CES approach

hus provides an effective data integration strategy to allow im-

roved estimation of cancer dependency maps, which may facili-

ate the discovery of therapeutic targets for personalized medicine.

he source code to replicate this analysis is available at https:

/github.com/Wenyu1024/CES . 

. Materials and methods 

.1. Data collection 

A total of 42 cancer cell lines with both CRISPR and shRNA

creenings performed at the genome-scale were included for the

tudy. CRISPR-based gene essentiality scores were obtained from

he Achilles study (v3.38) [12] and three other studies [20–22] .

RISPR-based gene essentiality scores were determined from their

orresponding level essentiality depletion scores using different

trategies. For example, the Achilles study used the second-top

ssential sgRNA depletion score to represent the CRISPR-based

ene essentiality, whereas the other studies utilized either arith-

etic averaging [21] or a Bayesian modelling averaging strat-

gy [20,22,23] . On the other hand, shRNA-based gene essential-

ty scores were obtained by arithmetic averaging over multiple

hRNA-level depletion scores from the Achilles study (v2.20) [15] .

olecular features for these cell lines including mutation, gene ex-

ression, and copy number variation were obtained from the Can-
, Combined gene essentiality scoring improves the prediction of 
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Fig. 1. The CES data integration pipeline to improve identification of cancer essential genes based on functional genetic screens and molecular feature data. Genome-wide 

shRNA and CRISPR-Cas9 based essentiality scores as well as molecular profiles for each cell line were obtained from public databases and literature. For a gene in a given 

cell line, a feature vector was constructed including CRISPR-based essentiality scores, shRNA-based essentiality scores, as well as mutation count, RPKM from RNA-seq, mRNA 

expression from microarray, and copy number variation. The aim of CES is to provide a data integration model to improve the consensus estimation of essential genes in 

cancer. 
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er Cell Line Encyclopaedia (CCLE) database [24] . More specifically,

oint mutations and indels were captured by targeted massively

arallel sequencing and were transformed into mutation counts for

ndividual genes. Gene expression features were represented via

he RNA-Seq-based RPKM counts and Affymetrix array-based log2

ntensity values, whereas the normalized log2 ratios of CN/2 from

ffymetrix SNP array were utilized as copy number variations. The

esulting data matrix thus contained the shRNA-based and CRISPR-

ased essentiality scores, as well as the molecular profiles for each

ene in a given cell line ( Fig. 1 ). All the features were normalized

s z-scores at each cell line for further analyses, resulting in a data

atrix with 16,492 genes for a total of 42 cell lines. A detailed list

f the data sources can be found in Supplementary Table 1. 

.2. Comparison of shRNA and CRISPR-based essentiality scores 

We first ran a genome-wide comparison between shRNA- and

RISPR-based essentiality scores on the 42 cancer cell lines. We

ollowed the convention that has been adopted in major computa-

ional methods including DEMETER and CERES, where a lower and

ore negative essentiality score results from greater depletion of

ancer cells upon genetic perturbation and thus represents higher

ssentiality. Pearson correlation was employed to investigate the

onsistency between shRNA and CRISPR scores, where a higher

orrelation indicated better between-screen consistency whereas a

ero or negative correlation indicated poor between-screen consis-

ency. We also used the mean squared error (MSE) between shRNA

nd CRISPR essentiality scores to evaluate their consistency. 

.3. The CES model to integrate functional screen and molecular 

eature data 

We proposed a combined essentiality score (CES) that in-

egrates CRISPR and shRNA-based gene essentiality scores and

olecular features. Specifically, for a gene i, i = 1 , . . . , M in cell

ine j, j = 1 , . . . , N, the CES can be determined as 

E S i j = β j + θs shRN A i j + θm 

MU T i j + θc CN V i j 

+ θa EXP . arra y i j + θr EXP . RNAse q i j , (1) 

i j = 

CE S i j − CRISP R i j 

shRN A i j − CRISP R i j 

= 

β j + θs shRN A i j + θm 

MU T i j + θc CN V i

shRN
Please cite this article as: W. Wang, A. Malyutina and A. Pessia et al.
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here the parameters in Eq. (1) are determined by minimizing the

ollowing objective function: 

M 

 

i =1 

N ∑ 

j=1 

(
CE S i j − CRISP R i j 

)2 
(2) 

To solve the linear least squares problem, a QR decomposition

lgorithm is utilized [25] . 

The CES defined in Eq. (1) can be rewritten as a weighted aver-

ge of CRISPR- and shRNA-based gene essentiality scores, 

E S i j = 

(
1 − αi j 

)
CRISP R i j + αi j shRN A i j , (3) 

here the weight αij is affected by the molecular features as 

 

Exp . arra y i j + θr EXP . RNAse q i j − CRISP R i j 

CRISP R i j 

(4) 

Note that Eq. (3) does not imply that CES is a linear combina-

ion of CRISPR and shRNA scores; rather, their relationship is af-

ected by molecular features that are gene- and cell-line-specific,

hich can be captured in the model. 

.4. Model comparison 

We compared the CES model using three baseline models, in-

luding: 

1) SA: a simple averaging model, where αi j = 0 . 5 , i.e. 

