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Abstract 12 

Terrestrial laser scanning (TLS) accompanied by quantitative tree-modeling algorithms can 13 

potentially acquire branching data non-destructively from a forest environment and aid the 14 

development and calibration of allometric crown biomass and wood quality equations for species and 15 

geographical regions with inadequate models. However, TLS’s coverage in capturing individual 16 

branches still lacks evaluation. We acquired TLS data from 158 Scots pine (Pinus sylvestris L.) trees 17 

and investigated the performance of a quantitative branch detection and modeling approach for 18 

extracting key branching parameters, namely the number of branches, branch diameter (bd) and 19 

branch insertion angle (bα) in various crown sections. We used manual point cloud measurements as 20 

references. The accuracy of quantitative branch detections decreased significantly above the live 21 

crown base height, principally due to the increasing scanner distance as opposed to occlusion effects 22 

caused by the foliage. bd was generally underestimated, when comparing to the manual reference, 23 

while bα was estimated accurately: tree-specific biases were 0.89 cm and 1.98°, respectively. Our 24 

results indicate that full branching structure remains challenging to capture by TLS alone. 25 

Nevertheless, the retrievable branching parameters are potential inputs into allometric biomass and 26 

wood quality equations. 27 

Keywords: Forestry, LiDAR, Modeling, Point clouds, Scots pine 28 

Introduction 29 

Size and shape of a tree crown and branches reflect how changes in climate or silviculture affect tree 30 

growth (Rubio-Cuadrado et al. 2018) and wood formation (Vanninen et al. 2000). Consequently, 31 

branching structures have implications on biomass accumulation (Helmisaari et al. 2002, Ogaya et al. 32 

2007) and wood quality (Huuskonen et al. 2014, Kuprevicius et al. 2013, Mäkinen 1999). Tree 33 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/286389376?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:jiri.pyorala@helsinki.fi


biomass in particular is one of the most influential attributes required in terrestrial carbon cycle 34 

models. Terrestrial carbon in the forest is usually estimated by multiplying forest biomass by a carbon 35 

content factor (Penman et al. 2003). Wood quality estimations are considered essential to accurately 36 

target harvesting operations and to optimize wood procurement for more sustainable forest resource 37 

usage. 38 

Allometric equations that utilize forest inventory attributes (e.g., species, diameter-at-breast height 39 

(DBH), and tree height (H)) are available for biomass components such as the stem and crown 40 

(Jenkins et al. 2003, Liepiņš et al. 2018, Picard et al. 2012, Repola 2009, Zianis et al. 2005). However, 41 

data with which to build the models are only available for a limited number of tree species and 42 

geographical regions, and they often lack explanatory variables related to crown size and structure, 43 

which makes them poorly transferrable across regions (Duncanson et al. 2015, Temesgen et al. 2015). 44 

The wood quality of standing timber can additionally be determined using branching parameters 45 

(Benjamin et al. 2007, Lyhykäinen et al. 2009, Uusitalo 1997). Branches have a direct, mechanical 46 

influence on wood quality in sawn timber, because they distort the stem wood grain orientation and 47 

decrease wood stiffness and strength (Samson 2007). Branch knots are often the main defect 48 

measured in the visual grading of sawn goods (STMY 2016). Potential variables to more accurately 49 

explain crown biomass and wood quality may thus include geometric features of the crown and 50 

branches (e.g. crown length, width, and volume, number of branches, variation in branch size, whorl-51 

to-whorl distances, height of the lowest dead branch (Hdb), and height of the live crown base (Hlc)). 52 

Acquiring detailed data on branching structure for crown biomass and wood quality studies is 53 

notoriously difficult. Destructive measurements are required for developing new models or equations 54 

for species and geographical areas without existing models, and for calibrating existing models. These 55 

measurements are laborious, time consuming, and often not feasible in locations such as permanent 56 

sample plots or in urban or conservation areas. Terrestrial laser scanning (TLS) provides a three-57 

dimensional (3D) point-based representation of forest canopies and can be used to characterize both 58 

tree- and plot-level structural information through the analysis of spatial point distribution or gap 59 

probability, or by modeling individual trees using geometrical primitives (Jupp et al. 2007, Liang et 60 

al. 2016, Newnham et al. 2015). The latter approaches have gained increasing interest in the literature, 61 

as they have been shown to hold potential for representing the scanned tree structures with the most 62 

detail, including a geometrical presentation of individual branches and twigs (Bournez et al. 2017). 63 

Most geometrical tree-modeling approaches can be roughly broken down into three main steps 64 

