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Abstract

Local adaptation and habitat choice are two key factors that control the distribution and diversifi-2

cation of species. Here we model habitat choice mechanistically as the outcome of dispersal with

non-random immigration. We consider a structured metapopulation with a continuous distribu-4

tion of patch types, and determine the evolutionarily stable immigration strategy as the function

linking patch type to the probability of settling in the patch upon encounter. We uncover a novel6

mechanism whereby coexisting strains that only slightly differ in their local adaptation trait can

evolve substantially different immigration strategies. In turn, different habitat use selects for8

divergent adaptations in the two strains. We propose that the joint evolution of immigration

and local adaptation can facilitate diversification, and discuss our results in the light of niche10

conservatism versus niche expansion.
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Introduction12

Dispersal is widely recognized as a key mechanism for adaptation in fragmented, patchy habi-

tats. Accordingly, a vast body of literature examines the evolution of dispersal (see Ronce 2007;14

Bonte et al. 2012; Travis et al. 2012; Clobert et al. 2012; Cote et al. 2017 for reviews). Most models

of dispersal evolution, however, focus only on one aspect of dispersal, the decision to leave a16

patch (emigration). It is commonly assumed that if they survive the hazards of transience, the

dispersers settle in patches (immigrate) randomly over the entire landscape (Hamilton and May18

1977; Levin et al. 1984; Olivieri et al. 1995; Mathias et al. 2001; Parvinen 2002; Massol et al.

2011; Cotto et al. 2013; Weigang and Kisdi 2015; and many others) or over some neighbour-20

hood of the source patch defined by spatial proximity or connectivity (e.g. Comins 1982; Harada

1999; Heino and Hanski 2001; Rousset and Gandon 2002; North et al. 2011; Karisto and Kisdi22

2017). Also most models exploring conditional dispersal focus on how emigration depends on

local population size (Jánosi and Scheuring 1997; Travis et al. 1999; Gyllenberg and Metz 2001;24

Poethke and Hovestadt 2002; Kun and Scheuring 2006; Bocedi et al. 2012; Parvinen et al. 2012),

kin competition (Ronce et al. 1998) or on the body size, competitive ability, or fecundity of the26

individual (Bonte and de la Peña 2009; Gyllenberg et al. 2008, 2011a,b; Kisdi et al. 2012).

28

The common assumption of random immigration contrasts sharply with the increasing re-

alization that settlement after dispersal may often be non-random (Bowler and Benton 2005;30

Clobert et al. 2009; Matthysen 2012). Immigration may depend on local population size and re-

productive success (e.g. Doligez et al. 2002; Garant et al. 2005; Parejo et al. 2007), habitat quality32

and available mates (Matter and Roland 2002), or the presence of the preferred host plant (Singer

and Thomas 1996; Hanski and Singer 2001). Importantly, dispersal decisions correlate with traits34

under contrasting selection in different habitats. In sticklebacks, individuals of lake and stream

populations that move to the opposite habitat resemble phenotypically the individuals of the36

target habitat (Bolnick et al. 2009). Dispersal behaviour correlates with individual preference for
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different temperatures in lizards (Bestion et al. 2015). The ciliate Tetrahymena thermophila chooses38

between habitats of different temperatures according to which habitat it is better adapted to, and

this process enhances local adaptation (Jacob et al. 2017).40

We shall focus on non-random immigration due to habitat choice, i.e., due to dispersers42

favouring certain patches over others. We envisage habitat choice as a process of individuals

searching for habitat patches, and when a patch is found, making a decision on settlement after44

evaluating the local environment in the patch. For example, the butterflies Melitaea cinxia and Eu-

phrydryas editha locate dry/barren meadows as habitat patches. When in a patch, they search for46

their preferred host plants; in case they cannot find the preferred host, they may either choose to

accept a less preferred plant (presumably to escape dispersal-related costs) or to leave the patch48

and disperse further. Finding habitat patches and making the decision to stay or to leave appear

to be separate, consecutive steps (Singer 2015).50

Even though habitat choice is the result of searching for a suitable habitat and a decision to52

settle, many models investigating the effects of habitat choice ignore the process of finding the

patches. Instead, they simply assume that a certain fraction of individuals end up in a certain54

habitat (Egas et al. 2004; Beltman et al. 2005; Ravigné et al. 2004, 2009) or individuals spend

a certain fraction of their time in a certain habitat (Schreiber 2012). The same assumption was56

made also in population genetic models of habitat choice, with some corrections to accommodate

the difficulty of finding rare habitats (e.g. Rauscher 1984; Garcia-Dorado 1986; Hedrick 1990; but58

see de Meeûs et al. 1993 for a more mechanistic model). Assuming that the probability of living

in a certain habitat is the trait directly under selection is, however, misleading, because it ignores60

the uncertainty and the cost of finding the preferred habitat. In other words, substituting the

mechanistic modelling of dispersal, as the process of emigration, transience, and immigration,62

with its presumed result, the distribution of individuals over habitats, excludes many factors that

shape the evolution of habitat choice.64
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Some models capturing the process of transience and selective immigration assume that habi-66

tat patches are immutably good or bad for survival and reproduction (Ward 1987; Baker and Rao

2004; Stamps et al. 2005; Gyllenberg et al. 2016; Nurmi et al. 2017; Weigang 2017; Crowley et68

al. 2019). As several empirical studies cited above show, however, whether or not a habitat is

favourable to an individual often depends on the phenotype of the individual, i.e., how well it70

is adapted to the local environment. Habitat choice via dispersal with non-random immigration

should therefore be investigated also jointly with the evolution of local adaptation.72

Traditionally, local adaptation is seen as a factor selecting against dispersal (Balkau and Feld-74

man 1973). When immigration is random, dispersal creates a net flux from habitats where in-

dividuals are well adapted into habitats where they are not, and such source-sink dynamics76

disfavours dispersal (Hastings 1983). When environmental stochasticity or kin competition se-

lects for dispersal, the joint evolution of emigration and local adaptation exhibits rich dynamics,78

including alternative stable states (Kisdi 2002; Nurmi and Parvinen 2011; Berdahl et al. 2015). As

expected, high dispersal favours generalists, whereas low dispersal facilitates the diversification80

of the local adaptation trait. However, diversification can also start with evolutionary branching

of the emigration strategy, not of the local adaptation trait (Kisdi 2002; Nurmi and Parvinen82

2011). Dispersal distance can also diversify when different resource patches have contrasting

spatial configurations (Cenzer and M’Gonigle 2019).84

For non-random immigration, matching habitat choice (Edelaar et al. 2008; Jacob et al. 2015)86

is a plastic strategy whereby individuals choose habitats based on their own phenotypes. This

assumes good prospecting capabilities including controlled movement and memory. Models88

vary how matching habitat choice is implemented. A simple possibility is that each individual

chooses, from a certain number of patches, the patch where the locally optimal phenotype is clos-90

est to its own (Edelaar et al. 2017; Mortier et al. 2019); but this choice can be suboptimal due to
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crowding if many individuals choose the same patch. In other simulation models, the probability92

of dispersal is a prescribed function of the difference between the departure and target patches,

with only its parameters evolving (Armsworth and Roughgarden 2005; Enfjäll and Leimar 2009;94

Berner and Thibert-Plante 2015); this function however ought to evolve freely.

96

In this paper, we investigate analytically how a fully flexible immigration strategy evolves

jointly with a local adaptation trait in a structured metapopulation model. Habitat choice98

emerges mechanistically from the behaviour of dispersers, who encounter patches randomly

and immigrate with an evolving probability specific to some fixed property of the patch (e.g.100

temperature or humidity). For a given local adaptation trait, we derive the corresponding evo-

lutionarily stable immigration strategy, which balances the effects of the individual’s match with102

the local environment and of local crowding. For the joint evolution of local adaptation and the

immigration strategy, we show that once the metapopulation becomes dimorphic, competition104

drives the two strains to evolve substantially different immigration strategies even if they differ

only slightly in their local adaptation trait. Different habitat choice then facilitates the divergence106

of the local adaptation trait as well. We suggest that by this mechanism, considerable levels of

polymorphism may build up in a landscape where the patches vary continuously, and discuss108

the relevance of these results for niche evolution.

The model110

We consider a structured metapopulation model with a large number of habitat patches (Gyllen-

berg and Hanski 1992; Hanski and Gyllenberg 1993; Gyllenberg et al. 1997; Gyllenberg and Metz112

2001). The patches differ in a permanent quantitative property y (such as mean temperature, hu-

midity, etc.), which we call the type of the patch, and which varies in an interval Y = [ymin, ymax].114

The local population does not affect the patch type and thus the patch-type distribution n (obey-

ing
∫

Y n(y)dy = 1) is given and does not change with time.116
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Table 1: Important parameters and variables
Symbol Definition
α per capita patch encounter rate of dispersers
D number of individuals in the dispersal pool per patch at steady state
g(N, y, θ) per capita growth rate of a population with trait θ

in a patch of type y with local population density N
γ per capita emigration rate
I(y) immigration rate into a patch of type y at steady state
µ per patch catastrophe rate
n(y) patch type distribution
ν per capita death rate during dispersal
N(τ, y) local population density in a patch of type y and age τ
ψ(y) probability of immigration into a patch of type y upon encounter (evolving)
q(τ) density of patches of age τ
θ local adaptation trait (evolving)
y patch type
Y (Y0, Y1, Yf ) set of patch types (subsets described in the text, together cover Y)

Local catastrophes kill all individuals in a patch but leave the patch habitable. We refer to the118

time elapsed since the last catastrophe, τ, as the age of the patch. For simplicity, we assume that

catastrophes occur at a constant rate µ, up to a maximum age τmax, when the local population120

is destroyed. At the metapopulation steady-state, therefore, patch age follows the truncated ex-

ponential distribution q(τ) = µe−µτ/(1− e−µτmax). We introduce the truncation at τmax to ensure122

that no immigrant can produce infinitely many descendants in one local population, but set τmax

high enough so that the truncation has no appreciable effect on the dynamics of the resident124

metapopulation.

126

Each individual has a heritable trait θ, which affects how well it is adapted to various patch

types. Further, each individual has a heritable function ψ for its immigration strategy, which128

gives, for each patch type y, the probability ψ(y) to settle in the patch when it is encountered

during dispersal. We assume that inheritance is clonal and a mutation affects either ψ or θ but130

not both.

132
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We describe the resident metapopulation at its steady-state; see section S.1 of the appendix

(supplemental appendix, available online) for the full model and Table 1 for notation. Between134

catastrophes, a local population of the resident strategy (ψ, θ) in a patch of type y follows the

dynamics136

dN
dτ

= g(N, y, θ) N − γ N + I(y) (1)

with the initial condition N(0, y) = 0 set by the last catastrophe. Here γ is the constant emigration

rate and I(y) is immigration specified below. We choose the density-dependent per capita growth138

rate of θ-individuals in a patch of type y to be

g(N, y, θ) = r
(

1− N
k

)
− c(θ − y)2 (2)

such that local populations grow logistically with an extra death rate c(θ − y)2, which increases140

as θ deviates from y.

142

Individuals who leave their patch enter a global dispersal pool, where they die at a per capita

rate ν and encounter patches randomly at a rate α. When an individual encounters a patch, it144

immigrates to settle down in the patch with probability ψ(y); otherwise it returns to the dispersal

pool. Note that the decision depends on the type of the patch but not on the age of the patch. In146

other words, the individuals can judge the permanent physical properties (such as temperature

or humidity) of the patch, but not the size of the local population or any other cue that changes148

with time since the last catastrophe and therefore informs about local population size.

150

At the metapopulation steady state, individuals enter the dispersal pool at the rate E =∫
Y

∫ τmax
0 γ N(τ, y) q(τ)n(y) dτ dy per patch. With D denoting the number of individuals in the152

dispersal pool per patch and ψ̄ =
∫

Y ψ(y)n(y)dy the average probability of settlement, individuals

are removed from the dispersal pool at the rate (αψ̄ + ν)D. Since the influx equals the removal154
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at steady-state, the size of the dispersal pool is

D =
E

αψ̄ + ν
(3)

and the immigration rate into a patch of type y is I(y) = αψ(y)D. Notice that via I(y), the so-156

lution N(τ, y) of equation (1) depends on D. With substituting N(τ, y) into E, equation (3) is an

equation for D as unknown. Once this equation is solved, N(τ, y) and hence the metapopulation158

steady-state follow easily.

160

When two resident strategies (ψ1, θ1) and (ψ2, θ2) inhabit the metapopulation, the local pop-

ulation dynamics are given by162

dN1

dτ
= g(N1 + N2, y, θ1) N1 − γ N1 + I1(y)

dN2

dτ
= g(N1 + N2, y, θ2) N2 − γ N2 + I2(y)

(4)

where the immigration rates are calculated analogously to the monomorphic case. For our choice

of g in equation (2), the local dynamics in equations (1) and (4) can be solved explicitly (see sec-164

tion S.2), which greatly facilitates the analysis.

166

To analyse the long-term evolution of the immigration strategy ψ and the local adaptation trait

θ, we use the framework of adaptive dynamics. We assume that the resident metapopulation is168

at its steady state; due to the recurrent catastrophes, individual populations are always growing

towards their local equilibrium density, but the distribution of local population sizes is constant.170

Mutations occur infrequently and alter the traits only slightly. A mutant is able to increase in

numbers, i.e., to invade, if its basic reproduction number is greater than 1 (Gyllenberg and Metz172

2001; Metz and Gyllenberg 2001).
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The basic reproduction number of a mutant174

To calculate the basic reproduction number Rm(ψm, θm, ψ, θ) of a mutant strategy (ψm, θm) in the

resident metapopulation with strategy (ψ, θ), we consider dispersal generations. A dispersal176

generation starts when a mutant individual enters the dispersal pool. If it survives to settle into

a patch, this mutant will start a local population, from which emigrants return to the dispersal178

pool. The dispersal generation ends with the extinction of the mutant’s local population (or with

the death of the mutant if it failed to settle into a patch). The basic reproduction number Rm is180

the expected number of emigrants who enter the dispersal pool from the local population started

by the initial mutant individual.182

Let ρ(y, θm, θ, ψ(y)D) denote the expected number of emigrants produced by a mutant with184

local adaptation trait θm upon settling into a patch of type y, given that the local population dy-

namics is governed by the resident’s local adaptation θ and immigration rate αψ(y)D. In section186

S.3 we detail how to calculate ρ(y, θm, θ, ψ(y)D) based on the population dynamic model outlined

above. Obviously, the expected number of mutant emigrants increases with decreasing |θm − y|,188

i.e., the better the mutant is adapted to the patch, the more descendants it will produce. Impor-

tantly, ρ(y, θm, θ, ψ(y)D) decreases with ψ(y)D. This is because the more individuals immigrate190

into a patch, the higher the local population density is, which decreases the per capita growth rate

due to competition and therefore fewer dispersers are produced by an immigrant (see section192

S.4 for a formal proof). For the same reason, ρ(y, θm, θ, ψ(y)D) is lower if the resident is better

adapted to the patch, i.e., it decreases with decreasing |θ − y|.194

From the dispersal pool, a mutant individual with immigration strategy ψm settles into a patch196

of type between y and y + dy with probability αψm(y)n(y)dy/[αψ̄m + ν], and then produces on

average ρ(y, θm, θ, ψ(y)D) emigrants who return to the dispersal pool. The basic reproduction198
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number of the mutant is therefore

Rm(ψm, θm, ψ, θ) =
α
∫

Y ψm(y)n(y)ρ(y, θm, θ, ψ(y)D) dy
αψ̄m + ν

. (5)

The basic reproduction number of the resident is 1; the mutant can invade if Rm > 1.200

Evolutionarily stable immigration strategy

In this section, we consider the evolution of the immigration strategy only, i.e., we assume that202

mutants differ from the resident in ψ, but θm = θ is fixed.

204

We call a patch of type y not worthwhile for a population with local adaptation trait θ if

ρ(y, θ, θ, 0) < 1. An individual entering such a patch would not replace itself in the dispersal206

pool even in the absence of competition (when ψ(y)D = 0, the patch has no resident population),

and therefore such patches should never be settled in. We denote the set of all non-worthwhile208

patch types by Y0. These are the patches where the individuals are poorly adapted because y is

too different from θ; the exact condition is given in Proposition 3 of section S.4. Note that while210

the set Y0 depends on the local adaptation trait, it does not depend on the immigration strategy.

212

The worthwhile patches can be divided further. Recall that ρ(y, θ, θ, ψ(y)D) is decreasing as

a function of ψ(y)D. In some of the worthwhile patches, the individuals are so well adapted that214

ρ(y, θ, θ, D) > 1, i.e., an individual entering here will more than replace itself in the dispersal

pool even if every resident who encounters this patch immigrates here (ψ(y) = 1). These patches216

should always be accepted. We denote the set of these highly beneficial patches with Y1. Which

patches belong to the set Y1 depends not only on the local adaptation trait θ but also on the218

resident immigration strategy ψ, because the latter also affects the size of the dispersal pool, D.

