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ABSTRACT 

Lichens are highly specialized symbioses between heterotrophic fungi and photoautotrophic green 

algae or cyanobacteria. The mycobionts of many lichens produce morphologically complex thalli to 

house their photobionts. Lichens play important roles in ecosystems and have been used as 

indicators of environmental change. Here we report the finding of 152 new fossil lichens from 

European Palaeogene amber, and hence increase the total number of known fossil lichens from 15 

to 167. Most of the fossils represent extant lineages of the Lecanoromycetes, an almost 

exclusively lichen-symbiotic class of Ascomycota. The fossil lichens show a wide diversity of 

morphological adaptations that attached epiphytic thalli to their substrates, helped to combine 

external water storage with effective gas exchange and facilitated the simultaneous reproduction 

and dispersal of both partners in symbiosis. The fossil thallus morphologies suggest that the 

climate of European Palaeogene amber forests was relatively humid and most likely temperate. 

 

 

 

Introduction 

 

Lichens are highly successful mutualistic symbioses, where a dominant fungal symbiont 

(mycobiont) hosts one or several taxa of phototrophic green algae and/or cyanobacteria 

(photobionts). A lichen-symbiotic lifestyle has evolved at least ten times in the Ascomycota and 

five times in the Basidiomycota1–3, with a vast majority of the over 18,000 currently known species 

of mycobionts being ascomycetes4. About 90% of these fungi establish symbioses with green 

algae5. 

Lichens are ecologically especially important in arctic and boreal ecosystems, but also in 

some temperate and Mediterranean forests and in tropical mountains. Their diversity and 

abundance tends to be highest in relatively humid climates, and many species thrive in moist 

mountain forests and in maritime regions of higher latitudes. Epiphytic lichens can be particularly 
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important in intercepting atmospheric moisture, sequestering nutrients and providing habitat and 

food for animals6–8. 

The morphology of lichens is highly specialized and astonishingly diverse9. Within a lichen 

thallus the photobionts provide photosynthate and in the case of cyanobacterial symbionts also 

fixed atmospheric nitrogen to the mycobiont. The mycobiont, in turn, provides water, facilitates 

gas exchange and provides a microenvironment that is relatively well protected against various 

abiotic and biotic stressors. Thallus structures are achieved through photobiontinduced 

developmental processes of the mycobiont, and almost identical thallus morphologies have often 

evolved in distantly related lichens through convergent evolution. Lichens show a variety of 

growth forms, from minute and structurally relatively simple crusts to large leaf-like (foliose) and 

shrubby (fruticose) forms, which include some of the most complex structures produced by Fungi9. 

Fossilized lichens have appeared to be extremely rare, with only 15 unambiguous fossils 

described so far10–13. The oldest lichen fossils are known from the Early Devonian14–16, and one 

Mesozoic fossil has been described from the Early Cretaceous10. The first lichen fossils that can 

confidently be assigned to modern fungal lineages are from European Palaeogene amber, the 

fossilized resin of ancient conifers. Two possible lichens from Baltic amber were already published 

in the nineteenth century17–19, but since then only seven additional specimens have been reported 

from European ambers11,12,20–22. Five additional lichen fossils have been described from the 

Miocene13,23–25. 

We screened hundreds of Baltic and Bitterfeld amber specimens and show that amber is an 

important, previously largely neglected source of fossil lichens. Our new material multiplies the 

number of known fossil lichens over tenfold and establishes fossil lichens as indicators of fossil 

forest ecosystems. Over 160 analysed lichen fossils provide the first overview of structural 

complexity in Palaeogene lichens. The fossils include many fine examples of morphological 

adaptation to the past forest environment of which some are missing or rare in the extant 

European lichen species. 