(Bucksch et al. 2008, Côté et al. 2011, Gorte et al. 2004, Liang et al. 2012, Pfeifer et al. 2004, Pyörälä 65 

et al. 2018b, Raumonen et al. 2013, Xia et al. 2015, Zhong et al. 2017): First, the context of points is 66 

characterized, and those belonging to the stems and branches are identified by applying point 67 

classification techniques. Second, the points identified as woody components are segmented and 68 

organized into a hierarchical structure resembling the tree phenology, based on point connectivity or 69 



pattern recognition analyses. Third, the stems, branches, and twigs are modeled by fitting geometrical 70 

primitives, most often circles or cylinders, to the points. 71 

Studies applying TLS point clouds to estimate the biomass of woody tree crown components have so 72 

far concurred that crown-related biomass components can be more accurately estimated using TLS 73 

point cloud features than with existing allometric models (Calders et al. 2015, Hackenberg et al. 2015, 74 

Hauglin et al. 2013, Kankare et al. 2013, Stovall et al. 2018, Temesgen et al. 2016). Consequently, 75 

studies are increasingly using TLS data to infer the stem and branch biomass directly from the 76 

geometrical tree models, although how the methodologies perform across various vertical stem 77 

sections with varying branch properties remains unclear. The omission of structures along the length 78 

of tree stems has a crucial effect on the performance of geometrical tree-modeling methods in the 79 

extraction of branching structures and, consequently, their applicability into acquiring input for 80 

biomass and wood quality equations (Pyörälä et al. 2018b). 81 

In this study, we analyzed the performance of a geometrical tree-modeling method (Pyörälä et al. 82 

2018b) in the detection and modeling of individual branch bases across a range of vertical locations 83 

and crown conditions. Our objectives were to explicitly quantify the various factors that affected the 84 

parameter extraction, and to analyze the implications of our results for the use of geometrical TLS tree 85 

models in the development and calibration of biomass and wood quality models. 86 

Materials 87 

The data consisted of 158 Scot pines from six two-hectare forest stands. The stands were located in 88 

southern Finland, with four stands in Evo (61.19 °N, 25.11 °E) and two in Orimattila (60.80 °N, E 89 

25.73 °E). Based on stand-wise forest inventory data from 2013, the tree species composition varied 90 

from nearly pure Scots pine forests to mixed Scots pine and Norway spruce (Picea abies H. Karst) 91 

forests (Table 1). The sample trees were located in groups of three to six trees and were evenly 92 

distributed around each stand. From each sample tree, DBH was measured with calipers on two 93 

perpendicular planes. A Vertex III hypsometer (Haglöf, Sweden) was used to determine H, Hlc, and 94 

Hdb. H was the height from the ground to the tree top, Hlc the height from the ground to the lowest 95 

living branch that was separated from the live crown by a maximum of two dead whorls, and Hdb the 96 

height from the ground to the lowest dead branch that was approximately over 15 mm in diameter. All 97 

Vertex measurements averaged three repetitions. Table 2 shows descriptive statistics of the sample 98 

trees at each stand, as measured in the field in August 2014. 99 

TLS data were collected using a Faro Focus3D X 330 phase-shift scanner (Faro Technologies Inc., FL, 100 

USA) during August and September 2014. Each tree group was scanned from 5–10 locations to 101 

ensure that each tree was recorded from all sides, resulting in 197 scans. The mean horizontal 102 

scanner-to-tree distance at breast height was 9.8 m (Table 1). With the scanner settings used, point-to-103 



point sampling distance was 6.3 mm at a 10-meter distance. Six spherical targets were used within 104 

each of the five tree groups to allow co-registration of the point clouds into a single combined point 105 

cloud using Faro Scene 5.2.1 software. Table 1 shows the registration errors given by the software.  106 

Methods 107 

Data sampling and manual measurements 108 

As manually identifying and measuring each individual branch from all sample trees is impractical, 109 

we used a sampling scheme to divide each sample tree into stem section strata using Hdb, Hlc, and H 110 

derived from the field measurements. Dead crown (between Hdb and Hlc) and live crown (between Hlc 111 

and H) were divided into two strata of equal length (upper half and lower half). In other words, we 112 

measured five vertical stem sections: the stem below Hdb, the lower half of the dead crown, the upper 113 

half of the dead crown, the lower half of the live crown, and the upper half of the live crown (Figure 114 