220

In the remaining worthwhile patches we have ρ(y, θ, θ, 0) > 1 but ρ(y, θ, θ, D) 6 1. In section
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S.4, we prove that in these patches, an intermediate immigration strategy ψ(y) is selected, which222

solves the equation ρ(y, θ, θ, ψ(y)D) = 1. We denote this set of patch types with Yf , where ‘f’ is

to mark that only in a fraction of encounters an individual will settle in the patch. To explain this224

result heuristically, suppose that the resident population is such that ρ(y, θ, θ, ψ(y)D) > 1 holds

in some patch type y. In this case, a mutant that immigrates into this patch more often than226

the resident (ψm(y) > ψ(y)) will produce more dispersers, and hence will have a higher basic

reproduction number than the resident (i.e., Rm > 1), which means that the mutant can invade.228

Conversely, if ρ(y, θ, θ, ψ(y)D) < 1, then a mutant with ψm(y) < ψ(y) can invade the resident.

230

In summary, we prove in section S.4 that the strategy

ψ(y) =


0 if y ∈ Y0

f (y) if y ∈ Yf

1 if y ∈ Y1,

(6)

where f (y) is such that ρ(y, θ, θ, f (y)D) = 1 with D fulfilling Rm(ψ, θ, ψ, θ) = 1, is a (weak)232

evolutionarily stable strategy (ESS). The set Y0 contains the patches with large |y− θ| (patches the

individuals are least adapted to), whereas the set Y1 has the patches with small |y− θ| (patches234

the individuals are best adapted to), with Yf inbetween. Hence the shape of the ESS immigration

strategy is hat-like, as shown in the examples of Figure 1.236

Evolution of local adaptation

Suppose now that only the local adaptation trait θ evolves and ψm = ψ is fixed. For brevity, we238

write the basic reproduction number as Rm(θm, θ), suppressing its dependence on the constant

immigration strategy. Since θ is a scalar, it is straightforward to characterize the evolutionarily240

stable local adaptation trait (Maynard Smith 1982; Geritz et al. 1998). Monomorphic evolution
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Figure 1: Evolutionarily stable immigration strategies. Black line: ψ(y), the probability of immi-
gration upon encountering a patch of type y; dashed grey line: n(y), the distribution of patch
types (truncated normal with variance σ2). The local adaptation trait is θ = 0 in each panel, i.e.,
it matches the most common patch type (black dot). In panel (a), the horizontal bar along the
y-axis marks the non-worthwhile patches Y0 with white and the worthwhile patches Yf and Y1
respectively with grey and black. In the Discussion, we refer to the grey part as the peripheral
niche and the grey and black parts together as the fundamental niche. Parameter values: (a)
r = 5, k = 80, c = 1, γ = 2, α = 1, ν = 1; µ = 0.1, τmax = 200, σ = 0.5 (D = 56.96); (b) as in
(a) except σ = 1.2 (D = 44.82); (c) as in (a) except c = 3 (D = 50.51); (d) as in (a) except c = 3
and σ = 1.2 (D = 32.70); (e) as in (a) except γ = 0.5 (D = 16.82); (f) as in (a) except ν = 0.1 and
σ = 1.2 (D = 116.52). Set of worthwhile patch types (ψ(y) > 0): (a), (b), (e), (f) (−2.21, 2.21);
(c), (d) (−1.28, 1.28). Set of patch types with ψ(y) = 1: (a) (−1.76, 1.76); (b) (−1.86, 1.86); (c)
(−1.05, 1.05); (d) (−1.13, 1.13); (e) (−1.64, 1.64); (f) (−1.09, 1.09).

ceases when the local adaptation trait θ satisfies the singularity condition242

∂Rm(θm, θ)

∂θm

∣∣∣∣∣
θm=θ

= 0, (7)
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and the singular trait value is locally evolutionarily stable (ESS) if

∂2Rm(θm, θ)

∂θ2
m

∣∣∣∣∣
θm=θ

< 0. (8)

We discuss convergence stability in section S.5.244

Monomorphic evolutionary singularities

The immigration strategy and the local adaptation trait attain a joint evolutionary singularity246

(ψ∗, θ∗) if equations (6) and (7) hold simultaneously. The practical difficulty in finding the singu-

larity is that in order to obtain the ESS immigration strategy in equation (6), we need to know D,248

the size of the dispersal pool; but D depends on the resident immigration strategy itself. Further,

the ESS immigration strategy depends on the local adaptation trait and vice versa. In section S.6,250

we describe a numerical procedure to find the joint evolutionary singularity (ψ∗, θ∗).

252

Since we assume that a mutation affects either the immigration strategy or the local adaptation

trait but not both, we can establish trait-wise whether the singularity (ψ∗, θ∗) is evolutionarily254

stable. The immigration strategy ψ∗ is always a weak ESS, i.e., no mutant with a different immi-

gration strategy ψ has a positive invasion fitness, but mutants differing only for patch types in256

Yf are neutral (see Proposition 2 in section S.4). If condition (8) holds, then the local adaptation

trait is also an ESS, and therefore the singularity (ψ∗, θ∗) is evolutionarily stable (but see below258

the section Diversification for an important caveat).

260

To provide concrete examples, we assume the distribution of patch types is normal with mean

0 and variance σ2, truncated to the interval Y = [−3, 3]. Due to symmetry, θ∗ = 0 is then a sin-262

gular local adaptation trait, and therefore the strategies shown in Figure 1 correspond to joint

monomorphic singularities, (ψ∗, θ∗) (see section S.7 on asymmetric patch type distributions).264
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In the example of Figure 1a, condition (8) is satisfied, and therefore we have an evolutionarily266

stable singularity. In Figure 1b-f, however, condition (8) is violated, so that the singularity is not

stable against mutants that have a different local adaptation trait, and the local adaptation trait268

undergoes evolutionary branching if the immigration strategy is held fixed at ψ∗. This happens

when there is a wide distribution of patch types (high σ; Figure 1b) or when mortality quickly270

increases with the difference from the locally best adapted trait, |θ − y| (high c; Figure 1c). In

both cases, immigrants often find themselves in a patch where the generalist strategy θ∗ = 0272

is not well adapted, so that the local adaptation trait is under disruptive selection (Meszéna et

al. 1997; Kisdi and Geritz 1999; Kisdi 2002). Evolutionary stability is lost also if the emigration274

rate γ is low so that individuals remain in the same patch for a long time (Figure 1e), or if the

patch encounter rate α is low so that many dispersers die before they could settle (not shown). In276

the latter two cases, the patches are more isolated, and therefore θ diversifies to match the local

optimum (Meszéna et al. 1997).278

In the examples of Figure 1c and 1d, the parameters are like in Figure 1a and 1b, respectively,280

except the value of c is higher, i.e., the within-patch mortality increases faster with the difference

between the local adaptation trait θ∗ and its optimum y. With high c, many patch types are not282

worthwhile (ψ∗(y) = 0 for broad intervals of y); in Figure 1d, a considerable fraction of patches

are not used by the population. Despite the range of patch types that harbour a local population284

is narrower, the singularity is still not evolutionarily stable, because relatively small differences in

y mean a large difference in mortality, and therefore the patch type variation can be partitioned286

between coexisting strains on a finer scale.

288

Low mortality in the dispersal pool might seem to imply that individuals can afford to be

more choosy, i.e., accept only patches to which they are better adapted. The set of worthwhile290

patches, i.e., where immigration happens at all, is however independent of dispersal mortality

(Proposition 3 in section S.4). The evolutionarily stable immigration strategy in equation (6) de-292
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pends on dispersal mortality exclusively via D, the size of the dispersal pool. With low mortality,

the size of the dispersal pool is large, so that the worthwhile patches receive many immigrants294

and competition is strong within the patches. This decreases the benefit from immigration and

therefore decreases ψ∗(y) preserving its positivity; and also narrows the set of patch types with296

ψ∗(y) = 1 (compare Figure 1f with Figure 1b). Dispersal mortality thus acts by influencing

within-patch competition rather than directly.298

The same holds for the distribution of patch types. With a wider distribution of patches, one300

might expect the dispersers to accept more patch types to avoid a long stay in the dispersal pool

with its risk of mortality. Once again, we find that the set of worthwhile patches is independent of302

the patch type distribution, and the evolutionarily stable immigration strategy is influenced only

via D, i.e., only via within-patch competition. A wider distribution means that many patches304

have only low population density, because even though they are worthwhile, the population is

not well adapted to the patch. As a consequence, there are fewer emigrants and the dispersal306

pool is smaller. Fewer immigrants alleviate competition and therefore increase ψ∗(y) in the

worthwhile patches, as well as broaden the set of patches with ψ∗(y) = 1. In Figure 1, however,308

the difference is small.

Dimorphic populations310

Suppose that the metapopulation contains two resident strategies. To find the ESS immigration

strategies ψ1 and ψ2 for fixed values of θ1 and θ2, our starting point is that the first resident312

produces more dispersers than the second resident in a patch of type y if it is better adapted to

this patch type, i.e., if |y− θ1| < |y− θ2|. Since one or the other resident is always better adapted314

to the patch (except for the single point y = (θ1 + θ2)/2), they cannot both have ρ = 1 emigrants

from the patch, and therefore they cannot both have intermediate probabilities (0 < ψ1,2(y) < 1)316

of immigration into a patch of type y at the ESS (cf. the section “Evolutionarily stable immigra-
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Figure 2: Evolutionarily stable immigration strategies in dimorphic populations. Black line:
ψ1(y); dashed black line: ψ2(y); dashed grey line: the distribution of patch types, n(y) (truncated
normal with σ = 1.2). Parameter values: r = 5, k = 80, c = 1, γ = 5, α = 1, ν = 0.1, µ = 0.1,
τmax = 200. Resident strategies: (a) θ1,2 = ±2.5 (D1,2 = 126.7); (b) θ1,2 = ±2 (D1,2 = 178.9); (c)
θ1,2 = ±0.7 (D1,2 = 227.5); (d) θ1,2 = ±0.05 (D1,2 = 135.7).

tion strategy”).318

With this in mind, we can proceed similarly to the monomorphic case and partition the set of320

patch types Y as follows. Patch types that are not worthwhile for either of the two residents are

in the subset Y00. For the rest, consider the patches where the first resident is better adapted. If322

the first resident achieves ρ = 1 at an immigration probability less than 1, then, given the immi-

gration of the first resident, the second (less adapted) resident would receive ρ < 1 and therefore324

rejects the patch; these patch types are in Yf 0. Patches where the first resident immigrates with

probability 1 (and hence has ρ > 1) can be, given the presence of the first resident, not worth-326

while for the second resident (Y10), or worthwhile but with ρ = 1 for the second resident at an

intermediate probability of immigration (Y1 f ), or good enough also for the second resident to328

achieve ρ > 1 with full immigration (Y11). The roles are reversed in patches where the second

resident is better adapted.330

We give the formulas of the evolutionarily stable immigration strategies in dimorphic popu-332

lations, along with a practical way of finding the ESS, in section S.8. Figure 2 shows examples

with local adaptation traits fixed at symmetric values (θ2 = −θ1). If θ1 and θ2 are far from each334

other, then the two residents’ worthwhile patch types do not overlap even in their monomorphic
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populations. The two residents thus never immigrate in the same patch and therefore they are336

independent, each behaving as in its monomorphic population (the middle of the patch type

range belongs to Y00; Figure 2a). If θ1 and θ2 are somewhat closer, then the residents’ worthwhile338

patch types start to overlap; but since they cannot both have an intermediate immigration prob-

ability, the distribution of the two residents is abutting such that the first resident immigrates340

only into patches with y < 0, whereas the second resident only into patches with y > 0 (the

subsets Yf 0 an Y0 f are adjacent; Figure 2b). With θ1 and θ2 even closer to each other, the range of342

patch types used by the two residents overlap, but the probability of immigration drops at y = 0

discontinuously from 1 to a lower positive value (the subsets Y1 f and Yf 1 are adjacent; Figure344

2c). If θ1 and θ2 are sufficiently close to each other, then there is a range of patches where both

residents immigrate with probability 1 (the subset Y11 occupies the middle of the range; Figure346

2d).

348

As Figure 2d suggests, the difference between the evolutionarily stable immigration strategies

of the two residents does not vanish even if the two residents have virtually the same local adap-350

tation trait. This is because the two residents cannot have the same intermediate immigration

probability, no matter by how little they differ in their local adaptation trait. Figure 3a shows352

what happens when θ1 and θ2 become identical. In the bottom panel, we plot the evolutionarily

stable immigration strategies when the two residents differ only by an infinitesimal amount (this354

is very similar to Figure 2d), compared to the immigration strategy of the monomorphic ESS in

the top panel. The two residents of the dimorphic population together are equivalent to the sin-356

gle resident of the monomorphic population. The patch types where both residents immigrate

with probability 1 are the same where the single resident immigrates with probability 1 (i.e.,358

Y11 coincides with Y1 in the middle of the range); and the patch types where neither resident

immigrates into are the same that are rejected by the single resident (i.e., Y00 coincides with Y0 at360

the far left and far right of the range). The difference between the dimorphic and monomorphic

populations is in the range where the monomorphic ESS has intermediate probability of immi-362
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gration (i.e., in Yf , which consists of two intervals on each sides of the plot, between the long

vertical guide lines). In the dimorphic population, the resident with θ∗ − ε is marginally better364

adapted to patches with small y, and therefore its immigration probability becomes positive first

as y increases in the bottom panel of Figure 3a; as explained above, the immigration probability366

of the other resident can become positive only when that of the first has reached 1. In other

words, the left interval of Yf of the monomorphic population is divided into Yf 0 and Y1 f in368

the dimorphic population. In Yf 0, the first resident has twice as high immigration probability

as the monomorphic population, and since each of the two residents has half the size of the370

monomorphic dispersal pool, this means that the overall immigration rate is the same as in the

monomorphic population. In Y1 f , the immigration probability of the second resident is such that372

the total immigration matches that of the monomorphic population. The same pattern occurs in

the right interval of Yf , which is split into Yf 1 and Y0 f in the dimorphic population.374

Figure 3: Comparison of the evolutionarily stable immigration strategies (parameters as in Figure
2). (a) Top: the monomorphic ESS at θ∗ = 0 and the corresponding ψ∗ (D = 267.4); bottom:
dimorphic population with θ1,2 = ±ε, ε → 0 (D1,2 = 267.4/2 = 133.7). (b) Top: the dimorphic
ESS at θ∗1,2 = ±0.855 and the corresponding ψ∗1,2 (D1,2 = 235.5); bottom: the trimorphic population
of θ∗1 ± ε and θ∗2 , with ε → 0. Line styles as in Figure 2, except in the bottom of panel (b), where
black line: immigration strategy of the resident with θ∗1 − ε; black dashed line: immigration
strategy of the resident with θ∗1 + ε; thin dashed line: immigration strategy of the resident with
θ∗2 .
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Diversification

The discontinuous change of the evolutionarily stable immigration strategy, shown in Figure 3a376

and described in the previous section, has far-reaching consequences for diversification.

378

The monomorphic singularity in Figure 3a is trait-wise an ESS, i.e., no mutant that differs

in only θ can invade, and no mutant that differs in only ψ can invade (the same holds also in380

Figure 1a). However, when the population is not yet at the ESS, it is possible for two resident

strategies with different local adaptation traits to coexist; and such coexistence can arise also with382

mutations of small effect when the population is close to the monomorphic singularity (Geritz et

al. 1998; Geritz 2005).384

Assume now that the immigration strategy ψ evolves fast to its ESS relative to the speed of386

evolution of the local adaptation trait θ. Suppose that θ is near, but not yet at, its evolutionarily

stable value θ∗, and the immigration strategy is at the ESS corresponding to θ. In section S.9 we388

argue that, at least if the patch size distribution is sufficiently symmetric, there is a positive prob-

ability that an invading mutant with different θ will coexist with the former resident, forming a390

dimorphic population. If so, then the immigration strategies of the two residents quickly evolve

to the distinctly different shapes shown in the bottom panel of Figure 3a.392

This changes selection on the local adaptation trait. The resident with the smaller local adap-394

tation trait immigrates into patches with (relatively) small y, and hence experiences selection for

decreasing θ1; and likewise, the resident with the higher value of the local adaptation trait experi-396

ences selection for increasing θ2. Because the immigration strategy changes discontinuously from

a single function ψ to the two distinctly different functions ψ1 and ψ2, the change in the selection398

gradient on θ is also discontinuous, from vanishing near the monomorphic singularity (i.e., zero

for θ = θ∗ + ε, ε → 0) to a distinctly negative value for the smaller of the two residents and a400
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distinctly positive value for the higher one (in the example of Figure 3a, the selection gradients

in the dimorphic population are ±0.04 for ε→ 0). The opposite selection gradients drive the two402

residents to evolve away from each other.

404

We therefore conclude that the population will diversify irrespectively of whether the mono-

morphic singularity is trait-wise evolutionarily stable or not. Trait-wise evolutionary stability is406

irrelevant even though we assume that a mutation affects only the local adaptation trait or only

the immigration strategy but not both. What matters is the coexistence of strains with different408

local adaptation traits, which can emerge also in the vicinity of an ESS; once this coexistence

occurs, disruptive selection is generated by the contrasting immigration strategies. Note that410

our argument assumes that the immigration strategy evolves fast to its ESS, and when two co-

existing residents evolve their immigration strategies, this happens such that coexistence is not412

lost (cf. Geritz et al. 2016). We investigate the details of the adaptive dynamics in a simpli-

fied model in section S.10, and demonstrate that diversification can happen also without a real414

time-scale separation between the evolution of immigration and the evolution of local adaptation.