 

 

Results 

 

Our survey revealed 152 new lichen inclusions in 122 amber specimens, increasing the total 

number of known European Palaeogene lichen fossils to 161, of which 68 are preserved in Baltic 
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amber and 93 in Bitterfeld amber (Supplementary Table 1). Most of the fossilized lichens 

represent extant lineages of the Lecanoromycetes (Ascomycota), with foliose species of the family 

Parmeliaceae being especially common (Figs 1–5). The most abundant genus is Anzia 

(Parmeliaceae), which comprises over 25% of all amber inclusions. The fossils also include several 

wellpreserved specimens of the extant genera Calicium (Caliciaceae) and Chaenotheca 

(Coniocybaceae). Owing to insufficient preservation of distinguishing morphological features most 

fossils can only be identified at the order or family level, and approximately 30% of the fossil 

lichens are not assigned to any specific lineage within the Ascomycota (Fig. 5a). 

 

Growth forms  

Foliose lichens. The amber specimens contain nearly 100 inclusions of foliose lichens (Fig. 5b). 

Foliose lichens have dorsiventral and flat thalli, which mainly grow horizontally and are often 

distinctly lobed (Fig. 1a–f). Foliose thalli can be either closely appressed (Fig. 1a) ormore loosely 

attached (Fig. 1c) to their substrate, and their morphology varies from rosette shaped (Fig. 1a) to 

clearly lobate, with narrow and linear (Fig. 1b–c) or wide and irregularly shaped lobes (Fig. 1d–f). 

 

Fruticose lichens. The amber specimens contain 32 inclusions of fruticose lichens (Fig. 5b). 

Fruticose lichens produce shrubby (Fig. 1g–i) or pendulous (Fig. 1j–k) thalli with cylindrical or   

sometimes flattened lobes that are often attached to their substrate by a relatively narrow base. 

The fruticose fossils are either clearly erect (Fig. 1g–i), finely pendulous (Fig. 1k) or represent 

intermediate forms between the two main types (Fig. 1j). 

 

Crustose lichens. The amber specimens include 16 fossils of crustose lichens (Fig. 5b). Many 

crustose lichens grow tightly appressed to or partly submerged into the substrate. Often the 

fruiting bodies are the most prominent and sometimes the only visible structures (Fig. 1l). One 

easily identified group of crustose taxa are the calicioid lichens, which produce characteristic pin-

like fruiting bodies (Fig. 1n). Calicioid species have been preserved in 11 amber specimens (Fig. 

5b). 

 

Squamulose lichens. The amber specimens include two lichen fossils with squamulose thalli (Figs 

1m and 5b). Squamulose lichens are typically small or minute and represent an intermediate 

growth form between foliose and crustose lichens. 
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Cross-sections through several amber specimens demonstrate that the thalli of foliose, fruticose 

and squamulose lichen fossils are stratified and typically consist of a dense outer cortex and a 

loose internal medulla (Fig. 2j–l). 

 

Thallus anatomy 

Cortex. In stratified lichens the cortex forms the outermost, protective layer of the thallus (Fig. 3a), 

and the tightly packed cortical hyphae of the upper cortex are often visible in thallus cross-

sections (Fig. 2e,j–l). Many foliose lichens have a cortex also on the lower side, but squamulose 

lichens usually lack the ventral cortex (Fig. 2l). 

 

Photobiont layer. In stratified lichen thalli the photobionts are usually situated in a distinct layer 

immediately beneath the cortex (Fig. 3b). In the three lichen fossils studied using scanning 

electron microscopy (SEM), the globular photobiont cells were small, varying from 3 to 7 μm, 

corresponding in size with the coccoid green algal photobionts of many extant lichens. 

 

Medulla. In most stratified lichens the medulla occupies most of the thallus. It plays an important 

role in gas exchange and comprises very loosely organized hyphae (Figs 2e and 3c) or more 

densely packed hyphae (Figs 2j–l and 3d), which clearly differ from the strongly agglutinated 

cortex hyphae. As in modern lichens, the medulla of the fossils may entirely fill up the central parts 

of thallus (Fig. 2e,j,l) or encircle a hollow in the centre of the thallus lobe (Fig. 2k). 