S A i j = 

(
CRISP R i j + shRN A i j 

)
2 

(5) 

2) CES null : a CES model where the molecular signature infor-

mation is removed from Eq. (1) , i.e. 

CES null 
i j = β j + θs shRN A i j (6) 

3) CES perm : a CES model in which the molecular signatures are

randomly shuffled, i.e. 

CES perm 

i j 
= β j + θs shRN A i j + θm 

MU T i ∗ j ∗ + θc CN V i ∗ j ∗

+ θa EXP . arra y i ∗ j ∗ + θr EXP . RNAse q i ∗ j ∗ (7) 

here i ∗, j ∗ refer to a gene and a cell line that are randomly se-

ected to be different from ( i, j ) . 

The SA model was considered as a baseline as it assigns equal

eights to the CRISPR and shRNA-based screens, assuming that
, Combined gene essentiality scoring improves the prediction of 
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their gene essentiality profiles are generated from the same dis-

tribution. The CES null and CES perm models were used to evaluate the

relevance of molecular features. Namely, if molecular signatures of

a cell line play significant roles in defining true gene essential-

ity, then the CES model should perform better than the CES null and

CES perm models that contain null or randomized molecular infor-

mation. 

Furthermore, we compared the CES model with the CERES

model [11] , DEMETER1 model [15] , and DEMETER2 model [17] . The

CERES model estimated the gene essentiality score g ij by correcting

for the bias of gene copy numbers in CRISPR screens at the sgRNA

level. Namely, the observed depletion score D kj for a sgRNA k in

cell line j can be modelled as a linear function of the gene knock-

out effect h i + g i j and copy number effect f j ( 
∑ 

l∈ L k C l j ) , as well as

the sgRNA-specific error term o k and random noise ε: 

D k j = 

( ∑ 

i ∈ G k 

(
h i + g i j 

)
+ f j 

( ∑ 

l∈ L k 
C l j 

) ) 

+ o k + ε (8)

The DEMETER1 model estimates the gene essentiality score by

adjusting for the off-target effect of shRNAs based on seed com-

plementarity, i.e. the observed depletion score H kj for a shRNA k in

cell line j can be decomposed into a sum of the gene knock-down

effect G lj and seed-specific effect S bj : 

H k j = 

∑ 

b∈ seed ( k ) 

αkb S b j + 

∑ 

l∈ gene ( k ) 

βkl G l j + μk + εk j (9)

The DEMETER2 model extends the DEMETER1 model by includ-

ing the shRNA on-target efficacy t k , off-target efficacy e k , the screen

signal parameter for cell line q j , and additional off-target effect c k .

Furthermore, additional parameters a j , θ j , and γ j were used to cor-

rect the additional batch effects for the given cell line j : 

H k j = a j + θ j + γ j 

( 

q j t k 
∑ 

l∈ gene ( k ) 

βkl G l j + e k 
∑ 

b∈ gene ( k ) 

αkb S b j + c k 

) 

+εk j

(10)

Note that the CERES model aimed at adjusting confounding fac-

tors in the CRISPR screen, whereas the DEMETER 1 and 2 models

aimed at improving target specificity in the shRNA screens. Both

methods combine the depletion scores at the shRNA or sgRNA level

to infer gene essentiality scores. In contrast, the CES model in-

tended to derive a gene essentiality score by combining the unad-

justed depletion scores at the gene level, as well as the molecular

features of cancer cells. Therefore, DEMETER1/2 and CERES repre-

sent screen-specific adjustment methods, whereas CES should be

considered as a data integration method that utilizes gene-level

data from both CRISPR and shRNA screens as well as from molec-

ular profiling. Despite the different techniques and data sources

used in these computational models, they shared the same pur-

pose of improving gene essentiality prediction, the performance of

which can be evaluated using the method below. 

2.5. Use of ground truth gene sets for model evaluation 

The CES model was compared with screen-specific methods, in-

cluding CRISPR (with or without the CERES adjustment), shRNA

(with or without the DEMETER adjustment), as well as the base-

line methods including SA, CES null and CES perm . For each method, a

gene essentiality score can be predicted for a given gene in a cell

line, based on which the ranking of the gene in this cell line can

be determined. The average ranking of the gene across all 42 cell

lines was considered as the overall essentiality score. 
Please cite this article as: W. Wang, A. Malyutina and A. Pessia et al.
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To evaluate the accuracy of overall essentiality, the ground

ruth of true essential genes and non-essential genes was needed.

or cancer essential genes, we looked at three datasets includ-

ng i) 3804 housekeeping genes curated by Eisenberg et al. [26] ,

i) 360 common essential genes curated by Hart et al. [20] and

ii) 31 PanCancer oncogenes curated by Bailey et al. [27] (Sup-

lementary Tables 2–4). As the overlap between these three gene

ets is limited, we considered them separately when evaluating

odel performance (Supplementary Figure 1). For negative gene

ets, we used the 927 common non-essential genes curated by

art et al. [28] (Supplementary Table 5) along with the 75 Pan-

ancer tumour suppressor genes curated by Bailey et al. [27] (Sup-

lementary Table 6). We removed ambiguous genes that were in-

luded in both cancer essential genes and cancer non-essential

enes. 