416

The two residents continue to evolve until they arrive at a dimorphic evolutionary singularity

(top panel of Figure 3b, a situation not far from Figure 2c; see section S.8 on how to locate the418

joint singularity (ψ∗1 , θ∗1 ), (ψ
∗
2 , θ∗2 )). In this example, also the dimorphic singularity is trait-wise

evolutionarily stable. If however the population becomes trimorphic as an invading mutant co-420

exists with the former two residents, then the above scenario of diversification plays out once

more. As the bottom panel of Figure 3b illustrates, two residents near θ∗1 evolve distinctly differ-422

ent immigration strategies, which leads to opposite nonvanishing selection gradients on them.

As they evolve apart from each other, the population may proceed to a trimorphic singularity.424

The present model is too complicated for us to prove that polymorphic singularities are at-426

tracting and that coexistence occurs also at polymorphic singularities or under significant asym-
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metries (i.e., to generalize sections S.5 and S.9). Intuitively, however, these seem likely. The428

argument behind a single immigration strategy splitting into two distinct strategies for residents

with almost identical local adaptation traits (Figure 3a) holds for any level of polymorphism430

(such as trimorphism in Figure 3b), and this leads to disruptive selection on the residents with

initially similar local adaptation traits. We therefore expect that high levels of polymorphism432

may build up by this mechanism.

Discussion434

Dispersal is often seen as homogenisation. This has two important consequences for adaptation

in heterogeneous landscapes. First, high dispersal is expected to favour generalists, who can cope436

in any environment they may arrive at (Brown and Pavlovic 1992; Meszéna et al. 1997). Second,

if the organism is initially adapted to one habitat but not to others, then it may remain ’trapped’438

within its original niche. Niche conservatism (Holt and Gaines 1992; Wiens et al. 2010) occurs

because most individuals experience selection in the environment where population density is440

high, which is the environment the species is already adapted to (cf. the “multiplier effect” of

McNamara and Dall 2011); deviations that would benefit the few individuals living elsewhere,442

at the cost of harming the majority, are selected against. In other words, gene flow from the

high-abundance habitats prevents adaptation in novel habitats, which can also constrain the spa-444

tial expansion of a species (Kirkpatrick and Barton 1997; see also Polechová and Barton 2015).

Alternatively, the population can undergo evolutionary branching and thereby fill the available446

niches (Brown and Pavlovic 1992; Meszéna et al. 1997; Kisdi and Geritz 1999), but generically

only if dispersal and the difference between habitats are within certain intervals (Meszéna et al.448

1997).

450

With habitat choice, dispersal does not lead to homogenisation. Habitat choice eliminates the

selective advantage of generalists; in an extreme case, there is no gene flow across contrasting452
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environments and therefore locally adapted specialists can freely evolve (Edelaar and Bolnick

2012). On the other hand, one could expect habitat choice only to strengthen niche conservatism,454

because individuals would never choose to settle in habitats where they are not yet adapted (Holt

1987). When avoiding demographic sinks, there is no selection for expanding the fundamental456

niche (i.e., the set of habitats where the species can maintain a viable population).

458

Our model demonstrates that the fundamental niche can expand also under adaptive habitat

choice. Diversification is the key to niche expansion. As expected, in monomorphic populations,460

the evolutionarily stable immigration strategy rejects the patches where less than one emigrant

would be produced. These non-worthwhile patches are the metapopulation equivalents of de-462

mographic sinks outside the fundamental niche, whereas the worthwhile patch types form the

fundamental niche. Crucially, some of the worthwhile patches are accepted with a probability464

less than one (Figure 1, marked with a grey bar in panel (a)). These patches are demographic

sources at low population density, but should they be accepted more often, they would become466

overcrowded and turn into sinks. The immigration strategy therefore evolves such that these

patches balance on the edge, producing exactly one emigrant on average. Below we shall re-468

fer to these patch types as the peripheral niche, because they are not sources but also not sinks.

(Recall that sources must exist even if there is no immigration into sinks, because population470

growth in the sources compensates for dispersal mortality. Note also that ’peripheral’ is meant

in the niche space, here on the horizontal axis of our figures, not necessarily in geographic space.)472

Diversification starts with the coexistence of two strains with different local adaptation traits;474

with mutations of small phenotypic effect, these strains differ only slightly. The monomorphic

singularity may or may not be an evolutionary branching point for the local adaptation trait (i.e.,476

with the immigration strategy fixed), but this is largely irrelevant because coexistence is possible

also if the local adaptation trait is not under disruptive selection as in case of evolutionary branch-478

ing. We assume that when two strains coexist, they quickly evolve their immigration strategies
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to their respective ESSs. Since the strains have similar local adaptation traits, their fundamental480

niches are virtually the same. What differs is their behaviour in the peripheral niche, which they

partition such that in the more extreme part of the peripheral niche, only one strain is present482

(Figure 3a). The partitioning of the peripheral niche breaks the initial symmetry between the two

strains. The realised niche of a strain is skewed (as the bottom panel of Figure 3a shows, each484

strain accepts more patch types on one side than on the other), and the opposite skews of the two

strains induce disruptive selection on the local adaptation trait. The skew of the realized niche is486

non-vanishing even if the initial two strains are infinitesimally close to each other (Figure 3a) so

that, unlike during evolutionary branching, here the selection gradients are not small even at the488

onset of diversification. In other words, the fast evolution of the immigration strategy creates a

discontinuity between selection in monomorphic and in dimorphic populations.490

As the local adaptation traits of the two strains diverge, their fundamental niches move apart,492

such that the metapopulation of the two strains occupies a wider part of the niche space (top

panel of Figure 3b) than the initial monomorphic metapopulation (top panel of Figure 3a). As494

long as the two strains are regarded as one species, the fundamental niche of the species is ex-

panded. Note that there are several examples for within-species variation such that different496

individuals prefer different parts of the species’ niche. Females of the butterfly Melitaea cinxia

have opposing preferences for ovipositing on one or the other of the two host plants used by the498

species (Kuussaari et al. 2000; Hanski and Singer 2001), and host plant preference is heritable in

Euphydryas editha (Singer and Thomas 1996). In a similar vein, individual bees have been found500

to prefer one or the other of two columbine species, Aquilegia formosa and A. pubescens (Fulton

and Hodges 1999). Generalist species may fill their wide niche due to within-species variability502

under contrasting selection in different habitats, as shown for tree lizards by Taylor et al. (2018).

Whether reproductive isolation evolves and the strains become separate species may correlate504

negatively with the overlap between their evolved habitat use.

506

24



The complexity of the present model does not allow us to reach analytical results beyond

monomorphic singularities, but the above mechanism suggests that diversification can happen508

also at dimorphic and higher-morphic singularities (cf. Figure 3b); hence we conjecture that a

considerable level of polymorphism can build up.510

As mentioned above, we assume that the immigration strategy evolves fast relative to the evo-512

lution of local adaptation. In section S.10, we analyse a simplified model (with a discrete patch

type distribution and no catastrophes) where we can derive the canonical equation of adaptive514

dynamics (Dieckmann and Law 1996; Durinx et al. 2008), and thereby explore the consequences

of changing the relative speed of evolution. Assuming that the local adaptation trait attains an516

ESS under fixed immigration, we show that immigration indeed has to evolve fast enough for

diversification. Full time scale separation is however not necessary, and the required speed seems518

realistic in our examples (behavioural strategies like the immigration strategy can evolve faster

than morphological traits involved in local adaptation). The analysis in section S.10 provides520

further insight into how and why diversification fails when the immigration strategy evolves too

slowly.522

The partitioning of the peripheral niche via fast evolution of the immigration strategy is not524

the only source of disruptive selection. Depending on parameter values, the local adaptation trait

may have an evolutionary branching point also with the immigration strategy fixed; and if the526

local adaptation trait diversifies, the two branches will evolve different immigration strategies,

expanding the fundamental niche. At the onset of diversification, however, disruptive selec-528

tion from within the patches accepted by both strains is much weaker than disruptive selection

from the contrasting use of the peripheral niche. We thus predict that partitioning the peripheral530

niche is an important driver of diversification even if diversification could also happen without it.

532

Our model assumes a continuous distribution of patch types. This is important insofar as it
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naturally includes the peripheral niche; there are patches in the peripheral niche whenever the534

continuous distribution of patch types covers an interval as wide as the fundamental niche. With

only a few patch types, the same mechanism of diversification works if some patch types are in536

the peripheral niche (cf. section S.10); but if each of the few patch types happens to fall outside

the peripheral niche, then evolving immigration does not facilitate diversification.538

Surprisingly, Ravigné et al. (2009) obtained similar results to ours in models with only two540

patch types. They assumed saturated patches and cost-free habitat choice, whereby a genetically

determined fraction of the individuals settle in a given habitat. In their models, joint evolution542

of local adaptation and habitat choice results in evolutionary branching whenever the singularity

is convergence stable. Compared to our model, however, the models of Ravigné et al. (2009)544

represent a very special case. Fecundity is assumed to be large enough to saturate the patches

no matter how maladapted the individuals are, which means that a patch is never outside the546

fundamental niche. Further, at the monomorphic singularity, each habitat produces exactly one

surviving offspring per parent (there is no net population growth in the habitats because with548

cost-free habitat choice, there is no need to compensate for dispersal-related mortality). Both

habitats therefore behave as if they were patches in our peripheral niche. The evolutionarily550

stable habitat choice is only a weak ESS (as in our model, mutants differing from the ESS only in

their immigration into patches of the peripheral niche are neutral), and as soon as the population552

becomes dimorphic, the two strains with different local adaptation traits evolve opposing habitat

preferences in the same way as in our model. Costly habitat choice would however upset the554

balance of exactly one offspring per parent in each habitat, and would turn the weak ESS of

habitat choice into a strong one, which is harder to destabilize.556

To see how the results of Ravigné et al. (2009) depend on habitat choice being cost-free, it558

is instructive to compare their Model 1 with the soft-selection version of the population genetic

model of de Meeûs et al. (1993). Both are extensions of Levene’s (1953) model, but de Meeûs560
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et al. (1993) include a costly search process for habitat choice. They show that habitat choice is

disadvantageous in the sense that the ”choosy” allele is lost in every population that is mono-562

morphic for the local adaptation trait. This is because in their model, passive dispersal without

habitat choice leads to the ESS proportions found by Ravigné et al. (2009), and, due to the cost,564

alternative strategies are not neutral (as at the weak ESS of Ravigné et al. 2009) but selected

against. If one implemented the costly search process in the adaptive dynamics Model 1 of Rav-566

igné et al. (2009), it would prevent evolutionary branching unless the local adaptation trait alone

has a branching point. It is less clear how the cost of habitat choice would change diversification568

in Model 3 of Ravigné et al. (2009), but since Model 3 also has a weak ESS, it can be sensitive

to changing the assumption of cost-free habitat choice. In contrast, in our model the peripheral570

niche always exists and the ESS is always weak, so that the model predicts diversification irre-

spectively of the cost (as long as the metapopulation is viable). What changes with the cost is572

which patch types are in the peripheral niche (see Figure 1b,f), not whether the peripheral niche

exists.574

Both our model and those of Ravigné et al. (2009) assume clonal inheritance, i.e., no re-576

combination between the loci that determine local adaptation and the immigration strategy. By

destroying the association between preference and performance, frequent recombination would578

prevent the evolution of habitat choice (see Beltman et al. 2005 for a simulation study including

recombination). A possible resolution lies in the evolution of genetic architecture, whereby vari-580

ation can be concentrated in only a few loci (Kisdi and Geritz 1999; Kopp and Hermisson 2006;

Van Doorn and Dieckmann 2006), and these loci can form supergenes with no recombination.582

The latter is of particular interest in the context of speciation (mate choice in place of habitat

choice; see Butlin 2005 for a review and Merrill et al. 2011 for an example in Heliconius but-584

terflies). For local adaptation and habitat choice, Hawthorne and Via (2001) showed that QTLs

affecting preference and performance are linked in the pea aphid races specialising on clover and586

alfalfa.
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588

An alternative to the heritable, genetically determined immigration strategy is that individ-

uals choose their habitat depending on their phenotypes. Matching habitat choice (reviewed in590

Edelaar et al. 2008; Jacob et al. 2015) can help the maintenance genetic polymorphism (Garcia-

Dorado 1986; Ravigné et al. 2004), the emergence of polymorphism via evolutionary branching592

(Egas et al. 2004), and the evolution of narrow-niche specialists (Mortier et al. 2019); it can also

substitute for phenotypic plasticity (Edelaar et al. 2017). Importantly, matching habitat choice594

can facilitate the colonisation of new environments (Berner and Thibert-Plante 2015) even if these

are initially sinks, provided there is enough genetic variation in the population (Holt and Barfield596

2008, 2015).

598

In some aspects, matching habitat choice is similar to the fast-evolving immigration strategy

of our model; upon a change in the local adaptation trait, matching habitat choice instantaneously600

adjusts where an individual settles. There are, however, important differences. If matching habi-

tat choice is based only on the type of the patch such that individuals minimise the difference602

between the local environment and the environment they are best adapted to (as in the models of

Edelaar et al. 2017; Mortier et al. 2019), then the “popular” patches are crowded whereas other,604

still suitable patches can remain unused, which is suboptimal. Local population size is an im-

portant factor for habitat choice (see e.g. Garant et al. 2005); Jacob et al. (2015) even suggest that606

individuals may vary in what local population density is best for them (they may be “colonisers”

or “joiners”). On the other hand, habitat choice based on all relevant information may assume608

more knowledge than what is available in reality, especially when decisions have to be made in

a short time (for example, Doligez et al. 2002 showed that immigrants use less information than610

residents). Our model strikes a middle ground assuming that individuals perceive only the local

environment (patch type) but not local density, yet they can evolutionarily adapt to the levels612

of crowding associated with different patch types. Because an evolved heritable immigration

strategy can associate patch types with typical population densities (or other relevant factors not614
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directly observed), it might be even a better option than matching habitat choice that ignores

density effects. As explained above, avoiding overcrowding creates the peripheral niche, which616

is instrumental in the new mechanism we propose for diversification.

618

With the local adaptation trait fixed, a patch is equally favourable or less favourable to all

individuals of the population. Without the local adaptation trait evolving, our model is thus620

related to models of dispersal with selective immigration into good habitats. These models of-

ten assume that dispersal is a separate stage of life, which must be completed within a given622

period of time, but otherwise the dispersers perform a sequential search as in our model. With

a finite time horizon, individuals initially immigrate only into good-quality patches, but as time624

runs out, they will immigrate into any patch they encounter. If fitness within a habitat is fixed,

then finding the best times when an individual should start accepting inferior habitats is an op-626

timization problem (Ward 1987; Baker and Rao 2004; Stamps et al. 2005; Crowley et al. 2019).

If, however, reproduction within a patch depends on local population density as in our model,628

then the fitness of an individual depends on the immigration strategy followed by the rest of the

population, and therefore selection is frequency-dependent. This case has previously been con-630

sidered only with two patch types (rather than a continuous distribution) and a single individual

per patch (rather than each patch harbouring a population with local dynamics). Nurmi et al.632

(2017) found the evolutionarily stable immigration strategy, i.e., the time after which dispersers

should accept also the worse of the two patch types. Gyllenberg et al. (2016) and Weigang (2017)634

considered a variant where the individuals cannot keep track of time but accept the worse habitat

with some probability that remains constant during the dispersal season; frequency-dependent636

selection can then yield evolutionary branching of the immigration strategy.

638

We assumed no time limit for dispersal and a constant rate of mortality in the dispersal

pool. In reality, the mortality rate of dispersers likely increases with time since emigration, as640

dispersers run out of their energy reserves. This in practice limits the time spent dispersing,
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and, as predicted by the models described above, we expect that the dispersers should become642

increasingly ready to settle into any patch. Moreover, we suggest that the same pattern could

arise also if dispersal mortality is in fact constant – which means that from the pattern of increas-644

ing readiness to settle, one cannot infer increasing costs of dispersal. Our model predicts that

patches of the peripheral niche should be accepted with some probability less than 1. To real-646

ize this immigration strategy, the dispersers need to randomize their behaviour (i.e., sometimes

immigrate into the patch and sometimes not), which can be done by using a random cue (the648

analogue of tossing a coin). An easily available random cue is time spent since emigration. If

dispersers accept patches in the peripheral niche only after some time threshold, the result will650

be that only a fraction of encounters with these patches lead to immigration. We note, however,

that mathematically it is not a trivial task to find the appropriate, patch-type dependent time652

thresholds that yield the evolutionarily stable immigration strategy of our model.