 

Cortical openings. Pseudocyphellae and other openings in the lichen cortex play a role in gas 

exchange by connecting medullary airspaces to the outside. Minute perforations are difficult to 

detect from amber inclusions but sometimes their presence is indicated by tiny air bubbles on the 

lichen surface. Additionally, obvious perforations were observed in 18 lichen fossils (Fig. 5b). These 

include relatively large pores through the upper cortex into the medulla or central hollow (Fig. 2f ) 

and cortex-lined sack-like depressions that opened to the lower surface of the thallus (Fig. 2d,e).  

 

Rhizines. Approximately 60 foliose lichen fossils have rhizines formed by agglutinated strands of 

fungal hyphae (Fig. 2a–d). The rhizines attach the lichens to their substrate and help to maintain a 

layer of air beneath the thallus (Fig. 2d), which is important for water absorption and/or gas 
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exchange, and also facilitates periodic drying required for maintaining the physiological balance 

between lichen symbionts. The rhizines can be simple and robust (Fig. 2a,d), long and sparingly 

branched (Fig. 2b) or short and squarrose (Fig. 2c). 

 

Spongiostratum. More than 40 foliose lichen fossils have a cushionlike spongiostratum on the 

lower surface of the thallus, formed by richly branched and anastomosing hyphae (Fig. 2b,i). The 

main function of the structure is in external water storage: the capillary spaces in the hyphal 

reticulum can quickly absorb and hold large quantities of water. Among extant lichens 

spongiostrata are produced by all species of Anzia and Pannoparmelia (Parmeliaceae), but not by 

any other lichens. 

 

Cortical hairs. Cortical hairs can play a role in water absorption and influence the transmission of 

light through the cortex to the photobiont layer. Cortical hairs are present in three fossil lichens. 

One foliose lichen has fine, brown hairs on both sides of the thallus (Fig. 2g), but only the lower 

surface of another fossil is covered with a pale wooly tomentum (Fig. 2h). 

 

Reproductive structures 

Apothecia. Most lichen-forming fungi belong to the Ascomycota, and produce sexual spores in 

disc- or cup-shaped fruiting bodies (apothecia). Nearly 40 lichen fossils have preserved apothecia, 

mostly disc-shaped and often with well-developed margins (Figs 1l, 4a–d and 5c). The calicioid 

lichens produced well-stalked ascomata topped with a persistent spore mass (mazaedium; Fig. 

1n). 

 

Pycnidia. Many lichen-symbiotic ascomycetes produce asexual spores in minute spherical pycnidia. 

Some calicioid lichen fossils have pycnidia on the upper surface of their crustose thalli (Fig. 4g).  

 

Soredia. In addition to or instead of fungal spores many lichens produce vegetative symbiotic 

propagules in which the symbiotic partners can disperse together. Eleven fossil lichens possess 

soredia (Fig. 5c), which are small groups of photobiont cells enveloped by a layer of fungal hyphae 

(Fig. 4e–f ). They are typically produced in discrete structures (soralia) which represent openings 

from the photobiont layer through the otherwise solid cortex. Among the fossils, several foliose 

lichens had laminal soralia on the upper surfaces of thallus lobes. 
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Isidia. Another common means of lichen-symbiotic dispersal is via isidia, small outgrowths of the 

thallus, which differ from soredia in having a well-developed cortex. Over 20 foliose lichen fossils 

had produced cylindrical to coralloid isidia either laminally or on the thallus margins (Figs 4i–j and 

5c). 

Lobules. Lobules are minute thallus lobes that share the same basic anatomy as the thallus, but are 

often constricted at the base and play a similar role in symbiotic dispersal as isidia and soredia. 

Typical lobules were observed in only one foliose lichen fossil, which had produced catenulate 

chains of lobules from thallus margins (Fig. 4h). 