We used the area under receiver operating curves (AUC) as

he main metric to evaluate the model performance on separat-

ng 1) housekeeping genes against common non-essential genes;

) common essential genes against common non-essential genes;

nd 3) pan-cancer oncogenes against pan-cancer tumour suppres-

or genes. The statistical significance between two ROCs was de-

ermined using the DeLong test [29] . We also evaluated the hit

ates of these methods in identifying two well-known housekeep-

ng genes, GAPDH and ACTB , which are commonly used as loading

ontrols in western blot and qPCR experiments [30–32] . The hit

ate was defined as the percentage of cell lines in which GAPDH

nd ACTB were identified as essential genes at various ranking cut-

ffs. Model predictions were also evaluated based on strictly stan-

ardized mean difference (SSMD) [33] , which measures how well

he true essential genes and non-essential genes are separated by

ach of the methods. 

In addition to essential genes that showed higher overall essen-

iality scores, we also determined cell-specific essential genes as

hose ranked at the top 100 for a given cancer cell line, whereas

heir average rankings across all the cell lines were lower than

0 0 0. In particular, we focused on the novel essential genes dis-

overed by the CES method alone, which did not show cell-specific

ene essentiality by either CRISPR or shRNA-based screen alone.

he novel cell-specific essential genes were plotted as a bipartite

etwork to show the interconnections of cancer dependency. 

.6. Survival analysis 

The newly identified cancer essential genes were tested for

ssociations with the disease-specific survival months of cancer

atients. To test the effect of AGR2 in ER-positive breast cancer

atients, we retrieved the breast cancer survival data from the

ETABRIC study [34] available from cBioPortal ( http://cbioportal.

rg/ ). Of 2509 samples, we took the samples that were labelled

s ER_IHC and ER_STATUS positive, and further removed sam-

les that were labelled as ‘Died of Other Causes’, resulting in a

nal set of 983 samples. Microarray-based gene expression and

opy number variation data for these samples were retrieved from

BioPortal. To test the effect of SRGN on the survival of AML

atients. We retrieved the patient clinical data from the Beat-

ML study [35] . Of the 451 patients included in the study, we

emoved samples that were diagnostic with cancers other than

Leukaemia’. For patients with more than one samples, we took

he earlier diagnostic samples. Furthermore, samples that were la-

elled with unknown or other causes of death were discarded, re-

ulting in a final set of 297 samples. LogCPM-based gene expres-

ion data were retrieved from cBioPortal. Disease-specific survival

urves were empirically estimated using the Kaplan–Meier method

nd Log-rank test was used to determine the significance of the

ifference. 
, Combined gene essentiality scoring improves the prediction of 
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Fig. 2. Limited consistency of CRISPR and shRNA-based gene essentiality scores across a total of 42 cancer cell lines. a. Between-screen consistency for each cell line was 

determined by Pearson correlation and mean squared error (MSE). The MSE for permutated CRISPR and shRNA essentiality scores is shown as the dashed line (MSE = 2.04). 

b. CRISPR and shRNA-based essentiality scores for the set of housekeeping genes compared to other genes. c. Pearson correlation between CRISPR and shRNA essentiality 

scores for the set of housekeeping genes compared to other genes. 
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. Results 

.1. Limited genome-scale consistency between CRISPR and shRNA 

creens 

To evaluate how the choice of technology affects gene essential-

ty scoring, we first evaluated the correlations of gene essentiality

cores determined by CRISPR and shRNA screens for a given cancer

ell line. We found generally low levels of between-screen corre-

ations across all 42 cell lines, where 25 of them showed positive

ut moderate correlations (maximal correlation = 0.23), whereas 17

ell lines had negative correlations. The average between-screen

orrelation was 0.07, indicating a poor consistency of shRNA and

RISPR-based gene essentiality scores at the genome scale ( Fig. 2 a).

The HT29 cell line (colon cancer) showed the highest con-

istency with a between-screen correlation of 0.23. In contrast,
Please cite this article as: W. Wang, A. Malyutina and A. Pessia et al.
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e observed much poorer between-screen consistency for cell

ines PC3 (prostate cancer) and L33 (pancreatic cancer), where

he correlations dropped below zero. In general, we did not ob-

erve enrichment of certain tissue types in cell lines with higher

etween-screen correlations. However, 9 out of 10 leukaemia cell

ines showed moderately positive correlations ranging from 0.12

o 0.20, suggesting that leukaemia cells tend to respond similarly

o different screen technologies. On the other hand, the remaining

eukaemia cell line (K562) had a poor correlation of −0.01, which

as also replicated in a previous study [4] . We further tested the

ccuracy of using the shRNA score to predict the CRISPR score. The

ean squared errors (MSE) were similar to those for a permutated

rediction, confirming the limited genome-scale consistency of the

wo screens for cancer cell lines in general ( Fig. 2 a). 