654

In the present model, we assumed that emigration occurs at a constant rate; to concentrate

on the joint evolution of immigration and local adaptation, we did not consider the evolution of656

emigration strategies. The model does include catastrophes destroying local populations, which

necessarily maintains positive emigration (a strain with no dispersal is not viable, because its658

local populations are all taken out by catastrophes). Dispersal is costly if there is a danger of

settling into an inferior habitat (or the ”wrong” habitat for a habitat specialist), but the evolved660

immigration strategy alleviates this cost. We therefore expect that emigration is readily main-

tained by natural selection.662

If the emigration rate is genetically fixed, then in a heterogeneous landscape of different patch664

types it may undergo evolutionary branching (Mathias et al. 2001, Parvinen 2002). However, if

prospective immigrants are aware of the type of the patch they encounter as we assume in the666

present model, then the same information must also be available for the individuals who live

in the patch, and therefore the emigration rate must depend at least on patch type. The em-668
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igration strategy is therefore given by a function, similarly to our immigration strategy. In a

simpler model with only two types of patches and no local adaptation, Gyllenberg et al. (2016)670

investigated the evolution of patch-type dependent immigration strategies with fixed emigration,

whereas Weigang (2017) extended this model with evolving patch-type dependent emigration;672

the qualitative conclusions were similar.

674

The residents of a patch are also likely to be able to judge the local population size. In this

case, we expect that emigration evolves to a threshold strategy, so that instantaneous emigra-676

tion occurs when the local population is above a critical size (Gyllenberg and Metz 2001; Metz

and Gyllenberg 2001); the critical size depends on the patch type, i.e., the emigration strategy678

is again a function. If such a threshold strategy can be realised without error and delay, then

the evolutionarily stable immigration strategy can accept every patch in the fundamental niche680

with probability 1. In our model, patches of the peripheral niche are accepted less often because

a higher probability of settling would overcrowd the patch and would therefore select against682

settling there. If emigration prevents that a patch would be overcrowded, then nothing selects

against settling. This would, however, not prevent diversification driven by a niche partitioning684

mechanism analogous to the one in our model. Coexisting strains differ in the threshold density

above which they emigrate from a given patch. The locally better adapted strain can maintain686

a higher population density and thereby induces the emigration of the less adapted strain. This

results in a split of habitat use as in our model, which implies disruptive selection on the local688

adaptation trait.

690

A technical advance in our work is that in section S.2, we explicitly solve the local population

dynamics of two resident strains, assuming constant immigration and linear density-dependence692

(logistic model) with identical slope (identical r/k in equation (2)). The explicit solution greatly

facilitated our numerical analyses, and since many metapopulation models use the same local694

population dynamics as we did, we believe that the explicit solution will be useful for other
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modellers as well.696

Finally, we highlight that important mathematical tools are lacking for the analysis of evolving698

function-valued traits, and this impinges on the completeness of our results. We can determine

the singular immigration strategy and its evolutionary stability (section S.4; see Parvinen et al.700

2006, 2013 for the general theory). However, we had to assume that the immigration strategy

evolves fast, it converges to its ESS, and when two strains co-evolve their immigration strategies702

at the beginning of diversification, this happens via a transient such that the population remains

dimorphic (e.g. the transient does not include a point where one immigration strategy is dis-704

tinctly inferior). To establish convergence stability, we have the canonical equation of adaptive

dynamics also for function-valued traits (Metz et al. 2016 and references therein), but it contains706

an unknown covariance function. For vector-valued traits, strong convergence stability (Leimar

2009) ensures that the trait vector evolves to the singularity irrespectively of the covariances be-708

tween its components; however, no analogue is available for function-valued traits. The sufficient

conditions for evolutionary branching given by Geritz et al. (2016) for vector-valued traits ensure710

that the dimorphism is not lost, but these conditions are also not available for function-valued

traits. While our assumptions on the convergence of the immigration strategy and the preser-712

vation of dimorphism are intuitively appealing, a mathematical proof must be left for future

research.714
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S.1 The full model

Here we present our structured metapopulation model in detail. First we follow the lines of

the classic theory of Gyllenberg and Hanksi (1992) and Hanski and Gyllenberg (1993), and then

present an alternative formulation based on the patch age distribution. For simplicity, here we

assume no maximum age for the patches (τmax = ∞), and truncate the patch age distribution at

a finite τmax only at the end of this section.

Let p(t, N, y) denote the density of patches of type y with local population density N at time

t. Consistency requires that ∫ ∞

0
p(t, N, y)dN = n(y)

for all time t and for all y ∈ Y. The dynamics of the metapopulation is described by the following

partial differential equation for the size distribution of local populations:

∂

∂t
p(t, N, y) +

∂

∂N
[G(t, N, y)p(t, N, y)] = −µp(t, N, y) (S.1.1)

where G(t, N, y) = g(N, y, θ)N − γN + I(t, y) abbreviates the right hand side of equation (1)

1



of the main text for local population dynamics with time-varying immigration I(t, y), and with

per capita growth rate g(N, y, θ) and emigration rate γ. Since G(t, 0, y) = I(t, y), the boundary

condition of the PDE in (S.1.1) is

I(t, y)p(t, 0, y) = µ
∫ ∞

0
p(t, N, y)dN. (S.1.2)

Note that the patch type y is not a dynamical variable but merely a label in equation (S.1.1) and

in the accompanying boundary condition (S.1.2).

Let Ω→ ∞ denote the total number of patches and ΩD(t) the total number of individuals in

the dispersal pool, such that D(t) is the number of dispersing individuals per patch as defined

in the main text. A dispersing individual encounters patches at a rate α, so that it encounters one

specific patch at the rate α/Ω. Multiplying with the total number of dispersers, a specific patch

is encountered at the rate αD(t), and immigration occurs at the rate I(t, y) = αψ(y)D(t). The

size of the dispersal pool changes according to

dD(t)
dt

=
∫

Y

∫ ∞

0
γNp(t, N, y)dNdy−

(
α
∫

Y
ψ(y)n(y)dy + ν

)
D(t), (S.1.3)

where ν is the per capita death rate of dispersers.

Steady-state solutions are found by putting the time derivatives in equations (S.1.1) and (S.1.3)

equal to zero. From equation (S.1.1), we obtain

p̂(N, y) = p̂(0, y)
Î(y)

Ĝ(N, y)
exp

[
−
∫ N

0

µ

Ĝ(ξ, y)
dξ

]

for the steady-state distribution, where Î(y) and Ĝ(N, y) are respectively the steady-state values

of I(t, y) and G(t, N, y). For a given y, the support of p̂(·, y) is the interval between 0 and N̄(y),

the smallest root of Ĝ(N, y) = 0; after a catastrophe, the local population density cannot grow

2



higher than N̄(y). Substituting Ĝ(N, y) = g(N, y, θ)N − γN + Î(y) and using the normalization∫ N̄(y)
0 p(t, N, y)dN = n(y) to find p̂(0, y), we arrive at

p̂(N, y) = n(y)
µ

g(N, y, θ)N − γN + Î(y)
exp

[
−
∫ N

0

µ

g(ξ, y, θ)ξ − γξ + Î(y)
dξ

]
. (S.1.4)

From equation (S.1.3), the steady-state size of the dispersal pool is

D̂ =
Ê

αψ̄ + ν
, (S.1.5)

where Ê =
∫

Y

∫ N̄(y)
0 γNp̂(N, y)dNdy is the average emigration rate at steady state and ψ̄ =∫

Y ψ(y)n(y)dy is the mean probability of immigration upon encountering a patch.

We now switch to using patch age, i.e., the time τ elapsed since the last catastrophe, as the

structuring variable instead of local population size N. This formulation is perhaps simpler, and

has advantages in the numerical analyses especially if the catastrophe rate is low, so that for each

y, p̂(N, y) is concentrated near N̄(y).

Since the catastrophes occur at the constant rate µ independently of patch type and age

(and therefore of population size), the steady-state patch age distribution is the exponential

distribution q(τ) = µe−µτ. The local population size N(τ, y) is obtained by solving dN
dτ = Ĝ(N, y),

i.e., equation (1) of the main text; see section S.2 below for the explicit solution. To obtain the

steady-state patch distribution, note that a fraction q(τ)dτ of the patches of type y are between

ages τ and τ+ dτ; the same patches have local population sizes between N(τ, y) and N(τ+ dτ, y),

i.e., in the infinitesimal interval dN = N(τ + dτ, y)− N(τ, y) = Ĝ(N(τ, y), y)dτ, so that

p̂(N, y)Ĝ(N, y) = n(y)q(τ)

when evaluated at N = N(τ, y). Since dτ
dN = 1

Ĝ(N,y)
, the age of the patch can be expressed with lo-
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cal population size as τ =
∫ N(τ,y)

0
1

Ĝ(ξ,y)
dξ, which we use to write q(τ) = µ exp

(
−
∫ N(τ,y)

0
µ

Ĝ(ξ,y)
dξ
)

.

Substituting this and Ĝ(N, y) into the above equation, we arrive at equation (S.1.4).

An advantage of the formulation based on the patch age distribution is that we do not need

equation (S.1.4) to express the quantities we need in the main text, Î(y), Ê and D̂. Indeed, we

have the steady-state average emigration rate per patch directly as

Ê =
∫

Y

∫ ∞

0
γ N(τ, y) q(τ)n(y) dτ dy, (S.1.6)

with q(τ) = µe−µτ, and D̂ = Ê
αψ̄+ν

, Î(y) = αψ(y)D̂ as before. To assume a maximum patch age

τmax, we simply truncate the exponential distribution as in the main text and replace infinity with

τmax in equation (S.1.6). In the main text, we drop the hats of Î, Ê and D̂.

S.2 Local population dynamics

Here we derive the explicit solution of the local population dynamics for monomorphic and

dimorphic populations in equations (1) and (4) of the main text, respectively, with the per capita

growth rate given in equation (2) of the main text. We start with the dimorphic case,

dN1

dτ
= g(N1 + N2, y, θ1) N1 − γ N1 + I1(y)

dN2

dτ
= g(N1 + N2, y, θ2) N2 − γ N2 + I2(y)

where Ii(y) = αψi(y)Di (for i = 1, 2), and the sizes of the dispersal pools are given by

Di =
Ei

αψ̄i + ν
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with

E1 =
∫

Y

∫ τmax

0
γN1(τ, y)q(τ)n(y) dτ dy

E2 =
∫

Y

∫ τmax

0
γN2(τ, y)q(τ)n(y) dτ dy.

The solution of the monomorphic dynamics can be obtained analogously and is given explicitly

in equation (S.2.9) at the end of this section.

Since we focus on the dynamics in a single patch, y is a fixed number; therefore in this

section, we shorten the notation by dropping y from the arguments of Ni(τ, y) and Ii(y) (i = 1, 2).

Further, we write βi = r− c(θi − y)2 − γ and δ = r/k, and introduce N(τ) = N1(τ) + N2(τ) for

total population size. With these abbreviations, the within-patch population dynamics are given

by

dN1(τ)

dτ
= (β1 − δN(τ))N1(τ) + I1,

dN2(τ)

dτ
= (β2 − δN(τ))N2(τ) + I2

(S.2.1)

with N1(0) = 0, N2(0) = 0.

If we assume that N(τ) is known, we can solve the above equations and get

N1(τ) = I1

∫ τ

0
e β1(τ−s)e−δ

∫ τ
s N(σ) dσds,

N2(τ) = I2

∫ τ

0
e β2(τ−s)e−δ

∫ τ
s N(σ) dσds.

(S.2.2)

Then the total population size in the patch at time τ since the last catastrophe is

N(τ) =
∫ τ

0

(
I1 e β1(τ−s) + I2 e β2(τ−s)

)
e−δ

∫ τ
s N(σ) dσds.
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We define

K(τ) = I1 e β1τ + I2 e β2τ and

X(τ) = e δ
∫ τ

0 N(σ) dσ.
(S.2.3)

It follows that
dX(τ)

dτ
= δN(τ)X(τ) with X(0) = 1 (S.2.4)

and

N(τ) =
∫ τ

0
K(τ − s)

X(s)
X(τ)

ds. (S.2.5)

Substituting the latter expression into equation (S.2.4) we obtain

dX(τ)

dτ
= δ

∫ τ

0
K(τ − s)X(s) ds. (S.2.6)

Now we take the Laplace transform on both sides of equation (S.2.6). Denoting the Laplace

transform as X̂(λ), we get

λX̂(λ)− X(0) = δ

(
I1

λ− β1
+

I2

λ− β2

)
X̂(λ),

which we solve for X̂(λ):

X̂(λ) =
1

λ− δ
(

I1
λ−β1

+ I2
λ−β2

) =
(λ− β1)(λ− β2)

λ(λ− β1)(λ− β2)− δI1(λ− β2)− δI2(λ− β1)
. (S.2.7)

Because the Laplace transform is a rational function in λ, its inverse can be calculated explicitly.

Let λ1, λ2 and λ3 denote the three roots of the cubic expression in the denominator of equation

(S.2.7); note that they are real because I1 and I2 are positive. For the inverse Laplace transform

we obtain

X(τ) =
e λ1τ(λ1 − β1)(λ1 − β2)

(λ1 − λ2)(λ1 − λ3)
− e λ2τ(λ2 − β1)(λ2 − β2)

(λ1 − λ2)(λ2 − λ3)
+

e λ3τ(λ3 − β1)(λ3 − β2)

(λ1 − λ3)(λ2 − λ3)
. (S.2.8)
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Since e−δ
∫ τ

s N(σ) dσ = X(s)/X(τ), we can write the solution in equation (S.2.2) as

N1(τ) = I1

∫ τ

0
e β1(τ−s)X(s)ds

/
X(τ),

N2(τ) = I2

∫ τ

0
e β2(τ−s)X(s)ds

/
X(τ).

Substituting X(τ) from equation (S.2.8), we arrive at the explicit solution of the dimorphic dy-

namics in equation (S.2.1),

N1(τ) =
I1(e λ1τ(λ1 − β2)(λ2 − λ3)− e λ2τ(λ2 − β2)(λ1 − λ3) + e λ3τ(λ3 − β2)(λ1 − λ2))

e λ1τ(λ1 − β1)(λ1 − β2)(λ2 − λ3)− e λ2τ(λ2 − β1)(λ2 − β2)(λ1 − λ3) + e λ3τ(λ3 − β1)(λ3 − β2)(λ1 − λ2)
,

N2(τ) =
I2(e λ1τ(λ1 − β1)(λ2 − λ3)− e λ2τ(λ2 − β1)(λ1 − λ3) + e λ3τ(λ3 − β1)(λ1 − λ2))

e λ1τ(λ1 − β1)(λ1 − β2)(λ2 − λ3)− e λ2τ(λ2 − β1)(λ2 − β2)(λ1 − λ3) + e λ3τ(λ3 − β1)(λ3 − β2)(λ1 − λ2)
.

The solution of the monomorphic dynamics in equation (1) of the main text is analogous.

Since K(τ) in equation (S.2.3) has only one term for the monomorphic dynamics, the denominator

of equation (S.2.7) is quadratic rather than cubic, so that the roots λ1, λ2 are easy to obtain. This

leads to the explicit solution

N(τ, y) =
2I(y)

(
e τA(θ,y) − 1

)
A(θ, y)

(
e τA(θ,y) + 1

)
− β(θ, y)

(
e τA(θ,y) − 1

) (S.2.9)

where A(θ, y) =
√

β(θ, y)2 + 4I(y)r/k and β(θ, y) = r − c(θ − y)2 − γ. As τ goes to infinity,

N(τ, y) goes monotonically to its equilibrium value. Note, however, that in dimorphic popula-

tions, N1(τ, y) and N2(τ, y) need not be both monotonic functions of τ.

S.3 The expected number of emigrants

In this section, we detail the calculation of the expected number of emigrants produced by an

immigrant. Suppose that a mutant immigrates into a patch of type y and age T. Its local dynamics

is subject to demographic stochasticity, but its expected population size M(τ, y) grows according
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to
dM(τ, y)

dτ
=
(

g(N(τ, y), y, θm)− γ
)

M(τ, y). (S.3.1)

The linear dynamics can be averaged over patches of the same initial conditions, so that in a

metapopulation of infinite size where the mutant is present in large numbers even when it has

low frequency, the within-patch demographic stochasticity is irrelevant and the expected popu-

lation size can be used for the mutant dynamics. Since the mutant is rare both locally and in

the dispersal pool, the growth rate of the mutant depends on the local resident density N(τ, y).

As we are interested in the number of dispersers descending from a single mutant, there is no

immigration term in equation (S.3.1).

Solving equation (S.3.1), we obtain that for each immigrant into a patch of type y and age T,

there are on average

e
∫ τ

T (g(N(ζ,y),y,θm)−γ)dζ

mutants by the time the patch has reached age τ, assuming that there was no catastrophe between

ages T and τ. The expected number of dispersers produced over all patch ages is given by

F(T, y, θm, θ, ψ(y)D) = γ
∫ τmax

T
e−µ(τ−T) · e

∫ τ
T (g(N(ζ,y),y,θm)−γ)dζ dτ, (S.3.2)

where e−µ(τ−T) is the probability of no catastrophe between T and τ. With finite maximum

patch age τmax, this quantity is finite; but notice that if we replace τmax with infinity, the integral

in equation (S.3.2) can become infinite. This is because the mutant by assumption has no self-

limitation (its dynamics is linear) and a sufficiently good mutant can outgrow the catastrophe rate

(i.e., its growth in patches not yet destroyed can permanently exceed the loss due to catastrophes).