1a). 115 

We manually extracted the point clouds of individual sample trees from the merged point clouds. For 116 

every tree, a sample height was randomly selected from each of the five stem sections. All visually 117 

identifiable first-order branch bases (i.e. the branch bases diverting from the stem) 0–50 cm below and 118 

above (i.e. 1 m in total) the selected height were included in the sample. We extracted points 119 

belonging to each visually identified branch base and defined a tight circle that encompassed the 120 

extracted points perpendicular to the longitudinal axis of the identified branch. Three geometrical 121 

branch attributes were measured as illustrated in Figure 1c: branch diameter (bd), branch height (bh), 122 

and branch insertion angle (bα). bd was the diameter of the manually fitted circle, bh the difference 123 

between the circle center (bc) z-coordinate and the visually estimated root collar height, and bα was the 124 

angle between a vertical Z-axis nz = [0,0,1] and the normal e0 = [e1, e2, e3] of the fitted circle, similarly 125 

to the literature (Samson 1993). 126 

The quantitative branch detection and modeling -method 127 

We produced geometrical tree models for each tree that described the tree stems and the first-order 128 

branching structure along the full range that was visible in the point clouds. The tree stems were 129 

modeled following the approaches of Liang et al. (2012). Points associated with tree stems were 130 

identified using principal component analysis (PCA), to estimate the direction vector in which the 131 

points exhibit most variance. We assumed that points exhibiting most variance along a near-vertical 132 

direction originated from the tree stems. Cylinders were then fitted to the stem points using a 133 

weighted least-squares optimization to minimize the distance of the points to the cylinder surface. 134 

After stem modeling, points within a horizontal distance of 50 cm from the modeled stem surface 135 

were selected and divided into 15-cm segments, with adjacent segments overlapping by 10 cm. Points 136 

around the stem model in each segment were analyzed using distributions of point density and the 137 



mean distance of the points as per 360 degrees around the stem model (Figure 1b). Two point 138 

distributions were used to separate branch points from noisy points, e.g. from branch bumps or other 139 

stem deformations that should not have a peak in the distribution of mean distance. The distributions 140 

were smoothed by a convolution with a Gaussian window function by means of the Fast Fourier 141 

Transform (Cooley et al. 1965). The Continuous Wavelet Transform (CWT) function (Du et al. 2006), 142 

an iterative pattern-matching algorithm, was utilized in identifying the peaks in the smoothed 143 

distributions. Positions exhibiting peaks from 5 to 45° in width for the point density function and from 144 

20 to 75° in width for the mean distance function were defined as branch positions. Points falling 145 

within each peak were labeled as belonging to a single branch. Branch points were then projected onto 146 

a horizontal plane perpendicular to the longitudinal axis of the branch and modeled as a circle using 147 

the Random sample consensus (RANSAC) algorithm (Fischler et al. 1981). Circle diameter was 148 

considered to represent bd, and bα was solved from the longitudinal axis direction of the points given 149 

by PCA. Branches with bd less than 7 mm and more than 100 mm, and with bα less than 20° and more 150 

than 120° were filtered out, as they were assumed to be false positives resulting from noise or stem 151 

deformations. The method pipeline is illustrated in Figure 1 and described in more detail in Pyörälä et 152 

al. (2018b). 153 

Evaluation of the quantitative method 154 

For evaluation of the quantitative method, we selected a sample of the quantitatively detected 155 

branches using same sample heights as for the manual references. The sample of quantitatively 156 

detected branches was compared to the reference branches using all samples from each tree (one 157 

sample includes branches along one 1-m section of stem from a given stratum, i.e., five samples from 158 

each tree), and the samples in each stem section strata separately (i.e., one sample from each tree). 159 

The number of branches detected by the quantitative method (nq) and the number of branches 160 

identified visually (nm) were calculated separately for each sample. Then, for each sample, we 161 

calculated the difference between nq and nm. The number of false positives or commission errors (nc) 162 

and false negatives or omission errors (no) made by the quantitative method were assessed such that a 163 

negative value was considered to indicate branches being omitted, and a positive value to indicate 164 

branches being falsely detected (commission error). The accuracy of quantitative branch detection 165 

was defined for the stem section strata as well as for entire trees (i.e., combining all samples from a 166 

tree) as in Equation 1. 167 

 
(1) 

Estimates for bd and bα derived from the RANSAC-circle-fitting method and PCA, respectively, were 168 

compared to the manual measurements. Accuracies of the bd and bα estimates were evaluated by 169 

comparing the minimum, mean, and maximum branch parameter values between the manual 170 



references and the quantitative data in each sample. We reported the root-mean-squared error (RMSE) 171 

and the simple regression model R2 between the data sets separately in each stratum and when 172 

considering all samples. bα accuracy is likely to affect  bd accuracy, as it determines the axis used to 173 

project the points onto a horizontal plane for circle fitting. Therefore, we also inspected whether the 174 

sample-specific mean estimation error in bd and bα had an impact on the other parameter’s estimation 175 

errors. 176 

Previous research has reported that the quality and completeness of the point cloud is highly 177 

dependent on scanner distance and occlusion (Abegg et al. 2017, Pyörälä et al. 2018b). Here, we 178 

examined to what degree scanner distance and self-occlusion affected branch detection. The height 179 

above Hlc was considered to represent the magnitude of foliage occlusion, because the quantity of 180 

foliage borne by the live crown, and thus the occlusion, was expected to increase cumulatively above 181 