As we took the gene essentiality scores that were already sum-

arized over multiple sequence constructs for both the shRNA and
, Combined gene essentiality scoring improves the prediction of 
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CRISPR screens, the limited consistency could not be explained

simply by the biases of certain sequence constructs that may

differ in their targeting efficacy and off-target tendency. On the

other hand, we found that both shRNA and CRISPR screens pro-

vided lower essentiality scores (i.e. stronger gene essentiality) for

housekeeping genes ( n = 3804) compared to others (median score

−0.02 vs 0.14 for CRISPR screen and −0.08 vs . 0.09 for the shRNA

screen, respectively; Wilcoxon test p-value < 2e-16; Fig. 2 b), sug-

gesting the overall validity of the genome-wide functional screens

to detect true positive hits. For these housekeeping genes, the

between-screen correlations improved modestly, with an average

correlation of 0.10 versus 0.05 for the other genes ( Fig. 2 c). How-

ever, the variation of correlations across cell lines was also inflated

(variance of 0.016 versus 0.003 for the other genes). Notably, for

cell lines ( n = 13) with negative between-screen correlations, the

consistency for housekeeping genes became even worse, with an

average correlation of −0.026 compared to −0.018 for other genes.

Similar results were also found on the common essential gene set

and the PanCancer gene set (Supplementary Figure 2). These re-

sults implied that cancer essential genes did not necessarily show

higher consistency between the shRNA and CRISPR screens. 

3.2. CES improves the prediction of cancer essential genes 

Given the limited consistency observed between the shRNA and

CRISPR gene essentiality profiles, we developed a CES model that

considers both screening technologies for estimating gene essen-

tiality. More importantly, the CES model also included the molec-

ular features of cancer cells to derive a more accurate gene essen-

tiality estimation. Specifically, the CES score is a weighted average

of shRNA and CRISPR gene essentiality scores, where the molec-

ular features of cancer cells influence the weights determined by

the objective function that minimizes the sum of the squares of

CES and CRISPR scores (see Materials and Methods for details). 

We compared CES with baseline methods including SA, CES null ,

CES perm , as well as existing methods including CERES and DEME-

TER (see Materials and Methods for the description of these meth-

ods). The unadjusted shRNA and CRISPR essentiality scores were

also included in the comparison as baseline methods. To evaluate

the model performance, we used previously curated gold standards

on positive cases including a housekeeping gene set ( n = 3804), a

common essential gene set ( n = 360), and a PanCancer oncogene

set ( n = 31), as well as gold standards on negative cases including

a common non-essential gene set ( n = 927) and a PanCancer tu-

mour suppressor gene set ( n = 75). These gold-standard gene sets

have been manually curated and widely utilized for the evalua-

tion of functional screening results (e.g. [11,17,36–38] ) (Supplemen-

tary Tables 2–6). We found that the CES score outperformed other

scores in terms of classification accuracy for all three cancer es-

sential gene sets ( Fig. 3 a-b, Supplementary Figure 3, Delong test,

p-values are reported in Supplementary Table 7). For example, the

area under the ROC curve (AUC) for CES on detecting housekeep-

ing genes was 0.906, compared to 0.732 for CERES and 0.634 for

DEMETER2 as the other top performing methods. As expected, the

SA, CES null , and CES perm models performed relatively poorly with an

AUC of 0.586, 0.596, and 0.604 separately, as these models did not

include molecular features to predict gene essentiality. The perfor-

mance of shRNA-based methods was generally worse than that of

CRISPR-based methods. Particularly, the AUC for DEMETER is just

below 0.5, suggesting that its performance is no different than a

random prediction. Similarly, CES also achieved the highest accu-

racy to detect the common essential genes (AUC = 0.971, Fig. 3 b)

and PanCancer genes (AUC = 0.702, Supplementary Figure 3). 

We also found that commonly known housekeeping genes were

more likely to be identified by CES than by other methods. For

example, GAPDH is a constitutively expressed gene that encodes
Please cite this article as: W. Wang, A. Malyutina and A. Pessia et al.
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he enzyme for regulating cell energy metabolism, the inhibition of

hich leads to apoptosis. In our analysis, GAPDH was ranked in the

op 250 for 40 cell lines using CES scoring, whereas in most of the

ther scoring methods, the gene was essential in less than 20 cell

ines even with a much looser threshold of 10 0 0. Similar results

ere found for ACTB , which encodes a member of the highly con-

erved actin protein family, and is widely involved in cell motility,

tructure, integrity, and intercellular signalling [39] . As illustrated

n Fig. 3 c,d, GAPDH and ACTB were identified as cancer essential

enes more often by CES than by other methods at the given rank-

ng thresholds, resulting in the largest AUC for both genes (96.5%

nd 97.9% for GAPDH and ACTB , respectively). 

Furthermore, we evaluated the level of separation between

ancer essential and non-essential gene sets using strictly stan-

ardized mean difference (SSMD) [33] . Ideally, a scoring method

hat can better separate cancer essential genes from non-essential

enes should result in higher absolute values of SSMD. As shown

n Fig. 3 e, CES scores led to a much larger separation between the

ousekeeping genes and the non-essential genes, outperforming

ther scoring methods in all the available cell lines. For example,

ES increased by 85.5% on average of the absolute SSMD with ro-

ust improvement for all the cell lines compared to CERES, which

as the second-best method in terms of SSMD ( Fig. 3 e,f, Supple-

entary Table 8). In contrast, methods such as raw CRISPR scores

r DEMETER scores showed large variance in SSMD across different

ell lines, with SSMD even being positive in some cancer cells. We

lso found similar results using the common essential gene set and

he PanCancer gene set, although with less striking differences in

SMD (Supplementary Figure 4). Taken together, these results sug-

ested that CES can capture the true essential genes with superior

ccuracy compared to the state-of-the-art methods. 