Importantly, F depends on θ and on ψ(y)D because N(·, y), the solution of equation (1) in the

main text, depends on the resident’s local adaptation trait and on the immigration term I(y) =

αψ(y)D. Integrating over the distribution of T, we obtain the expected number of emigrants
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produced by a mutant that immigrates into a patch of type y,

ρ(y, θm, θ, ψ(y)D) =
∫ τmax

0
q(T)F(T, y, θm, θ, ψ(y)D) dT. (S.3.3)

S.4 Evolutionarily stable immigration strategy

To derive the ESS immigration strategy in equation (6) of the main text, we assume that all patch

types exist at a positive density (n(y) > 0 for all y ∈ Y); obviously, the choice whether an indi-

vidual should immigrate into non-existing patches is neutral. Since in this section we focus on

the immigration strategy ψ and assume that θm = θ is fixed, we abbreviate ρ(y, θm, θ, ψ(y)D) as

ρ(y, ψ(y)D) and Rm(ψm, θ, ψ, θ) as Rm(ψm, ψ).

As preparation, we show that ρ(y, ψ(y)D) is a decreasing function of its second argument,

ψ(y)D. Consider a given patch, i.e., let y be fixed. Recall that, by its definition, ρ increases

with the per capita growth rate g(N(τ, y), y, θ), and with our choice of the per capita growth

rate in equation (2) of the main text, g(N(τ, y), y, θ) always decreases with N(τ, y). Hence we

need to show that N(τ, y) at any fixed τ increases with ψ(y)D. Recall that I(y) = αψ(y)D,

and ψ(y)D enters N(τ, u) in equation (S.2.9) only through I(y). Using the definition A(θ, y) =√
β(θ, y)2 + 4I(y)r/k and taking the inverse, we can rewrite equation (S.2.9) as

1
N(τ, y)

=

(
e τA(θ,y) + 1
e τA(θ,y) − 1

)√(
β(θ, y)
2I(y)

)2

+
r/k
I(y)

− β(θ, y)
2I(y)

.

(ex + 1)/(ex − 1) is a decreasing function and for positive x, its value is greater than 1. Therefore

the first factor on the right hand side above decreases with A(θ, y) for any fixed τ, and since

A(θ, y) increases with I(y), the first factor also decreases with I(y). It is an easy exercise to show

that the square root above increases faster with 1/I(y) than the last (negative) term. The first

term on the right hand side thus decreases faster with I(y) than the second, so that 1/N(τ, y)

decreases and hence N(τ, y) increases with I(y).
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The following two propositions characterise the ESS immigration strategy. Proposition 1 for-

mulates a necessary condition for an ESS by showing that any strategy that differs from equation

(6) of the main text, here reproduced in equation (S.4.1), can be invaded by a mutant. Proposition

2 shows that the strategy in equation (6) is a (weak) ESS.

Proposition 1. The evolutionarily stable immigration strategy must be of the form

ψ∗(y) =



0 if y ∈ Y0 = {y : ρ(y, 0) < 1},

f (y) if y ∈ Yf = {y : ρ(y, 0) > 1 and ρ(y, D) 6 1},

1 if y ∈ Y1 = {y : ρ(y, D) > 1},

(S.4.1)

for almost every y, where f (y) solves ρ(y, f (y)D) = 1 and D solves Rm(ψ∗, ψ∗) = 1.

(By “almost every” y, we mean that the set of patch types where an ESS differs from the

strategy given in equation (S.4.1) must not represent any positive fraction of the patches. With a

continuous distribution of patch types, deviations from equation (S.4.1) are possible at individual

points in Y.)

Proof. From equation (5) of the main text, the basic reproduction number of the mutant with

strategy ψ + h in an environment set up by the resident with strategy ψ and dispersal pool size

D is

Rm(ψ + h, ψ) =
α
∫

Y[ψ(y) + h(y)]n(y)ρ(y, ψ(y)D) dy
α
∫

Y[ψ(y) + h(y)]n(y) dy + ν

(note that h need not be infinitesimal). The mutant can invade if Rm(ψ + h, ψ)− Rm(ψ, ψ) > 0,

i.e., if

Rm(ψ + h, ψ)− Rm(ψ, ψ) =

=
α
∫

Y[ψ(y) + h(y)]n(y)ρ(y, ψ(y)D) dy
α(ψ̄ + h̄) + ν

−
α
∫

Y ψ(y)n(y)ρ(y, ψ(y)D) dy
αψ̄ + ν

=
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=
(αψ̄ + ν)α

∫
Y ψ(y)n(y)ρ(y, ψ(y)D) dy− (α(ψ̄ + h̄) + ν)α

∫
Y ψ(y)n(y)ρ(y, ψ(y)D) dy

(α(ψ̄ + h̄) + ν)(αψ̄ + ν)

+
α
∫

Y h(y)n(y)ρ(y, ψ(y)D) dy
α(ψ̄ + h̄) + ν

=

=
−αh̄

α(ψ̄ + h̄) + ν

α
∫

Y ψ(y)n(y)ρ(y, ψ(y)D) dy
αψ̄ + ν︸ ︷︷ ︸

=1

+
α
∫

Y h(y)n(y)ρ(y, ψ(y)D) dy
α(ψ̄ + h̄) + ν

=

=
α
∫

Y h(y)n(y)(ρ(y, ψ(y)D)− 1) dy
α(ψ̄ + h̄) + ν

> 0 (S.4.2)

with ψ̄ =
∫

Y ψ(y)n(y) dy and h̄ =
∫

Y h(y)n(y) dy. The underbraced formula equals 1 because it

is the basic reproduction number of the resident. The denominator in the last row of equation

(S.4.2) is always strictly positive (h is admissible only if ψ(y) + h(y) is non-negative for all y),

hence the condition for invasion is equivalent to

∫
Y

h(y)n(y)(ρ(y, ψ(y)D)− 1) dy > 0. (S.4.3)

1. Suppose that ρ(y, ψ(y)D) < 1 holds in some patches where ψ(y) > 0. Denote the set of

these patch types with Y−, and assume
∫

Y−
n(y) dy > 0. Consider the mutant strategy ψ+ h

with

h(y) =

 −εψ(y) if y ∈ Y−,

0 otherwise

where 0 < ε 6 1. This choice represents an admissible mutant strategy (ψ(y) + h(y) > 0

for all y). Substituting into the left hand side of condition (S.4.3) yields

−ε
∫

Y−
ψ(y)n(y)(ρ(y, ψ(y)D)− 1) dy, (S.4.4)

which is positive, i.e., the mutant can invade and therefore the resident cannot be an ESS.

2. Suppose now that ρ(y, ψ(y)D) > 1 holds in some patches where ψ(y) < 1. Denote the set

of these patch types with Y+, and assume
∫

Y+
n(y) dy > 0. Consider the mutant strategy
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ψ + h with

h(y) =

 ε(1− ψ(y)) if y ∈ Y+,

0 otherwise

where 0 < ε 6 1. This choice represents an admissible mutant strategy (ψ(y) + h(y) 6 1

for all y). Substituting into the left hand side of condition (S.4.3) yields

ε
∫

Y+

(1− ψ(y))n(y)(ρ(y, ψ(y)D)− 1) dy, (S.4.5)

which is positive, i.e., the mutant can invade and therefore the resident cannot be an ESS.

Since ρ(y, ψ(y)D) is a decreasing function of its second argument, ρ(y, 0) < 1 implies ρ(y, ψ(y)D) <

1 for any positive value of ψ(y)D. Hence point (1) above shows that a strategy that violates the

first line of equation (S.4.1) for a nonzero fraction of the patches cannot be an ESS. Similarly,

ρ(y, D) > 1 implies ρ(y, ψ(y)D) > 1, and therefore point (2) above shows that a strategy that

violates the last line of equation (S.4.1) cannot be an ESS. Finally, consider the set of patch types

where (given the resident’s D) ρ(y, 0) > 1 and ρ(y, D) 6 1. By by continuity, there exists a number

f (y) ∈ [0, 1] that solves the equation ρ(y, f (y)D) = 1. Since ψ(y) > f (y) implies ρ(y, ψ(y)D) < 1,

if ψ(y) > f (y) holds in a nonzero fraction of these patches, then point (1) above shows that the

strategy cannot be an ESS. Similarly, since ψ(y) < f (y) implies ρ(y, ψ(y)D) > 1, if ψ(y) < f (y)

holds in a nonzero fraction of these patches, then point (2) above shows that the strategy cannot

be an ESS. Hence a strategy that violates the middle line of equation (S.4.1) cannot be an ESS.

Proposition 2. The strategy ψ∗ given in equation (S.4.1) is a weak ESS.

Proof. Consider a mutant ψ∗ + h with arbitrary admissible h (i.e., such that 0 6 ψ∗(y) + h(y) 6 1

for all y) in the resident population of strategy ψ∗. From condition (S.4.3), the mutant can invade

if

∫
Y0

h(y)n(y)(ρ(y, 0)− 1) dy +
∫

Yf

h(y)n(y)(ρ(y, f (y)D)− 1) dy +
∫

Y1

h(y)n(y)(ρ(y, D)− 1) dy > 0
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In the first term on the left hand side, h(y) must be positive or zero to be admissible; and since

ρ(y, 0) < 1 for y ∈ Y0, the first term is negative unless h(y) is zero for almost every y in Y0, in

which case the first term is zero. In the last term, h(y) must be negative or zero to be admissible;

and since ρ(y, D) > 1 for y ∈ Y1, the last term is negative unless h(y) is zero for almost every y

in Y1. The middle term is, however, zero, because ρ(y, f (y)D) = 1 for y ∈ Yf . Hence a mutant

that deviates from ψ∗ in any positive fraction of the patches in Y0 or in Y1 will go extinct, but a

mutant that differs from ψ∗ only in Yf is neutral. The strategy ψ∗ in equation (S.4.1) cannot be

invaded, but neutral mutants do exist, so that ψ∗ is only a weak ESS.

The sets Yf and Y1 depend on the immigration rate and therefore on D, so that they can be

determined only numerically. In the remainder of this section, we derive the condition for a

patch type y to be in Y0, i.e., to be outside the set of worthwhile patches.

Proposition 3. For θ given, a patch type y belongs to Y0 = {y : ρ(y, 0) < 1} if

γ

a(θ, y)

(
1− µ

µ− a(θ, y)
· e−a(θ,y)τmax − e−µτmax

1− e−µτmax

)
< 1 (S.4.6)

holds with a(θ, y) = γ + µ− g(0, y, θ).

Proof. If ψ(y)D = 0 in ρ(y, ψ(y)D), a patch of type y does not receive resident immigrants, so

that N(τ, y) = 0 for all τ ∈ [0, τmax] and an immigrant would establish a population that grows

exponentially. Substituting N(τ, y) = 0 into equation (S.3.2), we obtain

F(T, y, θ, θ, 0) = γ
∫ τmax

T
e−a(θ,y)(τ−T)dτ =

γ

a(θ, y)

(
1− e−a(θ,y)(τmax−T)

)

so that

ρ(y, 0) =
γ

a(θ, y)

∫ τmax

0

µe−µT

1− e−µτmax

(
1− e−a(θ,y)(τmax−T)

)
dT =

=
γ

a(θ, y)

(
1− µ

µ− a(θ, y)
· e−a(θ,y)τmax − e−µτmax

1− e−µτmax

)
.
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For finite maximum patch age τmax, it can be determined only numerically for which values of

a(θ, y), and therefore (with θ fixed) for which values of y the above expression yields ρ(y, 0) < 1.

With τmax → ∞, however, the above expression simplifies to

ρ(y, 0) =

 ∞ if a(θ, y) 6 0

γ/a(θ, y) if a(θ, y) > 0.
(S.4.7)

This result we can interpret heuristically. With constant catastrophe rate and no maximum patch

age, the age of an empty patch is irrelevant for an immigrant. Consider a large number of patches

of type y where solitary immigrants establish exponentially growing populations. The collective

number of individuals grows exponentially at the rate g(0, y, θ) − γ − µ; for the collection of

many patches, the catastrophes act simply as an extra mortality rate. If this growth rate is posi-

tive (i.e., a(θ, y) defined in the proposition is negative), then the collective number of individuals

“outgrows” the catastrophes, resulting in unbounded growth and infinitely many emigrants. If

a(θ, y) is positive, then the collective number of individuals changes in the same way as in a pop-

ulation that decays exponentially at the rate a(θ, y), with no births. There are γ/a(θ, y) entries in

the dispersal pool for every removed individual, so that when the exponentially decaying popu-

lation has vanished, each initial individual has contributed γ/a(θ, y) individuals to the dispersal

pool.

Equation (S.4.7) yields ρ(y, 0) < 1 whenever a(θ, y) > γ, i.e., g(0, y, θ) − µ < 0. With our

choice of g in equation (2) of the main text, this is equivalent with

|y− θ| >
√

r− µ

c
, (S.4.8)

so that a patch type is not worthwhile (y ∈ Y0) if y differs from θ more than by the threshold

given on the right hand side of inequality (S.4.8). This simple result holds only for τmax → ∞.
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However, in our numerical examples τmax is so high that the difference from condition (S.4.8) is

negligible.

S.5 Convergence stability

In this section, we discuss the convergence stability of a monomorphic singularity. If the immi-

gration strategy ψ is fixed, then the singular local adaptation trait θ (which satisfies equation (7)

of the main text) is locally convergence stable (attracts) if

∂2Rm(θm, θ)

∂θ2
m

+
∂2Rm(θm, θ)

∂θm∂θ

∣∣∣∣∣
θm=θ

< 0. (S.5.1)

A convergence stable ESS is an evolutionary endpoint. If the singularity of a scalar trait is con-

vergence stable but not an ESS, then it is an evolutionary branching point, where the population

becomes dimorphic and the two coexisting strategies evolve away from each other (Geritz et

al. 1998). Note, however, that this is true only for scalar traits (Geritz et al. 2016). Our cur-

rent mathematical tools are insufficient to characterize the dynamics of evolution (in particular,

evolutionary branching) when the local adaptation trait evolves jointly with the function-valued

immigration strategy at arbitrary speeds.

We therefore assume that the immigration strategy evolves fast to its ESS, so that for any

current value of the local adaptation trait θ, ψ is as given in equation (6) of the main text. Note

that the ESS immigration strategy being an evolutionary attractor is an assumption, but in the

present model it seems reasonable. Let ψθ denote the ESS immigration strategy for fixed θ. The

selection gradient

G(θ) = lim
θm→θ

Rm(ψθ , θm, ψθ , θ)− 1
θm − θ

(S.5.2)

shows whether a mutant with θm slightly higher or lower than the resident θ can invade. For

small mutations and away from singularities, invasion implies fixation (Geritz 2005). Once the

mutant has spread so that the resident value of θ has changed, the fast-evolving immigration
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strategy changes accordingly. G(θ) shows in which direction θ evolves, and the singularity

(ψ∗, θ∗) = (ψθ∗ , θ∗) is convergence stable if G′(θ∗) < 0. We evaluate this condition numerically

by computing G(θ) for θ near θ∗. Although G(θ∗) = 0 is equivalent to the singularity condition

in equation (7) of the main text, the convergence stability condition G′(θ∗) < 0 is different from

condition (S.5.1) since here ψθ changes with θ. Unsurprisingly, all monomorphic singularities

shown in Figure 1 satisfy G′(θ∗) < 0.

S.6 How to find monomorphic evolutionary singularities

To find the joint monomorphic evolutionary singularity (ψ∗, θ∗), first we characterize the dis-

persal pool size D of an evolutionarily stable immigration strategy with an equation that is

numerically more efficient to use.The size of the dispersal pool D can be determined from the

equation Rm(ψ, θ, ψ, θ) = 1, which, by equation (5) of the main text, is equivalent to

α
∫

Y
ψ(y)n(y)ρ(y, θ, θ, ψ(y)D) dy = α

∫
Y

ψ(y)n(y) dy + ν.

At the ESS immigration strategy in equation (6) of the main text, ψ(y) = 0 when y ∈ Y0,

ρ(y, θ, θ, ψ(y)D) = 1 when y ∈ Yf , and ψ(y) = 1 when y ∈ Y1, so that the above equation

simplifies to

Φ(D) = α
∫

Y1

n(y)(ρ(y, θ, θ, D)− 1) dy− ν = 0. (S.6.1)

To interpret this result heuristically, recall that only those individuals who immigrate into a patch

with y in the set Y1 produce more than one descendants who return to the dispersal pool; and

this surplus must balance the mortality in the dispersal pool. On the other hand, individuals

following the ESS immigration strategy never settle in patches where they would produce less

than one disperser, i.e., the net balance of immigration does not decrease the size of the dispersal

pool. The advantage of using equation (S.6.1) instead of Rm(ψ, θ, ψ, θ) = 1 is that we can deter-

mine the steady-state value of D without calculating ψ(y) for y ∈ Yf (i.e., where it is nontrivial).
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Since ρ(y, θ, θ, D) decreases in D and therefore also the set Y1 becomes a narrower interval as D

increases, Φ(D) is a decreasing function of D, so that the solution of equation (S.6.1) is unique.