 

 

Discussion 

 

Fossil lichens provide information about ancient environments and they have also been used to 

calibrate the evolution of the Ascomycota22,26–28. Especially in dating studies the cautious 

assignment of fragmentary fossils is crucial12. Many of the new lichen fossils can be confidently 

placed in the extant family Parmeliaceae, a predominately lichen-symbiotic lineage and one of the 

most diverse groups of Ascomycota28–30. Recent estimates of divergence times within the family 

place splits of some extant genera between the early Palaeocene and the late Oligocene, and a 

major radiation between the middle Eocene and the late Miocene28. The new fossils confirm that 

the diversification of parmelioid genera was well underway in the Palaeogene. Additionally, 

several species of Anzia must have been common in European amber forests, although the genus 

has since become extinct from the continent20,31–33. Also calicioid lichens were relatively numerous 

among the fossils. The genera Calicium and Chaenotheca are not closely related and represent 

different classes of Ascomycota, but have a very similar morphology and ecology. Both genera are 

represented by several inclusions, revealing that the convergence of calicioid fungi in 

Lecanoromycetes and Coniocybomycetes dates back at least to the Palaeogene. The additional 

presence of several other groups, including for example Pertusariales and Arthoniales highlights 

that the diversification of many lineages of lichenized Lecanoromycetes and other Ascomycota 

precedes the Palaeogene. 

The morphological diversity of lichens in Palaeogene European amber forests is remarkable 

and includes examples of many features that were important for lichen adaptation. During the 
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time-window of the European Palaeogene amber deposition 47–24 million years ago, the climate 

was in flux. The initially almost tropical conditions of central Europe gradually changed to 

subtropical and warm–temperate, and the amount of precipitation remained high34,35. In the early 

Eocene much of central Europe was covered by dense tropical forest, which is also the traditional 

conception of the Baltic amber forest. Recently this view has been challenged by several studies 

based on botanical inclusions in the amber36,37. The morphological adaptations observed in the 

fossil lichens are most consistent with a humid and moderately well-illuminated temperate forest.  

The sheer number of preserved lichens and the diversity of different thallus morphologies 

reveal that Palaeogene amber forests provided favourable conditions for lichen growth. The high 

proportion of foliose and fruticose lichens among the fossils suggests that the epiphytes lived 

under a semi-open canopy rather than in deep shade, and many of their specific adaptations are 

most consistent with a humid or even wet forest habitat. It is important to note that no fragments 

of large and robust lichens have been preserved among the amber fossils. This may be partly 

explained by the higher preservation potential of small and fragile lichens, but also indicates that 

robust lichens were either absent or at least rare in the lower canopies of amber forests. 

The primary production of a lichen thallus partly depends on the amount of 

photosynthetically active radiation it receives. The poikilohydric thallus must also be sufficiently 

hydrated for photosynthesis, but excessive moisture may easily lead to a situation where the 

amount of carbon fixed by lichen photobionts is not sufficient to counterbalance the high 

respiration losses of the hydrated mycobiont. Especially in robust lichens with large water holding 

capacities, prolonged water saturation may also hinder internal CO2 diffusion, further exacerbating 

the difficulties of maintaining positive net production under constantly wet conditions38–40. Thus, 

the general lack of robust thalli among the fossils indicates that the climate of amber forests 

favoured fragile lichens that were well adapted to maintain a very intricate balance between 

sufficient thallus hydration, photosynthesis and respiration. 

Many morphological features preserved in the fossil lichens are beneficial for maintaining 

positive net production under humid and rather shady conditions. For example, the narrow and 

abundantly branched lobes of fruticose lichens and the thin layers of air between the rhizoids of 

many foliose lichens facilitate evaporation and gas exchange, and thus contribute to the 

maintenance of positive primary production. In addition, the loosely interwoven medulla and 

cortical perforations facilitate gas exchange, allowing lichens to maintain relatively high water 

contents without experiencing a concurrent depression in photosynthesis41– 43. As a whole, many 
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structural features in the Palaeogene fossil lichens helped to combine sufficient intrathalline water 

storage and maximal gas exchange efficiency, which is especially important in moist and shady 

forest habitats where epiphytic lichens regularly experience prolonged periods of thallus 

hydration. 