.3. CES corrects screen-specific biases 

As shown in Fig. 2 a, the consistency of gene essentiality pro-

les between shRNA and CRISPR screens varied from moderate to

ow levels. Similar patterns were also observed for the subset of

ancer essential genes ( Fig. 2 c). Ideally, a cancer essential gene

hould show higher essentiality scores across multiple cell lines,

hereas a non-essential gene should be ranked at the bottom of

he list. We picked up the cell line (HT29), which shows the high-

st between-screen consistency, and then mapped the housekeep-

ng genes and non-essential genes on the scatter plot of the cell

ine average essentiality score versus the cell line specific essential-

ty score, determined by each of the methods ( Fig. 4 ). CES essen-

iality scores separated the housekeeping and non-essential genes

ufficiently well. In contrast, there was a big overlap of density

stimates for the other methods, indicating that the shRNA and

RISPR screens are biased to detect certain subgroups of cancer

ssential genes more easily than the others. Similar patterns were

lso found for the common essential genes and PanCancer onco-

enes versus PanCancer tumour suppressor genes (Supplementary

igure 5). These results suggest that CES scores were able to cor-

ect screen-specific biases, resulting in more centralized and sep-

rated clusters for cancer essential genes and non-essential genes.

 similar pattern was observed in other cell lines, even with poor

etween-screen consistency such as the PC3 cell line (Supplemen-

ary Figure 6). These results suggested that the gene essentiality

cores estimated by CES are more robust for the screen-specific

xperimental biases that are otherwise difficult to adjust using the

ther methods. 

Recent studies have shown that cancer cells may respond to ge-

etic perturbations introduced via shRNA or CRISPR-Cas9 by ac-

ivating distinct compensation mechanisms that involve different

ousekeeping genes [16,40] . As a result, housekeeping genes that

howed limited between-screen consistency may be involved in
, Combined gene essentiality scoring improves the prediction of 
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Fig. 3. CES improves gene essentiality prediction on gold standard datasets. ROC curves were determined for each scoring method in detecting (a) housekeeping genes and 

(b) common essential genes. The AUC and their p-values can be found in Supplementary Table 7. The performance was illustrated using two well-known housekeeping genes 

including (c) GAPDH and (d) ACTB , where the fraction of cell lines in which the gene was identified as essential is shown as a function of the ranking threshold. Furthermore, 

the separation of gene essentiality scores for housekeeping genes and common non-essential genes was measured by the strictly standardized mean difference (SSMD), 

shown at (e) individual cell lines (ranked by SSMD of CES scores) and (f) averaged across all cell lines. Their p-values for median differences can be found in Supplementary 

Table 8. 
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hese compensation mechanisms that are specific to one screen

ut not the other. Therefore, analysing the between-screen consis-

ency of housekeeping genes may provide novel insights on path-

ays that tend to be affected by screen-specific compensation

echanisms. We focused on a subset of housekeeping genes that

howed significant differences in shRNA-based essentiality scores

ersus CRISPR-based essentiality scores (two-group paired t -test, p-

alue < 0.05, Supplementary Table 9). We ranked these housekeep-

ng genes ( n = 1937) according to the difference between CRISPR

cores and shRNA scores and determined the biological pathways

nriched at the top or bottom ranking using the GSEA pre-ranked

ethod [41] . The top-ranking genes in general showed strong neg-

tive shRNA scores and close-to-zero CRISPR scores, suggesting its

elective sensitivity to shRNA perturbation but not CRISPR pertur-

ation. On the contrary, the bottom ranking genes showed selec-
Please cite this article as: W. Wang, A. Malyutina and A. Pessia et al.
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ive sensitivity to CRISPR perturbation. The gene set enrichment

nalyses showed distinct pathways that are enriched in CRISPR-

ensitive housekeeping genes versus shRNA-sensitive housekeep- 

ng genes ( Fig. 5 ). For example, CRISPR-sensitive genes are en-

iched mainly in DNA synthesis/metabolic (such as DNA template

ranscription initiation and elongation as well as DNA metabolic

athways) and DNA damage/repair related GO terms. CRISPR-Cas9

ased screening perturbs cancer cells by cutting the DNA and in-

ucing loss-of-function genetic mutations. These pathways, despite

eing important for cell survival, may be constitutively activated

ue to CRISPR-Cas9 perturbation, but not necessarily in shRNA-

ased screening, and may therefore explain the limited consis-

ency of gene essentiality profiles between them. In contrast, we

ound significant enrichment for immune response pathways in

hRNA-sensitive genes, including WNT and tumour necrosis fac-
, Combined gene essentiality scoring improves the prediction of 
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Fig. 4. Cell-line specific gene essentiality scores versus across-cell-line average scores in HT29 cells. CES showed the clearest separation of housekeeping genes and non- 

essential genes compared to the other methods, highlighted by the red and blue contours as the density estimates. 
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tor signalling pathways. These pathways tend to respond to shRNA

perturbations but not CRISPR perturbations. Interestingly, siRNA-

associated immune stimulation has been described previously [42] .