We obtain the joint evolutionary singularity (ψ∗, θ∗) by the following procedure:

1. Pick a local adaptation trait value θ and determine the corresponding set Y0 of non-worthwhile

patches using condition (S.4.6) in section S.4 above (for large τmax, the simpler formula in

condition (S.4.8) is a good approximation).

2. Choose an arbitrary value for D. For the given values θ and D, evaluate ρ(y, θ, θ, D) to find

the set of patch types Y1, where ρ(y, θ, θ, D) > 1. Compute Φ(D) in equation (S.6.1).

3. Solve Φ(D) = 0 numerically by repeating step 2 for several values of D and interpolating

the function Φ.

4. Using the value of D found in step 3 and the matching set Y1, solve ρ(y, θ, θ, f (y)D) = 1 for

f (y) at points y not in Y0 or Y1 (in practice, obtain f (y) on a mesh and interpolate for all

points in Yf ). With this, we have obtained the ESS immigration strategy ψ in equation (6)

of the main text, with the corresponding size of the dispersal pool D, but for the arbitrarily

chosen value of the local adaptation trait θ. Following the notation of section S.4, we denote

this immigration strategy with ψθ .

5. With ψθ known for the chosen θ, compute the selection gradient

∂Rm(ψθ , θm, ψθ , θ)

∂θm

∣∣∣∣∣
θm=θ

=
α

αψ̄θ + ν

∫
Y

ψθ(y)n(y)
∂ρ(y, θm, θ, ψθ(y)D)

∂θm

∣∣∣
θm=θ

dy.

Vary the value of θ and repeat steps 1-5 to find θ∗ such that the selection gradient vanishes,

i.e., equation (7) of the main text holds. The joint singularity is then (ψ∗, θ∗) = (ψθ∗ , θ∗).

Note that in the examples of Figure 1 in the main text, symmetry implies that θ∗ = 0 is singular.
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S.7 Asymmetric patch type distribution

In the examples of Figure 1 in the main text, we assumed a symmetric distribution of patch

types. The evolutionarily stable immigration strategies are similar also if the patch types follow

an asymmetric distribution. As an example, we take a modified lognormal distribution truncated

to the interval Y = [−3, 3],

n(y) =

 Ce−(ln(y+3)−1)2/0.245/(y + 3) if −3 < y < 3

0 otherwise
(S.7.1)

with the normalization factor C chosen such that the distribution integrates to 1. The local adap-

tation trait θ∗ of the monomorphic singularity is shifted towards the more common patch types,

but the evolutionarily stable immigration strategy remains symmetric about θ∗ (Figure S1). This

is because the decision whether or not to immigrate into a given patch does not depend on

whether the patch is of a common or rare type. The only way the patch type distribution af-

fects this decision is via the size of the dispersal pool, which influences the sizes of the local

populations. Since the local population dynamics depend on the squared difference (θ − y)2 (cf.

equation (2) of the main text), patches with y deviating from the resident θ by the same amount

in either direction are equally good, and therefore are accepted with the same probability by the

evolutionarily stable immigration strategy. In other words, the symmetry of the evolutionarily

stable immigration strategy is due to the symmetry of the mortality rate c(θ − y)2, and is inde-

pendent of the symmetry of the patch type distribution.

The strength of selection towards the ESS immigration strategy does depend on the patch

size distribution. In the example of Figure S1, patches with y less than ca −2 are very rare, and

therefore the immigration strategy ψ(y) towards these patches is rarely expressed and subject

to selection. One can thus expect that even if the immigration strategy evolves fast, ψ(y) can

deviate from the ESS for these rare patch types. This however has little effect on diversification;
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Figure S1: Evolutionarily stable immigration strategy for an asymmetric patch type distribution.
The local adaptation trait θ∗ = −0.35 (black dot) is convergence stable in the sense of section S.5,
but not evolutionarily stable. Black line: ψ(y); dashed grey line: the distribution of patch types,
n(y), as given in equation (S.7.1). Parameter values: r = 5, k = 80, c = 1, γ = 2, α = 1, ν = 1;
µ = 0.1, τmax = 200 (as in Figure 1 in the main text); D = 49.48.

what happens in rare patches is unimportant compared to what happens in more common ones,

so that the partitioning of the more common patch types of the peripheral niche (in Figure S1,

the peripheral niche with y > 0) drives diversification as explained in the main text.

S.8 Evolution in dimorphic populations

If the metapopulation harbours two resident strategies (ψ1, θ1) and (ψ2, θ2) at steady-state, then

the basic reproduction number of a mutant strategy (ψm, θm) is given by

Rm(ψm, θm, ψ1, θ1, ψ2, θ2) =
α
∫

Y ψm(y)n(y)ρ(y, θm, ψ1(y)D1, ψ2(y)D2)dy
αψ̄m + ν

(S.8.1)

where ρ is calculated analogously to the monomorphic case (equations (S.3.2) and (S.3.3)) but

with N = N1 + N2 and the within-patch dynamics given in equation (4) of the main text. For

readability, in this section we suppress the resident traits θ1, θ2 in the arguments of ρ, and list

only the local adaptation trait of the focal immigrant.

The first resident produces more dispersers than the second resident in a patch of type y if it
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is better adapted to this patch type, i.e.,

ρ(y, θ1, ψ1(y)D1, ψ2(y)D2) > ρ(y, θ2, ψ1(y)D1, ψ2(y)D2) ⇐⇒ |y− θ1| < |y− θ2|. (S.8.2)

Since equality almost surely does not hold (it holds only at the single point y = (θ1 + θ2)/2,

which has measure zero for any patch type distribution with a probability density function), it

follows that for no values of ψ1(y)D1 and ψ2(y)D2 are both ρ values in condition (S.8.2) equal to 1.

This implies that at the ESS, ψ1(y) and ψ2(y) cannot simultaneously be within the open interval

(0, 1) (see Proposition 1 in section S.4 above). Further, if θ1 is better adapted to the patch and

ψ1(y) < 1, then ψ2(y) must be zero, whereas if ψ2(y) > 0, then ψ1(y) must be 1. For any given

D1, D2, the set Y of all patch types is hence partitioned in the following subsets (we abbreviate

the condition |y− θ1| < |y− θ2| with θ1 � θ2, “θ1 is better adapted”):

Y00 = {y : ρ(y, θ1, 0, 0) < 1, ρ(y, θ2, 0, 0) < 1}
Yf 0 = {y : θ1 � θ2, ρ(y, θ1, 0, 0) > 1, ρ(y, θ1, D1, 0) 6 1}
Y10 = {y : θ1 � θ2, ρ(y, θ1, D1, 0) > 1, ρ(y, θ2, D1, 0) < 1}
Y1 f = {y : θ1 � θ2, ρ(y, θ2, D1, 0) > 1, ρ(y, θ2, D1, D2) 6 1}
Y11 = {y : ρ(y, θ1, D1, D2) > 1, ρ(y, θ2, D1, D2) > 1} (S.8.3)

Yf 1 = {y : θ1 ≺ θ2, ρ(y, θ1, 0, D2) > 1, ρ(y, θ1, D1, D2) 6 1}
Y01 = {y : θ1 ≺ θ2, ρ(y, θ1, 0, D2) < 1, ρ(y, θ2, 0, D2) > 1}
Y0 f = {y : θ1 ≺ θ2, ρ(y, θ2, 0, 0) > 1, ρ(y, θ2, 0, D2) 6 1}.

These subsets are verbally described in the main text. By a straightforward generalization of the

monomorphic case, the dimorphic ESS immigration strategies for fixed θ1, θ2 are given by

ψ∗1(y) =



0 if y ∈ Y00 ∪Y0 f ∪Y01

fm,1(y) if y ∈ Yf 0

fd,1(y) if y ∈ Yf 1

1 if y ∈ Y10 ∪Y1 f ∪Y11

(S.8.4a)
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and

ψ∗2(y) =



0 if y ∈ Y00 ∪Yf 0 ∪Y10

fm,2(y) if y ∈ Y0 f

fd,2(y) if y ∈ Y1 f

1 if y ∈ Y01 ∪Yf 1 ∪Y11

(S.8.4b)

where the functions fm,1, fd,1, fm,2, fd,2 (‘m’ for monomorphic local populations in patches where

the other resident does not immigrate into and ‘d’ for dimorphic) satisfy

ρ(y, θ1, fm,1(y)D1, 0) = 1, ρ(y, θ1, fd,1(y)D1, D2) = 1

ρ(y, θ2, 0, fm,2(y)D2) = 1, ρ(y, θ2, D1, fd,2(y)D2) = 1
(S.8.4c)

and D1, D2 are such that

Rm(ψ
∗
1 , θ1, ψ∗1 , θ1, ψ∗2 , θ2) = 1, Rm(ψ

∗
2 , θ2, ψ∗1 , θ1, ψ∗2 , θ2) = 1. (S.8.4d)

To find the ESS immigration strategies in practice, the simplification that led to equation

(S.6.1) in the monomorphic case can unfortunately not be used for dimorphic populations.

The analogous equation for the first resident would be α
∫

Y10∪Y1 f∪Y11
n(y)(ρ(y, θ1, D1, ψ2(y)D2)−

1)dy− ν = 0, but this depends on ψ2, which has nontrivial values in Y1 f ; and vice versa for the

second resident. This means that one has to resort to determining D1, D2 in the hard way. The

numerical procedure of obtaining the ESS immigration strategies for fixed values of the local

adaptation traits is as follows:

1. Given the values θ1 and θ2, the set Y00 can be determined directly.

2. Choose arbitrary values for D1 and D2. Determine all sets in (S.8.3) and solve equations

(S.8.4c). Construct the immigration strategies ψ
(D1,D2)
1 and ψ

(D1,D2)
2 as in equations (S.8.4a,b);

note that these are not the ESS because D1 and D2 are arbitrary.
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3. Calculate, for i = 1, 2, the number of emigrants produced,

Ei(D1, D2) =
∫

Y

∫ τmax

0
γNi(τ, y)q(τ)n(y) dτ dy

where Ni(τ, y) is from equation (4) of the main text with Ii(y) = αψ
(D1,D2)
i Di.

4. Solve the two nonlinear equations

E1(D1, D2)

α
∫

Y n(y)ψ(D1,D2)
1 dy + ν

= D1,
E2(D1, D2)

α
∫

Y n(y)ψ(D1,D2)
2 dy + ν

= D2 (S.8.5)

for D1 and D2 numerically, by repeating steps 2-3 for various values of D1, D2. The immi-

gration strategies ψ
(D1,D2)
1 and ψ

(D1,D2)
2 obtained with the solution of equation (S.8.5) are the

ESS strategies ψ1 and ψ2.

Once the ESS immigration strategies ψ1 and ψ2 are found for given θ1 and θ2, we can evaluate

the selection gradients on the local adaptation traits, and find the singular dimorphism that

satisfies

∂Rm(ψ∗i , θm, ψ∗1 , θ∗1 , ψ∗2 , θ∗2 )

∂θm

∣∣∣∣∣
θm=θ∗i

= 0 for i = 1, 2 (S.8.6)

when ψ∗1 and ψ∗2 are the ESS immigration strategies for θ∗1 and θ∗2 . The singular dimorphism is

evolutionarily stable if

∂2Rm(ψ∗i , θm, ψ∗1 , θ∗1 , ψ∗2 , θ∗2 )

∂θ2
m

∣∣∣∣∣
θm=θ∗i

< 0 for i = 1, 2. (S.8.7)

In our examples, we build on symmetry around y = 0 and restrict the analysis to θ2 = −θ1.

In principle, even a symmetric model can have (symmetric pairs of) asymmetric singularities (see

Kisdi and Geritz 1999 for an example), but in the present model we do not expect that asymmetric

singularities would exist. The restriction implies D1 = D2 such that equations (S.8.5) reduce to a

single equation, which greatly facilitates the numerical analysis.
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S.9 Mutual invasibility

Suppose that the patch type distribution n(y) is symmetric about y = 0. In this section, we show

that near the monomorphic singularity (ψ∗, θ∗) with θ∗ = 0 and ψ∗ symmetric about y = 0, there

always exist pairs of strategies that differ only in their local adaptation trait and can invade each

other’s resident population, i.e., they coexist in a protected dimorphism.

Let ψ∗ be fixed. Coexistence by mutual invasibility is possible near a scalar singularity if

∂2Rm(θm, θ)

∂θm∂θ

∣∣∣∣
θm=θ=θ∗

< 0

(Geritz et al. 1998), where we suppressed the dependence of Rm on the fixed immigration strat-

egy. From the definition of Rm in equation (5) of the main text and equation (S.3.3), it is clear that

the above inequality is satisfied if

∂2F(T, y, θm, θ, ψ∗(y)D)

∂θm∂θ

∣∣∣∣
θm=θ=θ∗

< 0

holds for every y and every T. Using equation (2) of the main text and (S.3.2), this second

derivative evaluates to

∂2F
∂θm∂θ

∣∣∣∣
θm=θ=0

= −2cγr
k

y
∫ τmax

T
χ(τ)

∫ τ

T

dN(ζ, y)
dθ

∣∣∣∣
θ=0

dζ dτ (S.9.1)

where χ(τ) = (τ − T)e−µ(τ−T)+
∫ τ

T r(1−N(ζ,y)/k)−cy2−γdζ is a positive factor.

N(ζ, y), the local population size at patch age ζ in a patch of type y depends on the resident

strategy θ via two effects (cf. equations (1) and (2) of the main text). First, by changing the size

of the dispersal pool D, a change of the resident θ changes the immigration rate I(y) = αψ(y)D.

At the symmetric singularity at θ∗ = 0, however, the first order effect dD/dθ vanishes. This is

because, by symmetry, the dispersal pool size of the resident θ is the same as that of the resident
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−θ; and therefore D must attain an extremum at θ = 0. Second, a change in θ changes the

term −c(θ − y)2 in the per capita growth rate in equation (2) of the main text. Heuristically, it is

clear that at any fixed ζ, N(ζ, y) must increase with decreasing death rate, i.e., with decreasing

(θ − y)2 (a formal proof is given at the end of this section). Therefore, for positive y, dN(ζ,y)
dθ at

θ = 0 is positive for all ζ, so that the mixed derivative in equation (S.9.1) is indeed negative. For

negative y, dN(ζ,y)
dθ at θ = 0 is negative for all ζ; this combines with the negative factor y before

the integral so that the mixed derivative is again negative. Hence we conclude that with the

immigration strategy fixed at the singular, symmetric strategy ψ∗, two strategies with different

local adaptation traits near the singular value θ∗ = 0 can coexist.

As the metapopulation evolves towards (ψ∗, θ∗), however, the immigration strategy will have

not reached ψ∗ yet when coexistence becomes an issue. Suppose that the current resident local

adaptation trait θ is close to, but not equal to, θ∗ = 0; with the immigration strategy evolving

fast, ψ will be close to but not identical to ψ∗. Since ψ is not exactly symmetric, D does not attain

an extremum at θ∗ = 0; but, by continuity, the nonzero slope of D as the function of θ is of the

same order as (θ − θ∗). The quantity on the right hand side of equation (S.9.1) is nonvanishing,

so that the contribution from dD/dθ will not change its sign when the resident θ is sufficiently

close to the singularity.

A similar argument shows that the above result extends also to asymmetric patch size distri-

butions, provided that the deviation from a symmetric distribution is sufficiently small.

In the remainder of this section, we prove that N(τ, y) indeed increases with decreasing

(θ − y)2 at any patch age τ. Using the abbreviation z = (θ − y)2 and considering I = I(y) to be

fixed, we can rewrite equation (S.2.9) in the form

2I
N(τ, y)

=
2
τ

φ( τ
2 u)− (r− γ− cz) (S.9.2)
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with u =
√

4Ir/k + (r− γ− cz)2 and φ(u) = u coth(u), where coth is the hyperbolic cotangent.

Differentiating equation (S.9.2), we obtain

d
dz

2I
N(τ, y)

= φ′( τ
2 u)

du
dz

+ c.

It is straightforward to show that 0 < φ′(u) < 1 for every u > 0. Since

du
dz

= −c
r− γ− cz√

4Ir/k + (r− γ− cz)2

i.e., −c times a factor less than 1 in absolute value, we conclude that 2I
N(τ,y) increases with z and

therefore N(τ, y) increases with decreasing z = (θ − y)2.

S.10 Adaptive dynamics in a minimal model

In this section, we consider a minimal model to investigate the dynamics of diversification via

the evolution of contrasting immigration strategies in the peripheral niche, using the canonical

equation of adaptive dynamics (Dieckmann and Law 1996; Durinx et al. 2008; Metz et al. 2016).

For reasons described at the end of this section (see “Open problems”), here we assume a finite

number of patch types (only three in our numerical examples) and we assume that there are no

catastrophes (i.e., the catastrophe rate is µ = 0 and the maximum age of a patch is τmax → ∞).

This is therefore a rather special case of our main model, which we analyse here independently

of the main article. An independent analysis is necessary because the methods used in the main

model do not apply; here the basic reproduction number Rm is undefined because the disper-

sal generations are infinitely long, and mutants immigrating into patches where they are locally

favoured produce infinitely many emigrants who return to the dispersal pool.