Hlc (Figure 2). Below Hlc, the dead crown was supposed to bear no foliage and to cause no occlusion. 182 

We evaluated the quantitative branch detection accuracy within the live crown strata in relation to the 183 

3D scanner distance and height above Hlc using a multiple linear regression model. We reported the 184 

model R2 and inspected the magnitude of the parameter estimate values for either explanatory 185 

variable: the parameter estimate value (or slope) gave the rate at which the detection accuracy was 186 

estimated to decline when the scanner distance or height above Hlc increased by 1 m. In addition, to 187 

analyze the statistical significance of the relationships, we reported the standard error (SE), t-statistic 188 

and p-value of the parameters based on the Student’s t-test.  189 

We expected the quantitative branch detection method to be sensitive to branch size. A simple 190 

regression model was used to define the impact of sample-specific mean bd to quantitative branch 191 

detection accuracy in each stem section strata and when considering all samples from a tree. We 192 

reported parameter estimates, SE, t-statistic, and p-value. 193 

Results 194 

Compared to our manual measurements, the quantitative branch detection method had an overall 195 

accuracy of 68.6%, and was at its highest (81.0–82.6%) in the dead parts of the crown (Figure 3). The 196 

number of manually detectable branches increased with height in the dead crown, but decreased 197 

significantly above Hlc (Table 3, Figure 3). The proportions of omission and commission errors to the 198 

number of manually detected branches were 34.4% and 3.0%, respectively. The method made 30 199 

commission errors in the stem section stratum below Hdb. Based on visual inspections, the false 200 

positives were due to noisy points, loose bark, stem deformations, and in one case a broken branch 201 

that was detected twice by the quantitative method. In addition to causing commission errors, similar 202 

factors were also found to cause some of the omission errors of branches that intuitively should be 203 

detectable, if not for the aforementioned factors that introduced noise to the point distribution and 204 

caused the CWT peak detection to fail (Figure 4). 205 



Mean and maximum bd were larger in the live than in the dead crown, while mean bα was lower in the 206 

live than in the dead crown (Table 3). In all, sample-specific mean bd were estimated with an RMSE 207 

of 0.94 cm (bias -0.89 cm), and mean bα with a 7.76° RMSE and 1.98° bias (Figure 5). Estimate errors 208 

of bd and bα were independent of the magnitude of the estimated parameter, and of the error in the 209 

other parameter (Figure 6). 210 

The correlation coefficient (r) between scanner distance and height above Hlc was 0.27. Based on the 211 

multiple regression analysis, scanner distance was the main factor contributing to the diminishing 212 

branch detection accuracy in the live crown (Table 4). Model RMSE and R2 were 0.26 and 0.35, 213 

respectively. The number of detected branches decreased gradually in both data sets as the distance 214 

from the scanner increased, while the occlusion effect was notable only in the reference data (Figure 215 

7). 216 

Lastly, the simple regression analysis showed that the effect of sample-specific, manually measured 217 

mean bd to branch detection accuracy was not statistically significant, except in the lower half of the 218 

dead crown (Table 5).  219 

Discussion  220 

We analyzed the performance of a geometrical tree-modeling method in quantitative branch detection, 221 

and examined the capacity of TLS to provide input data for calibration of crown biomass and wood 222 

quality equations across different parts of the stem. The method used in our study represented an 223 

example of the geometrical tree-modeling methods that have gained increasing attention in recent 224 

forestry-related TLS approaches. However, the methods still largely lack evaluation of their accuracy 225 

in branch structure extraction with respect to limiting factors such as the decreasing point cloud 226 

quality in tree crowns. Results in our current study entailed a comparison of the automated parameter 227 

extraction to manual point cloud measurement data acquired using a sampling procedure from the 228 

original TLS point cloud. The sampling approach may have introduced biases and accurately 229 

represented the actual number of branches only in the dead parts of the crown closer to the stem base. 230 

A diminishing number of manually detectable branches was observable for the sample higher up the 231 

live crown (Table 3, Figure 3). Figure 7 suggested that the completeness of the manual reference data 232 

above Hlc was affected partly by both increasing scanner distance and increasing occlusion effect 233 

(Figure 2). The estimated reference branch parameters behaved as expected based on the literature: bd 234 

increased over the dead crown (Table 3) (Maguire et al. 1999, Mäkinen et al. 1998), and bα decreased 235 

with branch height (Table 3) (Mäkinen et al. 1998, Osborne et al. 2015). 236 

The quantitative branch detection accuracy compared to manual measurements (64.8%) was lower in 237 

our current study than in Pyörälä et al. (2018b) (69.9%), where only the log-section (stem diameter > 238 