Taken together, these results suggest that the shRNA and CRISPR

screens may activate specific biological processes that are indepen-

dent of the true essentiality of the intended target genes. These

distinctive biological processes that are activated in one form of

genetic perturbation but not the other, may be worth further ex-

ploration with in-depth biological validation (Supplementary Ta-

bles 10,11). 

3.4. CES identifies the molecular biomarkers for cancer essential 

genes 

For a given cancer essential gene, we also applied a linear re-

gression model to explain the CES using its molecular features

including genetic mutation, gene expression, and copy number.

A significant molecular feature may therefore be considered as a
Please cite this article as: W. Wang, A. Malyutina and A. Pessia et al.
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iomarker for gene essentiality, for which the coefficient can be

nterpreted as the weight of the biomarker. Note that a lower CES

ndicates a stronger gene essentiality by convention, a negative

eight therefore suggests a positive influence of the molecular fea-

ure contributing to the gene essentiality. 

We found that most of the cancer essential genes (i.e. house-

eeping genes, common essential genes and PanCancer onco-

enes) showed significant weights (with nominal p-value < 0.05)

or copy number variation, accounting for 46.0% of all the sig-

ificant weights, followed by microarray-based gene expression

31.9.%), RNA-Seq-based RPKM gene expression (17.7%), and muta-

ion (4.4%). The weights for the copy number feature are negative

 −0.53 on average), suggesting that for a given gene, the possibility

f the gene being essential increases with an increasing copy num-

er. Copy number alterations are known to be the most frequent

enetic changes in cancer cells [43] . We reasoned that gene copy

mplification increases the chromosomal instability correlated with

he disease state and prognosis, resulting in the activation of genes
, Combined gene essentiality scoring improves the prediction of 
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Fig. 5. Biological pathways that are enriched in (a) CRISPR-sensitive housekeeping genes and (b) shRNA-sensitive housekeeping genes. CRISPR-sensitive housekeeping genes 

are defined as those that showed significantly stronger gene essentiality in CRISPR screens versus shRNA screens, whereas shRNA-sensitive housekeeping genes are defined 

oppositely. LogFDR is the log10 of probability that a gene set with a given enrichment score represents a false positive, determined using the GSEA method [41] . A higher 

–logFDR, i.e. a lower FDR indicates less false positive rate. 
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ith enhanced essentiality [44–46] . For example, oncogenes in-

luding MYC, KRAS, and CCND1 showed strong CES with increas-

ng copy numbers, corroborating the recent studies about cancer

ependency on these gene amplifications ( Fig. 6 a) [47] . In con-

rast, neither CRISPR nor shRNA-based methods could capture such

 pattern clearly ( Fig. 6 b,c). The weights of gene expression fea-

ures are also generally negative using microarray ( −0.62 on aver-

ge) and RPKM ( −0.46 on average), suggesting that if a gene is up-

egulated, it is more likely to be essential, which was also reported

n recent large-scale RNAi studies [17] . 

CRISPR screens tend to produce false positive estimates of gene

ssentiality for non-essential genes that are amplified in the same

egion with cancer essential genes [11] . Therefore, we also evalu-

ted whether CES tends to be affected by the same bias. We in-

estigated CES for cancer essential genes and their neighbouring

enes located in the same genomic regions. Specifically, for a given

ssential gene-neighbour gene pair, we measured the distance in

ase pairs as well as the difference between their CES. We found

ero correlation between the genetic distances and CES difference,

uggesting that the CES is unlikely to predict a higher gene es-

entiality simply due to copy number amplification ( Fig. 6 d). For

xample, CCND1 is located in cytogenetic band 11q13, and is pre-

icted as the top essential gene among its neighbours located in

he same amplified region ( Fig. 6 e). Similarly, KRAS and MYC are

lso ranked at the top within highly amplified genomic regions

Supplementary Figure 7). At the genome-level, we found that CES

ould separate cancer essential genes from common non-essential

enes across all copy number levels ( Fig. 6 f,g and Supplementary

igure 8). These lines of evidence suggested that CES is not biased
 p  

Please cite this article as: W. Wang, A. Malyutina and A. Pessia et al.
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y copy number amplification, which is known to be a confound-

ng factor in CRISPR-Cas9 screens [9,12,48] . 

Despite the relatively low number of significant coefficients for

utation features, CES recapitulated the well-known mutation de-

endency for multiple oncogenes. We ranked the genes by the

ignificance of their mutation weights and found the top three

enes being key components of the RAS family including NRAS

estimate = −0.14, p-value = 5.61e-10), KRAS (estimate = −0.09, p-

alue = 1.47e-7) and BRAF (estimate = −0.06, p-value = 1.18e-5). For

xample, CES ranked NRAS at the top in two AML cell lines in-

luding THP1 and HL60, where NRAS is highly mutated with 15-

nd 21-fold greater frequency than the average. This suggested

hat NRAS mutation might play a crucial role in the proliferation

nd survival of AML. Indeed, oncogenic NRAS mutations are highly

revalent in AML patients [49] and MEK inhibitors targeting onco-

enic N-Ras signalling are currently under clinical trials for AML

atients [50] . Taken together, the regression of CES on molecu-

ar features may provide functional links between the genotype-

henotype of cancer essential genes that may be worth exploring

s biomarkers and drug targets. 