As we point out in the Discussion of the main article, when there are only a finite number

of patch types, it can happen that none of them is in the peripheral niche. Here we choose the
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parameters of the model such that we have patches in the peripheral niche. This choice is generic

in the sense that small changes in the parameters would not change the behaviour of the model

qualitatively, but with sufficiently different values of the parameters, which imply no patches in

the peripheral niche, the results would differ.

Further, our main model assumes infinitely many patches with a continuous distribution

of patch type as well as of patch age. With no catastrophes (hence no age distribution) and

only finitely many patch types, we can accommodate also metapopulations with only a limited

number of patches. This is because without catastrophes, patches of the same type are indistigu-

ishable; hence it does not matter whether we have a large number of separate patches or whether

these patches are united into one (or a few) large patch(es). For simplicity, we continue using

the terminology of classical metapopulations with infinitely many patches and the frequencies of

patch types; these could however be replaced with one (or a few) large patch(es) for each type,

the frequency of the type replaced with the area of the the large patch(es).

Assume that the patches are of ω different types, with yj (j = 1, ..., ω) denoting the within-

patch optimal phenotypes and nj the frequencies of patch types (∑ω
j=1 nj = 1). As in our main

model, let θi denote the local adaptation trait of resident i (i = 1, ..., S, where S is the number

of resident strategies present; in our examples, S = 1 or 2) and let ψi,j be the probability that

resident i immigrates into a patch of type j upon encounter. The ecological dynamics of a mutant

with local adaptation trait θm and immigration strategy ψm,j is given by

dNm,j

dt
= g(N̂j, yj, θm)Nm,j − γNm,j + αψm,jDm for j = 1, ..., ω

dDm

dt
=

ω

∑
j=1

γnjNm,j − (αψ̄m + ν)Dm

(S.10.1)
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where ψ̄m = ∑ω
j=1 njψm,j and

g(N̂j, yj, θm) = b− (d0 + d1N̂j)− c(θm − yj)
2

is the per capita growth rate of the mutant in a patch of type j, with N̂j = ∑S
i=1 N̂i,j being the total

resident density in such a patch at equilibrium. Because there are no catastrophes, every patch

is at an equilibrium with resident densities N̂i,j, which can be found from the resident ecological

dynamics analogous to equations (S.10.1) with θm = θi, ψm,j = ψi,j, i = 1, ..., S. Notice that here

we replace the logistic formula r
(
1− N

k

)
, used in the main model, with the equivalent formula

b− (d0 + d1N), which contains the birth rate b and the density-dependent death rate d0 + d1N

explicitly; as detailed below, this is necessary to derive the canonical equation.

For structured populations, the canonical equation for the ith resident (i = 1, ..., S) can be

written as
dXi

dt
= κi C

∂r
∂Xm

∣∣∣∣
Xm=Xi

(S.10.2)

(Durinx et al. 2008). Here Xi = [θi, ψi,1, ..., ψi,ω]
T is the trait vector of resident i, κi is a scalar speed

factor, C is the mutational variance-covariance matrix, and ∂r
∂Xm

∣∣∣
Xm=Xi

is the selection gradient

vector, i.e., the derivative of the mutant invasion fitness r with respect to the mutant trait values.

For the covariance matrix, we assume that the traits are uncorrelated and the mutational variance

is wθ for the local adaptation trait and wψ for the components of the immigration strategy, i.e., C

is diagonal with elements C11 = wθ and Cjj = wψ for 2 ≤ j ≤ ω + 1. In the next two subsections,

we detail the calculation of the selection gradient and of the speed factor; for the results, readers

may want to skip to the subsection “Numerical experiments”.

The selection gradient

The mutant metapopulation is a structured population with Dm individuals in the dispersal pool

and njNm,j individuals in patches of type j for each patch of the metapopulation. The population
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vector of the mutant is therefore 

Dm

n1Nm,1

...

nω Nm,ω


and the Jacobian matrix of its linearized dynamics is

Jm =



−(αψ̄m + ν) γ γ . . . γ

αn1ψm,1 g(N̂1, y1, θm)− γ 0 . . . 0

αn2ψm,2 0 g(N̂2, y2, θm)− γ . . . 0
...

...
...

. . .
...

αnωψm,ω 0 0 . . . g(N̂ω, yω, θm)− γ


The invasion fitness r of the mutant is the leading eigenvalue of its Jacobian. Since each resident

has zero invasion fitness and the mutant strategy is close to one of the residents, we can approx-

imate r to first order using the eigenvalue sensitivity formula ∆r = vT∆Ju (Caswell 1989; for use

in evolution, see Wickman et al. 2017 and references therein), where

∆J =



−α∆ψ̄ γ γ . . . γ

αn1∆ψ1
∂g

∂θm
|1 ∆θ 0 . . . 0

αn2∆ψ2 0 ∂g
∂θm
|2 ∆θ . . . 0

...
...

...
. . .

...

αnω∆ψω 0 0 . . . ∂g
∂θm
|ω ∆θ



Assuming the mutant is close to the ith resident, ∆ψj = ψm,j − ψi,j, ∆θ = θm − θi, and ∂g
∂θm
|j is the

derivative of g(N̂j, yj, θm) evaluated at θm = θi. The eigenvectors v and u are the left and right
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eigenvectors of the resident Jacobian scaled such that vTu = 1, i.e.,

u(i) =



D̂i

n1N̂i,1

...

nω N̂i,ω


, v(i) = v(i)0



1

γ/(γ− g(N̂1, y1, θi))

...

γ/(γ− g(N̂ω, yω, θi))


with v(i)0 =

1

D̂i + ∑ω
j=1

γnj N̂i,j

γ−g(N̂j,yj,θi)

.

Notice that since the local dynamics is at equilibrium so that [g(N̂j, yj, θi)− γ]N̂i,j + αψi,jD̂i = 0,

the difference γ− g(N̂j, yj, θi) is positive for each patch type j where ψi,j > 0. Substituting the

eigenvectors into ∆r = vT∆Ju, we arrive at

∆r = v(i)0

[
αD̂i

ω

∑
j=1

nj
g(N̂j, yj, θi)

γ− g(N̂j, yj, θi)
∆ψj +

ω

∑
j=1

nj
γN̂i,j

γ− g(N̂j, yj, θi)

∂g
∂θm

∣∣∣∣
j
∆θ

]
.

The selection gradient vector of the ith resident therefore contains the elements

∂r
∂θm

∣∣∣∣
θm=θi

= v(i)0

ω

∑
j=1

nj
γN̂i,j

γ− g(N̂j, yj, θi)

∂g(N̂j, yj, θm)

∂θm

∣∣∣∣∣
θm=θi

(S.10.3a)

and
∂r

∂ψm,j

∣∣∣∣
ψm,j=ψi,j

= v(i)0 αD̂inj
g(N̂j, yj, θi)

γ− g(N̂j, yj, θi)
, j = 1, ..., ω. (S.10.3b)

Analogously to the main model, in a monomorphic population with fixed local adaptation

trait θ, the immigration strategy

ψj =


0 if g(0, yj, θ) < 0

f j if g(N̂j, yj, θ) = 0

1 if g(N̂j, yj, θ) > 0

(S.10.4)

with f j such that α f jD̂ = γN̂j, i.e., with f j =
γ

αD̂
b−d0

d1

[
1− c

b−d0
(θ − yj)

2
]
, is a weak ESS.
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The speed factors

To calculate the speed factors κi in the canonical equation (S.10.2), we follow Durinx et al. (2008).

This calculation is somewhat involved. Since we are interested in the orbit of the canonical equa-

tion and in particular its attractor, we can re-scale time in a nonlinear fashion such that only

the ratios of the speed factors matter, their absolute values do not. Hence κ = 1 can be used

for monomorphic resident populations and for dimorphic populations when symmetry ensures

κ1 = κ2.

Let ξ
(i)
j,l denote the random number of offspring that an individual with the ith resident strat-

egy will produce in patches of type j, provided the individual itself was born in a patch of type

l. The expectation of ξ
(i)
j,l , which we denote with L(i)

jl , are the elements of the ω × ω matrix L(i),

which is the next generation matrix of the ith resident. We shall need the expectations and the

covariances of ξ
(i)
j,l ; we start with the expectations.

To ease the notation, we introduce the shorthands Γ(i)
j = d0 + d1N̂j + c(θi − yj)

2 + γ for the

rate at which residents with the ithe strategy are removed from a patch of type j (either due to

death or emigration); Π(i)
j for the probability of getting into a patch of type j (either directly or

after visiting patches of other types) for an individual currently in the dispersal pool; and Λ(i)
j

for the expected number of offspring produced in a patch of type j during its remaining lifetime

for an individual currently in the dispersal pool. By first step analysis, we have

Π(i)
j =

αnjψi,j

αψ̄i + ν
+ ∑

l 6=j

αnlψi,l

αψ̄i + ν

γ

Γ(i)
l

Π(i)
j ⇐⇒ Π(i)

j =
αnjψi,j

αψ̄i + ν−∑l 6=j αnlψi,l
γ

Γ(i)
l

and

Λ(i)
j = Π(i)

j

 b

Γ(i)
j

+
γ

Γ(i)
j

Λ(i)
j

 ⇐⇒ Λ(i)
j =

Π(i)
j b

Γ(i)
j − γΠ(i)

j

.
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The elements of the next generation matrix L(i) are

L(i)
jl =



γ

Γ(i)
l

Λ(i)
j if l 6= j

b

Γ(i)
j

+
γ

Γ(i)
j

Λ(i)
j if l = j

The expression in the first row is the probability that an individual born in a patch of type l

makes it to the dispersal pool, times the number of offspring it can expect to have in patches of

type j once it is in the dispersal pool. The expression in the second row adds also the offspring

an individual produces before emigrating from the patch where it was born.

Next, we turn to the covariances between the random variables ξ
(i)
j,l . As an example, consider

the covariance between ξ
(i)
1,3 and ξ

(i)
2,3, the number of offspring produced in patches of type 1 and

in patches of type 2 by an individual born in a patch of type 3. To have any of ξ
(i)
1,3 and ξ

(i)
2,3

nonzero, the focal individual has to leave its birth patch. If it first immigrates into a patch of type

1, produces offspring there, and dies there, then it will have no offspring produced in a patch of

type 2; and conversely, if it first immigrates into a patch of type 2, it may die there and have no

offspring in a patch of type 1. ξ
(i)
1,3 and ξ

(i)
2,3 are therefore not independent but negatively corre-

lated. However, what happens while an individual stays in a patch, i.e., how many offspring it

produces there and with what probability it returns to the dispersal pool, is independent of how

many offspring it produced during its earlier visits to other patches. ξ
(i)
1,3 and ξ

(i)
2,3 are therefore

conditionally independent given the number of visits to patches of type 1 and type 2.

We therefore start with the probability P(i)(k1, ..., kω) that an individual with the ith resident

strategy, who is now in the dispersal pool, visits patches of type 1, ..., ω exactly k1, ..., kω times

during its remaining life. Importantly, we define a “visit” as immigration, stay and emigration

(not death); we shall take care of stays ending in deaths later, and such a stay does not count
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towards k j. P(i)(k1, ..., kω) is given by a negative multinomial distribution,

P(i)(k1, ..., kω) =
(k1 + ... + kω)!

k1!...kω!
p0 pk1

1 ...pkω
ω

with success probabilities

pj = p(i)j =
αnjψi,j

αψ̄i + ν

γ

Γ(i)
j

and failure probability p0 = p(i)0 = 1−∑ω
j=1 pj.

To consider a given pair of random variables, say ξ
(i)
j1,l and ξ

(i)
j2,l , we can marginalise P(i)(k1, ..., kω)

considering only three types of successes: visit to a patch of type j1, visit to a patch of type j2, and

visit to a patch of any other type. Let MPj1,j2(k1, k2) denote the probability of k1 visits to patches

of type j1 and k2 visits to patches of type j2 (note the change in indexing k). These marginalised

probabilities are

MP(i)
j1,j2

(k1, k2) =
∞

∑
k3=0

(k1 + k2 + k3)!
k1!k2!k3!

p0πk1
1 πk2

2 πk3
3

with success probabilities π1 = pj1 , π2 = pj2 , and π3 = ∑j 6=j1,j2 pj.

During each visit to a patch of type j, an individual of strategy i produces a geometrically

distributed number of offspring with success probability b/(b + Γ(i)
j ). Recall that the sum of

geometrically distributed random variables follows a negative binomial distribution; therefore if

this individual has k visits to patches of type j, it produces a total of z offspring during these

visits with probability

NB(i)
j (z; k) =

(z + k− 1)!
z!(k− 1)!

 b

b + Γ(i)
j

z Γ(i)
j

b + Γ(i)
j

k

Therefore the probability that, starting from the dispersal pool, an individual visits patches of

type j1 and patches of type j2 respectively k1 and k2 times and during these visits produces z1
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offspring in patches of type j1 plus z2 offspring in patches of type j2 is

MP(i)
j1,j2

(k1, k2) · NB(i)
j1
(z1; k1) · NB(i)

j2
(z2; k2).

As a last step in probability calculus, we marginalise over k1 and k2 and also include a pos-

sible last stay in a patch that ends with death rather than emigration. The probability, for an

individual of the ith resident strategy now in the dispersal pool, to produce z1 offspring in patch

type j1 and z2 offspring in patch type j2 during its remaining lifetime is

Ψ(i)
j1,j2

(z1, z2) =
∞

∑
k1=1

∞

∑
k2=1

[
MP(i)

j1,j2
(k1, k2)

p(i)0

 ∑
j 6=j1,j2

αnjψi,j

αψ̄i + ν

[
1− γ

Γ(i)
j

]
+

ν

αψ̄i + ν

+

+
MP(i)

j1,j2
(k1 − 1, k2)

p(i)0

αnj1 ψi,j1

αψ̄i + ν

[
1− γ

Γ(i)
j1

]+

+
MP(i)

j1,j2
(k1, k2 − 1)

p(i)0

αnj2 ψi,j2

αψ̄i + ν

[
1− γ

Γ(i)
j2

]]NB(i)
j1
(z1; k1) NB(i)

j2
(z2; k2)

for z1, z2 > 0 (which means k1, k2 > 0). In the first line of this expression, the factor in the paren-

theses is the probability that the individual immigrates into and dies in a patch of type other

than types j1 or j2, or dies in the dispersal pool. In the second line, the parentheses contain the

probability that the individual immigrates into and dies in a patch of type j1; and in the third

line, the same for j2.

Now we can calculate the covariance between ξ
(i)
j1,l and ξ

(i)
j2,l . Consider the case j1 6= j2, and

suppose first that the birth patch is of a third type (i.e., l 6= j1, j2). In this case, both ξ
(i)
j1,l and ξ

(i)
j2,l

are zero unless the individual emigrates from the birth patch and enters the dispersal pool. The

covariance is therefore

COV(ξ
(i)
j1,l , ξ

(i)
j2,l) =

γ

Γ(i)
l

∞

∑
z1=1

∞

∑
z2=1

Ψ(i)
j1,j2

(z1, z2)z1z2 − L(i)
j1l L(i)

j2l for j1 6= j2
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If the individual is born in a patch of type j1 i.e., (l = j1), then it produces a random number of

offspring in a patch of type j1 before it first emigrates or dies in its natal patch. This is however

independent of ξ
(i)
j2,l , and therefore the covariance is the same as above. The same holds for

l = j2. Finally, if j1 = j2 = j, then the covariance is the variance of ξ
(i)
j,l . To obtain this variance,

marginalise P(i)(k1, ..., kω) to only two types of successes (visit to a patch of type j and visit to a

patch of any other type) and calculate Ψ̃(i)
j (z), the probability of getting z offspring in patches of

type j, analogously to the above. Then

COV(ξ
(i)
j,l , ξ

(i)
j,l ) =


γ

Γ(i)
l

∞

∑
z=1

Ψ̃(i)
j (z)z2 −

(
L(i)

jl

)2
for j 6= l

γ

Γ(i)
l

∞

∑
z=1

Ψ̃(i)
l (z)z2 −

(
L(i)

ll −
b

Γ(i)
l

)2

+
b

Γ(i)
l

(
b

Γ(i)
l

+ 1

)
for j = l

The exception in the second line is made for the case when j is the type of the birth patch. In this

case, one has to add the variance of the number of offspring produced in the birth patch before

emigration or death.

The covariances between the offspring numbers enter the speed factor of the canonical equa-

tion through the quantity

σ2
i =

ω

∑
l=1

U(i)
l

ω

∑
j1=1

ω

∑
j2=1

V(i)
j1

V(i)
j2

COV(ξ
(i)
j1,l , ξ

(i)
j2,l) (S.10.5)

where [U(i)
1 , ..., U(i)

ω ]T and [V(i)
1 , ..., V(i)

ω ]T are respectively the leading right and left eigenvectors

of the next generation matrix of the ith resident, L(i), normalised according to ∑ω
l=1 Ul = 1 and

∑ω
l=1 UlVl = 1 (Durinx et al. 2008).

Another quantity we need for the speed factor is the generation time of the ith resident, T(i)
f .