15 cm) and largest branches in each whorl were considered. The results implied that the lower parts of 239 



the tree were better covered by TLS and larger branches were more easily detected. Here, the first 240 

assumption was supported by the fact that the quantitative branch detection accuracy and the number 241 

of reference branches decreased rapidly above Hlc in our data (Figure 3). This effect has been noted in 242 

previous research (Boudon et al. 2014, Eysn et al. 2013) and, in this work, we aimed to quantify the 243 

factors contributing to the effect. When we analyzed the interaction between the distance from the 244 

scanner and the occlusion effect caused by the tree crown above Hlc (Figure 2, Figure 7), the scanner 245 

distance affected the branch detection accuracy to such a degree that the occlusion effect was not 246 

significantly present in the data (Table 4). In addition, the viewing angle between the scanner and the 247 

measured point has an additional effect on the magnitude of self-occlusion, which was not considered. 248 

The second assumption was not supported by our data, as in this study mean branch size did not have 249 

a statistically significant effect on branch detection accuracy in most parts of the tree (Table 5), except 250 

for the lower part of the dead crown, where mean bd was at its lowest (Table 3). In general, it is worth 251 

noting that there was relatively little variance among bd in the data (Table 3). 252 

Stand structure and scanning setup affect the uniformity of point cloud density and the magnitude of 253 

occlusion. The theoretical probability of a laser beam hitting an object largely depended on object 254 

size, the scanner angular resolution, and the evenness of the scanning location distribution, which can 255 

be used to minimize the distance from the scanner to each tree and avoid occlusion (Abegg et al. 256 

2017). Wilkes et al. (2017) proposed that to capture upper canopy structures, the scanning locations 257 

should be sampled using a 10-by-10-m grid. In compliance with the results of our current study, we 258 

also argue that to capture branches above Hlc, paying attention to scanner-to-tree distances and 259 

covering all sides of a tree is crucial. On the other hand, shortening scanner-to-tree distances may 260 

restrict the spatial coverage. The multi-scan setup used in our study ensured complete stems were 261 

scanned, and had an average distance of 9.8 m between a tree and a scanner. It could be beneficial to 262 

implement scanner settings that result in a smaller point-to-point sampling distance than in our study 263 

(6.3 mm at a 10-m distance), to avoid compromising the size of the area covered. Further 264 

improvements in data acquisition technology could include use of pulse-based laser scanners, or 265 

scanners that record multiple returns or the full waveform. Nevertheless, diminishing point density 266 

will always occur higher in the tree with any TLS scanning setup or technique. If more commonly 267 

available in the future, in- or above-canopy measurements using laser scanners mounted on unmanned 268 

aerial vehicles could enable better coverage of upper parts of the tree crowns from closer distance and 269 

thus with higher point density (Jaakkola et al. 2017, Wallace et al. 2012). 270 

The chosen branch detection and modeling methods may also affect the expected completeness and 271 

accuracy of a retrieved branching structure. In manual inspections, the existence of a branch can 272 

visually be interpreted even from a sparse point cloud using multiple viewing angles to distinguish a 273 

branch-like shape from the surrounding points. The automated method used in our study was based on 274 

pattern matching (Figure 1b). Noise, stem deformations, and underestimated stem diameters may 275 



result in branches being omitted even if they are visible in the point cloud, as illustrated in Figure 4, 276 

due to the threshold values regarding the smoothing convolution with a Gaussian window function, 277 

allowed peak width in CWT, and the maximum bα. These particular omission errors could partly be 278 

avoided if the information of tree trunk points as defined in the stem-modeling phase (Liang et al. 279 

2012) was used to exclude these points from the branch detection phase. We will implement this last 280 

improvement in future applications of the method.  281 

Most TLS point cloud based geometric tree-modeling methods found in the literature base the branch 282 

detection on point connectivity analyses in the point neighborhood, which is a different approach than 283 

in our present study (Bucksch et al. 2008, Gorte et al. 2004, Raumonen et al. 2013). For example, the 284 

results in Boudon et al. (2014) and Bournez et al. (2017) implied that connectivity analyses also face 285 

challenges higher in the tree crown given the decreasing completeness of the point cloud. One 286 

possible solution to substitute for omitted branches could be an approach that combined quantitative 287 

point cloud processing with a process-based tree growth model to overcome the data gaps in the point 288 

cloud (Côté et al. 2011, Côté et al. 2012). However, such an approach requires existing equations 289 

suited for particular species and geographical regions. One of the motivations in developing TLS 290 

point cloud -based tree-modeling methods is to enable data collection for the development of new 291 

equations as well as for the calibration of existing allometric models, be they process-based or 292 

empirical. In such case, data gaps cannot be overcome by modeling. 293 

Our results showed that bd was generally underestimated by the quantitative method compared to the 294 

manual method (Figure 5). The effect of the measurer plays a role in manual circle-fitting. A circle 295 

can be fitted to the projection of branch points in various ways. In this study, the fitting aimed to 296 

exclude noise and the elliptical shape of a branch bottom (Figure 1c), in contrast to our previous study 297 