.5. CES identifies cell-specific gene essentiality 

Finally, we utilized the CES to identify cell-specific essential

enes, defined as genes ranked in the top 100 for a given can-

er cell line, while their overall rankings across all cell lines went

elow 50 0 0. Altogether 219 genes for the 41 cell lines, including

87 cell-gene pairs were detected (Supplementary Figure 9). In

articular, we were interested in novel essential genes discovered
, Combined gene essentiality scoring improves the prediction of 
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Fig. 6. The predicted CES essentiality in genomic amplified regions. (a–c) Increased essentiality driven by a higher copy number in oncogenes KRAS, MYC , and CCND1 , 

captured by CES but not by CRISPR or shRNA scores. (d) Difference of CES for cancer essential genes and their neighbouring genes does not correlate with their genomic 

distances. (e) CCND1 was predicted as a top essential gene by CES from the amplified 11q13 genomic region in cell line A673. (f,g) CES separates housekeeping genes (f) and 

common essential genes (g) from non-essential genes under the same scenario of copy number quantiles. 
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Fig. 7. The novel cell-specific essential genes detected exclusively by CES. Round nodes are cell lines and square nodes are genes. 
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9  
y the CES method but not by the CRISPR and the shRNA-based

ethods. Therefore, we focused on the subset of cell-specific genes

hat ranked below 20 0 0 in both CRISPR and shRNA-based scoring.

ltogether, 68 such novel essential genes were identified for 29

ell lines, for which the cancer dependency network is shown in

ig. 7 . We reasoned that cell-specific essential genes should gener-

lly have higher expressions in a cell-specific manner as well. In-

eed, the expression of essential genes in these cell lines is signif-

cantly higher than that of other cell lines (average rank 6.07 vs .

4.70, p -value < 2.2e-16 for RNA-seq based expression; average

ank 5.46 vs . 25.66, p-value < 2.2e-16 for microarray based expres-

ion, Wilcoxon rank sum test). 

The majority of the genes were essential in only one cell line

y the cell-specific selection criteria. For example, AGR2 has been

dentified by CES as an essential gene for the T47D cell line (breast

ancer) but not others. AGR2 has been reported to play a critical

ole in oestrogen receptor (ER) positive breast cancer development

51] . In contrast, both the CRISPR and shRNA screens failed to iden-

ify AGR2 as an essential gene for the T47D cell line (essential-
Please cite this article as: W. Wang, A. Malyutina and A. Pessia et al.

cancer dependency maps, EBioMedicine, https://doi.org/10.1016/j.ebiom
ty score = 0.24 and 0.35, respectively). However, certain essential

enes were shared by multiple cell lines, suggesting an extended

evel of essential gene specificity for a group of cancer cell lines,

hich might allow them to be used as predictive biomarkers for

atient stratification. For example, SRGN that encodes a hematopoi-

tic cell granule proteoglycan, has been identified by CES as a

ell-specific essential gene for eight leukaemia cell lines, of which

even were not detected by CRISPR or shRNA-screens alone, in-

luding MOLM13, MV411, MONOMAC1, OCIAML2, OCIAML3, OCI-

ML5, and THP1. Interestingly, all these cell lines belong to the

ML (acute myeloid leukaemia) subtype, suggesting the potential

f using SRGN as a prognostic biomarker or drug target for AML.

ndeed, as shown in Supplementary Figure 10, SRGN expression

as higher in these AML cell lines. Using patient data from the

ETABRIC and BeatAML studies (see Methods for details), we fur-

her showed that AGR2 upregulation is predictive of poor survival

n ER-positive breast cancer patients, and that SRGN upregulation

s associated with AML prognosis ( Fig. 8 ). More specifically, for the

83 ER-positive samples in the METABRIC study, we found that
, Combined gene essentiality scoring improves the prediction of 
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Fig. 8. Survival analysis for the novel cancer essential genes including a) AGR2 in ER-positive breast cancer patients and b) SRGN in AML patients. Disease-specific survival 

curves were empirically estimated using the Kaplan–Meier method and Log-rank test was used to determine the significance of the difference. 
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samples ( n = 38) with higher gene expression (EXP z-score > 2)

or copy number amplification (CNV > 1) showed a significantly

poor prognosis (median disease-specific survival 123 months vs.

226 months, log-rank test, p = 0.02) compared to other samples;

For the 297 AML samples in the BeatAML study, we found that

patients with high SRGN expression (logCPM median z-score > 0,

n = 150) had significantly poor survival compared to others (me-

dian disease-specific survival 14.3 months vs. 20.8 months, log-

rank test, p = 0.05). These results suggested the clinical potential

and benefit of targeting these essential genes for specific patient

groups. The actual functions of AGR2 and SRGN , together with

other novel essential genes that were found specifically for spe-

cific groups of cell lines, might be worth further investigation to

facilitate patient stratification and drug discovery in personalized

medicine. 