The mycobionts of many lichens only reproduce by spores and must thus re-establish their 

symbiotic association with compatible photobionts at each reproductive cycle. As free-living 

photobionts may be difficult to find, many lichens also facilitate the simultaneous dispersal of the 

whole symbiotic consortium via symbiotic propagules, and sometimes photobiont sharing can lead 

to complex interactions between many different hosts44. As many Palaeogene lichen fossils 

preserve clear adaptations to symbiotic dispersal they unambiguously confirm that symbiotic 

dispersal has been an integral part of lichen ecology for at least tens of millions of years, and 

underline its potential importance in explaining present patterns in the population structure of 

lichen-symbiotic organisms44–49. 

 

 

Methods 

 

Origin and age of the fossil lichens. The new lichen fossils (Supplementary Table 1) are preserved 

inside 122 specimens of Baltic and Bitterfeld amber.  

The majority of Baltic amber derives from the marine Blue Earth layer that is predominantly 

exposed on the Samland Peninsula northwest of Kaliningrad (Russia) and contiguous areas. Baltic 

amber is also frequently found washed ashore along the coast of the Baltic Sea (predominantly in 

the Baltic States, Poland, Denmark, Germany and in southern Sweden) and in adjacent areas50,51.  

The absolute age of the Baltic amber is still under debate. Palynological data (pollen and 

dinoflagellates) suggest a late Eocene (late Priabonian) age (approximately 38–34 million years) of 

the Blue Earth50,52,53. Fewer amounts of amber also occur in older sediments including the Lower 

Blue Earth (Lutetian, middle Eocene) and even in younger horizons (Lower Gestreifter Sand, late 

Oligocene), leading to a possible age range of approximately 47 to 24 million years before present 

for all Baltic amber bearing strata50,52–54. 

The frequently cited Lutetian age of the Blue Earth was suggested by Ritzkowski55 who dated 

glauconites deriving from the amber-bearing layer. However, Clauer et al.56 demonstrated that the 

applied dating methods can lead to older age estimates if the glauconites have been reworked or 
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if non-glauconized detrital mica ‘contaminated’ the glauconite splits. Redeposition of the Baltic 

amber into the Blue Earth layer has also been suggested51. However, amber from the Blue Earth 

layer does not show typical signs of erosion which normally occur if amber has been re-worked, 

such as ‘pebble-shaped’ amber pieces or a dark oxidized crust. In contrast, the majority of amber 

from the Blue Earth is of a fresh lemon yellow colour and unoxidized57. However, the age estimate 

based on the palynomorphs still needs validation by an independent data set that is able to link 

the Baltic amber Lagerstätte to the global geologic time scale. In short, a late Eocene age of both 

the ‘Baltic amber forest’ and the main amber Lagerstätte is commonly assumed but not 

unambiguously proven. 

Today, most Baltic amber is mined in the Jantarny mine at Samland Peninsula (54°52′06.00″ 

N, 19°58′20.00″ E) but given the wide occurrence of drifted Baltic amber along the Baltic Sea coast, 

it is impossible to trace the precise origin of every single amber specimen, especially from historic 

collections. 

Bitterfeld amber derives from the Goitzsche open-cast mine near the city of Bitterfeld in 

central Germany (51°37′20.00″ N, 12°21′18.00″ E). The amber-bearing sediment of this locality is 

the Bernsteinschluff layer, located in the upper part of the Cottbus Formation, and it has been 

dated as late Oligocene with an absolute age of 25.3–23.8 million years58,59. A notion that 

Bitterfeld amber represents redeposited Eocene Baltic amber is based on the significant 

proportion of identical arthropod morphologies in amber from both localities60. However, 

redeposition of Baltic amber is unlikely based on the reconstruction of the sedimentary 

environment of this amber deposit50. A local reworking of pre-Chattian amber, however, has not 

been dispelled so far (see refs 61,62 for discussion). In any case, Bitterfeld amber is Palaeogene in 

age and its minimum age is approximately 24 million years. Bitterfeld amber is absent in historic 

amber collections as this deposit has only been mined from the 1970s to the 1990s63. 

Despite the mentioned uncertainties in the temporal and spatial reconstruction of the 

amber deposition, the Palaeogene age of both ambers is certain, and according to the state of the 

art, the absolute age of the amber-bearing strata ranges between 47 and 24 million years. 