Pyörälä et al. (2018b), where the manual measurements did not account for noise or elliptical shape, 298 

but the circle-fitting utilized all points that appeared to belong to a branch. We changed the 299 

measurement principle in this study, because we considered the current approach to more realistically 300 

represent the size of the branch. Despite the different measurement principles between the two studies 301 

as described, the quantitative method underestimated bd in both Pyörälä et al. (2018b) (whorl-specific 302 

maximum branch diameters underestimated on average by -0.34 cm), and the current study (tree-303 

specific mean branch diameters underestimated on average by -0.89 cm) (Figure 5, Figure 6). 304 

The bα estimates from PCA did not differ statistically from the manual measurements when tree-305 

specific mean and maximum values were compared (Figure 5). As PCA is used to distinguish the 306 

direction in which the points exhibit most variation, the results indicated that the longitudinal axis of 307 

the branch was more completely recorded than the horizontal axis. Figure 4 showed that the insertion 308 

angle estimation errors are mostly unbiased in respect to the magnitude of the manually measured bα. 309 

The sharp trend in the maximum error values for bα resulted from the maximum value threshold that 310 



was set at 120° to filter out likely false positives. In addition, the errors in bα estimates did not have a 311 

clear effect on bd estimate accuracy (Figure 6c), although a slight trend was observable.  312 

Previous studies on the accuracy of individual branch modeling are sparse. Dassot et al. (2012) 313 

excluded branches below 7 cm in diameter, but reported ±30% differences between tree-specific 314 

branch volume estimates and destructive measurements. Côté et al. (2013) combined quantitative 315 

point cloud processing to process-based tree growth modeling and compared the results to destructive 316 

measurements from six trees. The group reported relative RMSEs of 20% and 25% for bd and bα, 317 

respectively. Hackenberg et al. (2015) reported that compared to destructive biomass measurements, 318 

branch modeling by means of cylinder-fitting was more accurate for branches with diameters above 7 319 

cm. Lau et al. (2018) also reported accurate results in bd estimation, but excluded branches below 10 320 

cm in diameter. Based on our results and the literature, individual branches remain challenging to 321 

retrieve accurately from TLS point clouds, especially for coniferous species where most branches are 322 

small in diameter. 323 

Our results and previous research implied that unbiased crown biomass estimates in a forest 324 

environment are probably not achievable directly from branch-to-branch measurements using TLS 325 

point clouds. Instead, select branching features that are extractable from TLS point clouds could be 326 

used as additional explanatory variables in allometric biomass models to account for local variation in 327 

crown structure (Kankare et al. 2013, Stovall et al. 2018, Temesgen et al. 2016). On the other hand, 328 

based on the current results and our previous studies, it is apparently possible to derive branching 329 

parameters from TLS point clouds that are applicable to wood quality estimations (Kankare et al. 330 

2014, Pyörälä et al. 2018a, Pyörälä et al. 2018b). For example, Hdb is one of the most commonly used 331 

variable in estimating wood quality in standing timber, because it can be used to estimate the yield of 332 

the branchless bottom logs, the most valuable log product (Lyhykäinen et al. 2009, Uusitalo 1997). 333 

Our current study had false positive branch detections below Hdb, which could lead to underestimating 334 

the bottom log yield. Furthermore, a comparison to X-ray scanning data of logs in Pyörälä et al. 335 

(2018a) revealed a dependency between the maximum interior knot diameter within a log measured 336 

from X-ray scanning images and the maximum bd measured manually from the TLS point cloud. In 337 

Pyörälä et al. (2018b) and in our current study, the quantitative method underestimated bd, which may 338 

mean that the maximum knot size within a tree was also underestimated. 339 

Conclusion 340 

Tree crown and branching parameters are closely related to tree growth and wood formation. Due to 341 

the difficulty in measuring these metrics directly by conventional, destructive means, a wide field of 342 

applications relies on established relationships between crown biomass, wood quality, and more 343 

readily measurable tree characteristics such as DBH, H, and Hdb. However, laborious local reference 344 

measurements are required to build such equations for new species and regions. Furthermore, in the 345 



case of biomass modeling, the accuracy of allometric models is lower at predicting the biomass of the 346 

crown components than of the stem. Using TLS point cloud -based geometrical tree-modeling 347 

approaches to measure variables describing the branching structure could reduce the need for 348 

destructive measurements and improve the accuracy of the equations in estimating the crown biomass 349 

and the expected wood quality, even if full branching structures are not captured. The initial equation 350 

development would also require species-specific destructive measurements of tree biomass, but the 351 

extractable branching parameters describe tree-specific differences in growth and wood formation 352 

across various regions in more detail than the currently applied equations. 353 
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Table 1. Stand information from a stand-wise forest inventory in 2013: Site location, site type (VT = 539 