4. Discussion 

Loss-of-function genetic screens with shRNA- and CRISPR-based

techniques have been commonly utilized for studying cancer de-

pendency at the genome-level, although questions remain on how

to efficiently leverage these datasets to generate more consistent

gene essentiality profiles for a given cancer sample. A recent side-

by-side comparison in the K562 cell line (leukaemia) demonstrated

a lack of consistency for the essential genes identified by these two

screen techniques [4] . In this study, we performed a more system-

atic comparison using a panel of 42 cancer cell lines representing

ten tissue types and confirmed the limited between-screen con-

sistency across various cellular contexts. Reasons for this limited

consistency might vary and may depend on confounding factors

related to experimental design, as well as inherent biases that are

specific to one screen technology but not the other. For example,

recent studies showed that CRISPR screens may erroneously iden-

tify genes in copy-number-amplified regions as essential, as the

DNA damage response and cell cycle arrest may be triggered by

the CRISPR-Cas9 process independently of the essentiality of the

targeting genes [2] . It has also been shown that shRNA screens may

be less likely to detect essential genes expressed at low levels [20] .

In our data analysis, we also found that housekeeping genes that

are involved in certain biological pathways tend to respond differ-

ently to CRISPR and shRNA perturbation ( Fig. 5 ). These and other

confounding factors may contribute to the limited between-screen
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onsistency, which may pose a challenge to estimate true gene es-

entiality. 

To improve the accuracy of gene essentiality estimation, many

omputational methods have been developed for genetic screens

sing single technologies, whereas there is a lack of integra-

ive methods to combine the gene essentiality profiles from both

RISPR and shRNA screens. Furthermore, the molecular features of

ancer cells that are known to play important roles in determining

he function of genes have not been effectively considered when

stimating gene essentiality. Following this line, we proposed a

ata integration model called Combined Essentiality Score (CES) to

ntegrate the genetic essentiality profiles from these two screen-

ng techniques, while accounting for the molecular signatures of

ancer cells. We showed that the CES model improved the pre-

iction of multiple reference sets of cancer essential genes and

on-essential genes, compared to existing computational methods

ncluding CERES and DEMETER1/2. Furthermore, CES was able to

orrect the screen-specific biases, suggesting that the CES could

e used as a more reliable metric for estimating true essential-

ty. The CES method differs from existing computational methods

hat usually consider one type of genetic screen. Rather, CES tries

o integrate the gene essentiality profiles from both CRISPR and

hRNA screens and improves gene essentiality estimation by incor-

orating molecular features including mutation, gene expression,

nd copy number variation. In contrast, CERES and DEMETER1/2

ocused mainly on off-target correction, but rarely considered the

ifferential responses to CRISPR and shRNA perturbations, which

ould explain the less accurate prediction performance compared

o CES. Furthermore, the linear structure of CES allows the quan-

ification of molecular feature effects on gene essentiality and may

hus may provide clues about why a given gene is essential. We

emonstrate several case studies where the identified cancer es-

ential genes indeed make biological sense that may warrant fur-

her experimental validation. Importantly, we assumed that inter-

ctions between molecular features, the raw CRISPR and shRNA

cores, and true essentiality scores are rather complex and most

ikely gene- and cancer-specific. Therefore, we reported the source

ode and CES scores to allow cancer researchers to further test the

alidity and biological rationale of CES at the genome and pan-

ancer level. 

We collected a total of 42 cell lines from recent publications

o demonstrate our model. It should be noted that several large-

cale projects including Achilles [12] and DepMap [15] are con-
, Combined gene essentiality scoring improves the prediction of 
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inuously generating genome-wide functional genetic screen data

or more cancer cell lines. The accumulating genome-wide func-

ional screening data are expected to improve the scope of the

ES model. On the other hand, the CES model currently takes

ene level essentiality scores as inputs, because gene-level data

re more commonly available from existing studies. Data pre-

rocessing procedures from the shRNA or sgRNA level to gene level

ay affect the CRISPR and shRNA-based gene essentiality estima-

ion and may thus affect the CES. Given that high quality shRNA

evel or sgRNA level data have been made available recently, direct

odelling of gene essentiality profiles from sgRNA and shRNA level

ata may be worth exploring as a future step. 

Our method provides a novel perspective to explore the large

eature space for cancer genes, allowing improved prediction

f essential genes and their functional annotation in individual

ell lines. Effective integration of functional and molecular data

ight provide important clues for drug discovery in personalized

edicine. For example, we utilized the mutation status of genes as

 predictor of CES score. The correlation of CES score with muta-

ion status might be indicative of whether such a mutation is an

ctivating or inactivating mutation. However, more experimental

alidation is required for evaluating its potential as a drug target.

lthough we have focused on high-throughput functional genetic

creens that are largely measuring cell growth in this study, the

ES modelling strategy itself is applicable to interrogate genes that

re essential for other cellular phenotypes and functions. For ex-

mple, recent technologies in single-cell sequencing have enabled

he testing of multiple phenotypes for specific gene depletions in a

ooled fashion (e.g. CROP-seq and Perturb-seq) and we expect that

ur method can be also applied there [52] . In addition to human

ancer cell lines that were studied most extensively, limited phe-

otypic consistencies were also observed in other model organisms

ncluding mouse and zebrafish [53,54] . We foresee that the CES

odel can be extended to improve the estimation of genetic de-

endency in cancer cell lines as well as in other model organisms. 
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