The generation time “switches” between the selection gradient written in terms of the invasion

fitness, as in (S.10.3), and in terms of the leading eigenvalue R0 of the mutant’s next generation
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matrix (the latter is not to be mixed up with the basic reproduction number of dispersal gen-

erations, Rm, used in our main model). More precisely, for a mutant close to the ith resident,

log R0 = T(i)
f r holds to first order (see equation (19) of Durinx et al. 2008). The mutant next

generation matrix is obtained analogously to that of the residents,

L(m)
jl =



γ

Γ(m)
l

Λ(m)
j if l 6= j

b

Γ(m)
j

+
γ

Γ(m)
j

Λ(m)
j if l = j

with

Γ(m)
j = d0 + d1N̂j + c(θm − yj)

2 + γ,

Π(m)
j =

αnjψm,j

αψ̄m + ν−∑l 6=j αnlψm,l
γ

Γ(m)
l

,

Λ(m)
j =

Π(m)
j b

Γ(m)
j − γΠ(m)

j

.

We determined R0 using the eigenvalue sensitivity formula R0 = 1 + V(i)T∆LU(i), where U(i) =

[U(i)
1 , ..., U(i)

ω ]T and V(i) = [V(i)
1 , ..., V(i)

ω ]T are the leading right and left eigenvectors of the next

generation matrix of the ith resident normalised as above. Taking ∆L to be ∆L = [∆Ljl ] =[
∂L(m)

jl
∂θm

]
(θm − θi) (here the choice that the mutant differs from the resident only in θ is arbitrary),

we obtain, to first order, log R0 = V(i)T
[

∂L(m)
jl

∂θm

]
U(i)(θm − θi) = T(i)

f
∂r

∂θm
(θm − θi), and therefore

T(i)
f =

V(i)T
[

∂L(m)
jl

∂θm

]
U(i)

∂r
∂θm

(S.10.6)

where all derivatives are evaluated at the ith resident (θm = θi, ψm,j = ψi,j, j = 1, ..., ω).
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As derived by Durinx et al. (2008), the speed factors of the canonical equation are

κi =
εBiT

(i)
f

σ2
i

(S.10.7)

where ε is the mutation rate, Bi = bΩ ∑ω
j=1 njN̂i,j is the total rate of birth of the ith resident (where

Ω is the (large) number of patches in the metapopulation), and σ2
i and T(i)

f are as given in (S.10.5)

and (S.10.6), respectively. Without loss of generality, we fix εΩ = 1. Since Bi, T(i)
f and σ2

i depend

on the trait values, κi changes as the residents evolve.

Numerical experiments

We investigated the dynamics of evolution by numerically solving the canonical equation for

uncorrelated traits,
dθi

dt
= κiwθ

∂r
∂θm

∣∣∣∣
θm=θi , ψm=ψi

dψi,j

dt
= κiwψ

∂r
∂ψm,j

∣∣∣∣
θm=θi , ψm=ψi

for j = 1, ..., ω

(S.10.8)

jointly for residents i = 1, ..., S (a system of S× (ω + 1) differential equations). Because we are

interested in orbits rather than in the explicit time dependence of the trait values, in each step

of the numerical integration we normalised the vector of the right hand sides of the canonical

equation, and forwarded the orbit in the S× (ω + 1) dimensional trait space in the direction of

the normalised vector by a small amount ∆ (in the figures, ∆ = 0.01). This normalisation is a

simple method of adaptive stepsize, and speeds up computations when the selection gradients

are small (such as near singularities). Due to the trait space being high dimensional, we must

plot the trait values against time steps to visualize the results, but one should keep in mind that

these time steps correspond to unequal periods of real evolutionary time.

For our experiments, we fixed the model parameters as b = 5.1, d0 = 0.1, d1 = 5/80, c = 1,

γ = 5, α = 1, ν = 0.1 (the same as in Figures 2 and 3 of the main text, but recall that here we
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wψ/wθ (θ1, θ2) ψ1,2 diversification

1 1 (−0.03, 0.03) (0.792, 1, 0.792) yes* (Fig. S2)
2 1 (−0.03, −0.015) (0.852, 1, 0.722) no

1 (−0.03, 0.01) (0.818, 1, 0.766) yes
3† 10 (−0.03, 0.01) (0.823, 1, 0.761) yes (Fig. S3)

10 (−0.03, −0.0014) (0.823, 1, 0.761) no (yes)**
10 (−0.03, −0.0013) (0.823, 1, 0.761) yes
10 (−0.03, 0.0298) (0.823, 1, 0.761) yes
10 (−0.03, 0.03) (0.823, 1, 0.761) no (yes)**

4 1 (−0.03, −0.03) (0.852, 1, 0.722) yes (Fig. S4)
(0.815, 1, 0.790)

Table S1: Initial dimorphisms in the numerical experiments. The choice of initial dimorphisms
and the outcomes are discussed in the text, the bold numbers in the first column refer to the
sets of experiments. *Diversification occurs for any relative speed, tested also for wψ/wθ =
0.01, 0.1, 10, 100. **Loss of diversification is due to low population size of one of the residents.
Diversification succeeds if mutation limitation is removed, so that the speed of evolution is not
proportional to population size (see the subsection “Removing mutation limitation”). †See text
for a brief summary of repeating this set of experiments with wψ/wθ = 3 and wψ/wθ = 2.

have no catastrophes) and assumed three patch types (ω = 3) with

n1 = 0.25, n2 = 0.5, n3 = 0.25

y1 = −1.5, y2 = 0, y3 = 1.5

It is easy to confirm that θ = 0, ψ = (0.792, 1, 0.792) is a monomorphic ESS, where the local

adaptation trait is under stabilising selection and ψ satisfies the weak ESS condition in (S.10.4).

Table S1 lists the numerical experiments we detail below.

First, we initiated the dimorphic adaptive dynamics with symmetric residents near the mono-

morphic ESS, θ1,2 = ±0.03, both with the ESS immigration strategy ψ1,2 = (0.792, 1, 0.792). As

expected from our main model, the two residents evolve different immigration strategies to parti-

tion the peripheral niche; the resident with negative θ evolves higher immigration into patches of

type 1 but lower into patches of type 3, whereas the resident with positive θ evolves the opposite
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(Figure S2a,b). The local adaptation traits of the two residents initially converge towards each

other (Figure S2c), as they would converge towards the ESS at θ = 0 if their immigration strate-

gies were fixed. However, as the residents evolve different immigration strategies and therefore

start to use different patch types, their local adaptation traits diverge (Figure S2d).

Figure S2: Dimorphic adaptive dynamics of the local adaptation trait and the immigration strat-
egy with symmetric initial trait values θ1 = −0.03, θ2 = 0.03, ψ1,2 = (0.792, 1, 0.792), and wθ = 1,
wψ = 1. Grey and black lines show respectively the first and the second resident. Panels (a) and
(b), the evolution of immigration into patches of type 1 and of type 3, respectively; immigration
into the middle patch type remains constant at ψ1,2 = ψ2,2 = 1. Panels (c) and (d), the evolution
of the local adaptation trait; panel (c) is an enlargement from panel (d) for the critical initial
period of the dynamics.

The relative speed of evolution of the local adaptation trait and of the immigration strategy

can be set via the ratio of the mutational variances, wθ and wψ. The results in Figure S2 were

obtained assuming that these are of the same order of magnitude (wθ = 1, wψ = 1; note that

since wθ is in the squared units of the local adaptation trait but wψ is dimensionless, their values

cannot be compared directly, i.e., without reference to the parameters that also depend on the

unit of the local adaptation trait, c and y1, ..., yω). However, the results are qualitatively the same
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for any choice of wθ and wψ (verified for wθ/wψ = 0.01, 0.1, 10, 100; data not shown). If the im-

migration strategy has low mutational variance compared to the local adaptation trait (and thus

violates the assumption we make in the main model), then the resident local adaptation traits

converge for a longer time and therefore get closer to θ = 0. Since the selection gradient of the

local adaptation trait vanishes at θ = 0, in the vicinity the speed of its evolution scales with θ2
1,2.

At the same time, selection on the immigration strategy scales with θ1,2. Once θ1,2 are sufficiently

near zero, the immigration strategy evolves faster even if its mutational variance is small, which

leads to the partitioning of the peripheral niche and diversification as described in the main text.

The symmetric initial point assumed above is however not likely to be the starting point in

reality. For the remainder, we consider situations where a monomorphic resident evolves to-

wards the singularity and the population becomes dimorphic because a mutant coexists with the

original resident before reaching the singularity, which means an asymmtric starting point. For

a second set of numerical experiments, we assumed wθ = 1, wψ = 1, and started with a mono-

morphic population θ = −0.428, ψ = (1, 1, 0.001). This choice may be considered as arbitrary,

but it is also motivated by the fact that θ = −0.428, ψ = (1, 1) is the ESS in a metapopula-

tion with only two patch types, y1 and y2, present in proportions 1 : 2 (note the lack of the

peripheral niche). We can thus imagine that the initial monomorphic population starts evolving

because new patches of the third type y3 become available, with proportions 1 : 2 : 1 as assumed

above. We evolved the initial monomorphic population until its local adaptation trait reached

θ = −0.03; by this time, its immigration strategy evolved to ψ = (0.852, 1, 0.722). This is then

the point where we assume the population becomes dimorphic by the invasion of a mutant with

different θ.

Due to the asymmetry of the immigration strategy ψ = (0.852, 1, 0.722) (immigration into the

first type of patches is more likely than immigration into the third type), the local adaptation

traits of mutants that can coexist with the resident θ = −0.03 are also asymmetrically located,
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and in fact no coexistence is possible with a mutant θ > 0. Therefore we chose the initial di-

morphism to be θ1 = −0.03 and θ2 = −0.015, both sharing ψ = (0.852, 1, 0.722). These two

strategies coexist and have comparable population sizes, but their evolution quickly leads to the

loss of dimorphism as the first resident goes extinct (with other choices of θ2, it can be the second

resident which goes extinct).

This failure of diversification appears to be the consequence of the monomorphic immigra-

tion strategy “lagging” behind what would be the ESS for the current local adaptation trait. For a

monomorphic population with θ = −0.03, the ESS immigration strategy is ψ = (0.818, 1, 0.766),

which is closer to symmetric. Again, this affects which mutants can coexist with the resident

(θ2 = −0.015 cannot); starting the dimorphism with θ1 = −0.03 and θ2 = 0.01, both residents

sharing ψ = (0.818, 1, 0.766), we get diversification (data not shown).

Speeding up the evolution of the immigration strategy reduces its lag. To confirm that faster

evolution of the immigration strategy facilitates diversification, we conducted a third set of ex-

periments assuming wθ = 1 and wψ = 10. Once again, we started a monomorphic population

with θ = −0.428 and ψ = (1, 1, 0.001) and evolved it until it reached θ = −0.03; this time its

immigration strategy evolved to ψ = (0.823, 1, 0.761), much closer to the ESS than before. At

this point, we introduced a mutant as above to initialise the dimorphic adaptive dynamics with

θ1 = −0.03, θ2 = 0.01, sharing ψ = (0.823, 1, 0.761). This dimorphic population undergoes di-

versification as predicted by our main model (Figure S3). The comparison of this result with our

earlier experiments suggests that fast evolution of immigration is important to ensure a suffi-

ciently symmetric inital dimorphism.

The choice of θ2 = 0.01 in Figure S3 is to some extent arbitrary. Given θ1 = −0.03 and the

shared immigration strategy ψ1,2 = (0.823, 1, 0.761), coexistence is possible for θ2 ∈ (−0.0015, 0.034).

We found that initial dimorphisms close to the edge of the coexistence interval can fail to diver-
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Figure S3: Dimorphic adaptive dynamics of the local adaptation trait and the immigration strat-
egy with asymmetric initial trait values θ1 = −0.03, θ2 = 0.01, ψ1,2 = (0.823, 1, 0.761), and wθ = 1,
wψ = 10. Grey and black lines show respectively the first and the second resident. Panels (a) and
(b), the evolution of immigration into patches of type 1 and of type 3, respectively; immigration
into the middle patch type remains constant at ψ1,2 = ψ2,2 = 1. Panel (c), the evolution of the
local adaptation trait.

sify, and the reason for extinction is slow evolution due to small population size in one of the

residents. Specifically, evolution with initial θ2 ∈ (0.03, 0.034) ends in the extinction of the second

resident; but failure occurs in a much narrower range at the lower end of the coexistence interval,

an initial dimorphism with θ2 = −0.0013 succeeds to diversify. This asymmetry may be due to

the fact that the initial, shared immigration strategy is less suitable for a resident with higher θ2,

and since its population size is small, it receives few mutations and cannot evolve fast enough to

compensate. We note that most initial dimorphisms that fail to diversify are unlikely to arise in

the first place, because θ2 > 0.03 represent the largest and therefore least likely mutation steps

from θ1 = −0.03, and also mutations close to the upper end of the coexistence interval have low

invasion fitness and therefore a low probability of establishment in face of demographic stochas-

ticity.

For a brief exploration of how much speed difference is needed for diversification, we re-

peated the third set of experiments with lower values of wψ/wθ . For wψ/wθ = 3, we found that

diversification occurs with θ2 ∈ (−0.003, 0.011), which is about half of the coexistence interval

(−0.007, 0.0206); again, diversification fails towards the high end of the coexistence interval. For
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wψ/wθ = 2, diversification succeeds from only a narrow interval θ2 ∈ (−0.001, 0.002) (compare

with the coexistence interval (−0.011, 0.012); the coexistence interval changes with the relative

speed of evolution because speed affects the immigration strategy evolved during the mono-

morphic phase, which is the immigration strategy in the initial dimorphism).

Diversification may start also with the coexistence of two strategies differing in immigration,

not in the local adaptation trait. We add a brief fourth experiment to demostrate this possi-

bility in Figure S4 (but note that not all initial dimorphisms of this kind succeed to diversify).

Speeding up the evolution of the immigration strategy may be detrimental to diversification in

this scenario, because the two residents will evolve their immigration strategy to the same ESS

before their local adaptation trait could diverge. Should this happen, however, then the resulting

monomorphic population will be in a favourable position to diversify via a dimorphism of the

local adaptation trait, as shown in our third set of experiments.

Figure S4: Diversification starting with two residents that differ in their immigration strategy,
assuming wθ = 1, wψ = 1. The initial trait values are θ1,2 = −0.03, ψ1 = (0.852, 1, 0.722) (which
is where monomorphic evolution ends, see text), and ψ2 = (0.815, 1, 0.79). Notation as in Figure
S3; immigration into the middle patch type remains constant at ψ1,2 = ψ2,2 = 1.

Removing mutation limitation

In the neighbourhood of evolutionary singularities, selection becomes slow and therefore mu-

tation limitation is likely to break down. Removing mutation limitation, and instead assuming
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that selection operates on standing genetic variation, is equivalent to setting κ1 = κ2 = 1 in the

canonical equation (S.10.8) (Abrams et al. 1993; Geritz et al. 2016). We have re-run all numeri-

cal experiments in Table S1 without mutation limitation. We found no difference in the results,

except that diversification occurred also when one of the initial residents had a small popula-

tion size. Under mutation limitation, this resident went extinct because it had not enough new

mutations to fuel its evolution fast enough relative to the other resident, but without mutation

limitation, population size is irrelevant and diversification succeeds.

Conclusions

The numerical experiments described above support diversification via the mechanism described

in our main article, partitioning of the peripheral niche. We find that the evolution of the immi-

gration strategy needs to be fast enough, but a strict timescale separation (wψ/wθ → ∞) is not

necessary. Fast evolution of the immigration strategy is important to ensure a sufficiently sym-

metric configuration of the initial dimorphism. Because behavioural strategies are commonly

thought to evolve faster than morphological traits, the required speed difference seems realistic.

Our conclusions are drawn from a limited number of numerical experiments. We do not

embark on a comprehensive analysis of the model described in this section, because this model

contains an intrinsic inconsistency; it assumes costly dispersal with a positive emigration rate γ

in a metapopulation where nothing selects for emigration. In our main model, catastrophes, an

extreme kind of environmental stochasticity, create selection in favour of emigration.

Open problems

There are two open problems, one mathematical and one biological, which prevent us from de-

riving the canonical equation of adaptive dynamics in our main metapopulation model. Firstly,

the canonical equation has not been derived for structured metapopulations with catastrophes.

The canonical equation we used above assumes a point attractor of the ecological dynamics (Dur-
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inx et al. 2008). With catastrophes, the local populations are not at equilibrium, and therefore the

density-dependent vital rate(s) change with the age of the patch. This seriously complicates the

computation of the speed factors.

The second problem is that in our main model, the immigration strategy is a function-valued

trait. The canonical equation has been derived for function-valued traits (Parvinen et al. 2013;

Metz et al. 2016), so that this presents no mathematical problem, even if obtaining an approxi-

mate solution for the corresponding infinite-dimensional system would be computationally de-

manding. However, we would need to specify the covariance kernel analogous to the covariance

matrix C above. For simplicity, in the above we assumed that C is a diagonal matrix, which means

that the immigration probabilities ψ1, ..., ψω evolve independently. While this may be acceptable

for a few distinct patch types, for a function-valued trait it would be unrealistic to assume that

mutations affect ψ(y) independently for each value of y, no matter how close by. We should

therefore assume a nontrivial covariance kernel, but its correct shape is hard to establish.

References

All references are given at the end of the main article (see also the section “References cited only

in the online enhancements” there).

44