Sub-xeric heath forest i.e. Vaccinium type, MT = Mesic heath forest, i.e. Myrtillus type, OMT = Herb-540 

rich heath forest, i.e. Oxalis-Myrtillys type) and volume of pine (VPine) and other species (Vother) per 541 

hectare. Scanning information: Mean 2D scanner-to-tree distance, the standard deviation (±SD), and 542 

mean registration error (±SD). 543 

Stand Location Site type VPine (m3*ha-1) Vother (m3*ha-1) Distance to the scanner (m) Registration error (mm) 

 
    Mean ±SD Mean ±SD 

1 Evo VT 220 10 8.9 4.18 1.2 3.5 

2 Evo VT 250 20 10.85 4.81 1 2.2 

3 Evo OMT 200 20 9.47 4.25 0.7 1.7 

4 Evo MT 140 260 10.15 5.31 1.5 5.6 

5 Orimattila MT 80 170 11.93 4.64 1.4 2.4 

6 Orimattila VT 170 80 12.18 5.11 1.7 3.3 

Mean 
  

176.7 93.3 9.79 4.83 1.3 5.6 

 544 

Table 2. Sample tree field measurement statistics. Mean and standard deviation (±SD) values of 545 

diameter at breast height (DBH), tree height (H), the height of the lowest dead branch (Hdb), and base 546 

height of the live crown (Hlc) of the sample trees. 547 

  
DBH (cm) H (m) Hdb (m) Hlc (m) 

Stand Number of trees Mean ±SD Mean ±SD Mean ±SD Mean ±SD 

1 30 28.9 3.4 22.6 1.2 4.8 2 14.4 1.7 

2 20 32.8 2.5 27 1.5 8.7 1.5 17.1 1.8 

3 30 28.6 4.2 22.9 1.8 4.4 2.3 13.9 1.9 

4 24 35.8 5.0 29 1.4 8.5 1.6 20.9 1.8 

5 28 34.7 4.2 27.7 1.8 10 2.9 18.8 1.6 

6 26 32.1 6.0 26 2.4 7.6 2.2 15.4 1.7 

All trees 158 31.8 5.2 25.5 3 7 3.1 16.6 3.0 

 548 

Table 3. Number of manually measured branches (N), minimum (Min), mean, maximum (Max), and 549 

standard deviation (±SD) of their height (bh), diameter (bd), and insertion angle (bα) in different stem 550 

sections. Hdb = Height of the lowest dead branch. 551 

 

N bh (m) bd (cm) bα (°) 

  

Min Mean Max ±SD Min Mean Max ±SD Min Mean Max ±SD 

Below Hdb 22 0.99 5.30 9.31 2.83 1.02 1.58 2.22 0.37 53.46 69.51 84.08 9.25 

Dead crown, lower half 702 1.94 9.42 16.36 3.17 0.77 2.06 5.72 0.65 36.21 67.23 99.63 11.36 

Dead crown, upper half 1075 7.66 13.33 20.51 2.71 0.78 2.25 5.56 0.66 30.87 64.37 98.39 11.66 

Live crown, lower half 720 12.52 17.35 24.54 2.64 1.08 2.35 5.99 0.67 28.82 61.95 94.43 11.38 

Live crown, upper half 42 15.85 19.92 25.61 2.72 1.39 2.44 4.71 0.78 20.80 63.37 78.95 13.60 

Total 2561 0.99 13.43 25.61 4.24 0.77 2.21 5.99 0.67 20.80 64.75 99.63 11.67 

 552 

Table 4. Results of the multiple regression analysis on the effect of scanner distance and occlusion 553 

(Height above the live crown base (Hlc)) on the quantitative branch detection accuracy. SE = 554 

parameter estimate standard error, t = Student’s t-test statistic of the parameter estimate, p = 555 

probability value of the t-test. Statistically significant parameter estimates (p<0.05) are marked with 556 

an asterisk (*).  557 



Quantitative branch detection 

accuracy above Hlc 
Estimate SE t p 

Intercept 1.564 0.165 9.494 <0.05* 

Distance from the scanner -0.062 0.008 -7.970 <0.05* 

Height above Hlc -0.003 0.016 -0.170 0.87 

 558 

Table 5. Results of the simple regression analysis on the effect of the sample-specific mean branch 559 

diameter on the quantitative branch detection accuracy. SE = parameter estimate standard error, t = 560 