 

Repository of the fossils. The repository of the specimens is shown in Supplementary Table 1. The 

specimens labelled by GZG (Geoscientific Collection of the University of Göttingen, Germany), MB 

(Museum für Naturkunde Berlin, Germany) and SMNS (Staatliches Museum für Naturkunde 

Stuttgart, Germany) are already part of museum collections. Three members of the Amber Study 
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Group based at the Geological– Palaeontological Museum of the University of Hamburg (Germany) 

acquired specimens for their private collections and made them available for study and 

preparation. Specimens of these collections will be transferred to museum collections upon 

publication. Lichen fossils of the Carsten Gröhn Amber Collection will be deposited at the 

Geological–Palaeontological Museum of the University of Hamburg, those of the Heinrich 

Grabenhorst Amber Collection at the Geoscientific Collection of the University of Göttingen, and 

the final repository of the type specimens of the Jörg Wunderlich Amber Collection is the 

Senckenberg Museum in Frankfurt am Main. 

 

Preparation, microscopy and illustration of the fossil lichens. For investigation, the amber pieces 

were ground and polished manually using a series of wet silicon carbide papers (grit from FEPA P 

600 (25.8 μm particle size) to 4,000 (5 μm particle size), Struers, Germany) to produce smooth 

surfaces for investigation. A fraction of a millimetre of amber was gradually removed from each 

amber piece, while frequently checking the preparation under a dissection microscope to ensure 

that the inclusions were not damaged (see ref. 64 for protocols). 

Prepared amber specimens were mounted on a glass microscopic slide with the upper 

polished surface oriented horizontally. A drop of water was applied to the upper surface of the 

amber and covered with a 0.06–0.08 mm thickness glass coverslip (Menzel Inc.) to reduce light 

scattering from fine surface scratches and to improve optical resolution. 

The amber inclusions were studied under a Carl Zeiss Stereo Discovery V8 dissection 

microscope and under a Carl Zeiss AxioScope A1 compound microscope, equipped with Canon 5D 

digital cameras. In most instances, incident and transmitted light were used simultaneously. For an 

enhanced illustration of the three-dimensional inclusions, the light-microscopical images are 

digitally stacked photomicrographic composites from up to 330 individual focal planes using the 

software package Helicon Focus 6.2.2. 

For SEM, lichen inclusions from selected lichen specimens were partially exposed using a 

scalpel to remove the overlaying amber. Samples were transferred to a carbon-covered SEM 

mount using a wet hair from a superfine brush, sputtered with platinum/palladium (2 × 120 s at 20 

mA, 10 nm coat thickness) using an Automatic Sputter Coater (Canemco Inc.) and examined under 

a field emission scanning-electron microscope (Carl Zeiss LEO 1530 Gemini). 

After investigation, fragile amber pieces were fully embedded in a high-grade epoxy (Epo-

Tek 301-2, Epoxy Technology) under vacuum (see ref. 65 for protocols) to ensure long-term 
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preservation of the fossils. Data availability. All specimens are deposited in accessible repositories 

(Supplementary Table 1). 

Data availability. All specimens are deposited in accessible repositories (Supplementary Table 1). 
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FIGURES 

 

Figure 1. Growth forms of lichens preserved in Palaeogene amber. a, Foliose lichen tightly 

appressed at bark (GZG.BST.21910). b, Foliose lichen with narrow flattened thallus lobes 

(GZG.BST.21911). c, Foliose lichen with cylindrical thallus lobes (Grabenhorst Li-72). d, Possible 

phyllidium of a larger foliose lichen (Wunderlich F1107). e, Foliose lichen with palmate lobes 
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(GZG.BST.21893). f, Foliose lichen with apically widening thallus lobes (Gröhn P 6406). g, Shrubby 

fruticose lichen with blunt branch tips (Gröhn P 6486). h, Shrubby fruticose lichen with acute 

branch tips (GZG.BST.21912). i, Densely branched fruticose lichen (GZG.BST.21913). j, Pendulous 

fruticose lichen with robust branches (Wunderlich F781). k, Pendulous fruticose lichen with fine 

branches (GZG.BST.21914). l, Crustose lichen with areolate thallus and two apothecia 

(GZG.BST.21915). m, Lichen squamules (GZG.BST.21916). n, Calicioid lichen with crustose thallus 

and single fruiting body with apical spore mass (MB.Pb.1979/838). Scale bars, 500 μm in a–e,l,m; 

1mm in f–k; and 100 μm in n. 
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Figure 2. Morphology and anatomy of Palaeogene lichen thalli. a, Robust rhizines and thick cortex 

on the lower surface of a foliose lichen (GZG. BST.21917). b, Sparingly branching rhizines and 

spongiostratum on the lower surface of a foliose lichen (GZG.BST.21904). c, Short rhizine with 

squarrose anchoring tuft on the lower surface of a foliose lichen (GZG.BST.21893). d, Rhizines and 

large pores on the lower surface of a foliose lichen (GZG. BST.21918). e, Cross-section of a 

corticated sack-like depression embedded in a loose medulla (GZG.BST.21918). f, Large openings 

to a central hollow of a fruticose lichen (SMNS BB-2311-X). g, Translucent cortical hairs on the 

lower surface of a foliose lichen (Gröhn P 6406). h, Pale, wooly tomentum on the lower surface of 

a foliose lichen (Wunderlich F2799). i, Spongiostratum on the lower surface of a foliose lichen 

(GZG.BST.21904). j, Cross-section of a foliose lichen revealing a dense cortex and a loosely 
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interwoven medulla (Wunderlich F1107). k, Cross-section of a fruticose lichen with hollow thallus 

lobes (GZG.BST.21919). l, Cross-section of a squamulose lichen with a relatively dense medulla and 

without a lower cortex (GZG.BST.21916). Scale bars, 100 μm. 

 

 

 

 

 

 

 

Figure 3. SEM images of lichens from Palaeogene amber. a, Fractured cortex and amber-filled pore 

openings on the lower side of a foliose lichen (GZG.BST.21920). b, Photobiont layer with three 

photobiont cells (Gröhn P 6406). c, Resin-filled very loose medulla of a foliose lichen; the position 

of degraded medullary hyphae is revealed by the tunnels in the amber (GZG.BST.21920). d, Partly 

resin-filled medulla of a foliose lichen (Gröhn P 6406). Scale bars, 20 μm in a,d; and 2 μm in b,c.   
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Figure 4. Reproductive structures of lichens from Palaeogene amber. a,b, Apothecia of a crustose 

lichen with thick margins (Grabenhorst Li-1, GZG. BST.27293). c, Stalked apothecium with poorly 

developed margin (Grabenhorst Li-120). d, Stalked apothecium of a foliose lichen with a flat disk 

and well-developed margin (Gröhn P 3576). e,f, Production of soredia from soralia on the upper 

surfaces of foliose lichens (Grabenhorst Li-72, Grabenhorst Li-71). g, Pycnidium exposed on a 

thallus of a Chaenotheca specimen (Gröhn P 5377). h, Catenulate lobules on the thallus margin of 

a foliose lichen (Gröhn P 3628). i, Long and cylindrical isidia on the upper surface and margins of a 

foliose lichen thallus (Wunderlich F2799). j, Coralloid isidia on branched apices of a fruticose lichen 

(GZG.BST.21913). Scale bars, 200 μm in a–f,h–j; and 20 μm in g.  
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Figure 5. Taxonomic affiliation, thallus morphology and mode of reproduction of 161 lichen fossils 

preserved in Baltic and Bitterfeld amber (for details, see Supplementary Table 1). a, Many fossils 

can be assigned to extant orders (Pertusariales, and so on), families (Parmeliaceae, and so on) or 

even genera (Anzia, and so on), but the preservation of others does not allow reliable placement 

into any one taxonomic group. b, A majority of the fossils are foliose and fruticose lichens; see Figs 

1 and 2 for examples of growth forms and thallus structures. c, Many fossils are very small and 

fragmentary, but a fair proportion of all fossils has preserved reproductive structures; see Fig. 4 for 

examples of such features. 