Student’s t-test statistic of the parameter estimate, p = probability value of the t-test. Statistically 561 

significant parameter estimates (p<0.05) are marked with an asterisk (*).  562 

Quantitative branch detection accuracy Estimate SE t p 

Below Hdb 

    Intercept -0.102 0.616 -0.166 0.875 

Mean bd 0.390 0.402 0.970 0.377 

Dead crown, lower half 

    Intercept 0.401 0.097 4.131 <0.05* 

Mean bd 0.110 0.044 2.493 <0.05* 

Dead crown, upper half 

    Intercept 0.598 0.119 5.037 <0.05* 

Mean bd 0.019 0.050 0.378 0.706 

Live crown, lower half 

    Intercept 0.229 0.156 1.469 0.145 

Mean bd 0.028 0.064 0.441 0.660 

Live crown, upper half 

    Intercept -0.205 0.245 -0.836 0.431 

Mean bd 0.113 0.098 1.154 0.286 

Full tree 

    Intercept 0.476 0.109 4.374 <0.05* 

Mean bd 0.064 0.047 1.353 0.178 

 563 

564 



 565 

Figure 1. The sampling scheme and principle of the quantitative method applied for detecting and 566 

modeling branches. a) Hdb, Hlc and H show the heights of the lowest dead branch, live crown base, 567 

and tree top, respectively. Black lines show the limits between the sampled strata. b) The tree point 568 

cloud was segmented vertically into slices of 15 cm thickness and 50 cm radius. For each segment, the 569 

stem was modeled as a cylinder and the point distribution around the stem model was analyzed. 570 

Locations that exhibit peaks in the point distribution were considered potential branch locations and 571 

points from these locations were extracted for the modeling. c) The branch insertion angle (bα) was 572 

solved from the eigenvector e0 of the branches and Z-axis nz using principal component analysis, and 573 

the branch diameter (bd) and branch location (bc) were modeled by means of circle-fitting. 574 



 575 

Figure 2. The simplified concept of the occlusion effect as indicated by the height above the base 576 

height of the live crown (Hlc). The figure illustrates two sample trees with different live crown base 577 

heights. The scanner was situated at an equal distance from either tree. On the left-hand side, the line 578 

shows the 3D distance from the scanner (18 m) to a branch 0 m above Hlc. On the right-hand side, the 579 

line shows an equal 3D distance from the scanner to a branch approximately 6 m above Hlc. Due to 580 

the unequal quantity of accumulated foliage between the scanner and each branch, the right-hand-side 581 

branch is supposed less likely visible than the left-hand-side branch. Therefore, the height above Hlc 582 

was considered to represent the magnitude of occlusion in this study. 583 



 584 

Figure 3. Branch detection performance in different stem sections. Left: illustrations of branch 585 

detection performance in the dead crown and lower and upper half of the live crown; branches 586 

detected quantitatively are highlighted in distinctive dark gray. Right: White and gray bars represent 587 

the number of branches detected manually and quantitatively, respectively. The line shows the 588 

accuracy (%) of the quantitative method compared to the manual method. Hdb is the height of the 589 

lowest dead branch measured in the field.  590 

 591 

Figure 4. The effect of stem model to branch detection: forcing a cylindrical shape to the stem points 592 

excludes stem deformations, branch bumps, or other anomalies from the stem model. In our branch 593 

detection method, such occurrences distort the analyzed point densities around the stem model: in the 594 

illustrated whorl, the branch at approximately 220 degrees was omitted by the Continuous Wavelet 595 

Transform peak detection due to stem deformation between 150 and 270 degrees that distorts the 596 

baseline. 597 



 598 

Figure 5. Comparisons between manually measured branch parameter references and quantitatively 599 

estimated branch parameters using samples from (a) all five strata in each tree, (b) below the lowest 600 

dead branch, (c) the lower half of the dead crown, (d) the upper half of the dead crown, (e) the lower 601 

half of the live crown, and (f) the upper half of the live crown. The upper row gives the results of the 602 

branch diameter comparisons between the data sets and the bottom row those of the branch insertion 603 

angle. Blue indicates the sample-specific maximum value of the branch parameter, red the mean, and 604 

black the minimum. The bias and root-mean-squared error (RMSE) give the error of the quantitative 605 

minimum, mean, and maximum estimates compared to the manual minimum, mean, and maximum 606 

observations. R2 indicates the regression model fit (solid line) between the two. 607 



 608 

Figure 6. Sample-specific relative errors of bd and bα in respect to the reference measurement value, 609 

and the mean relative estimation error of the other branch parameter. Each observation refers to the 610 

minimum (black), mean (red), or maximum (blue) values of the branch parameter in a sample (i.e., 611 

branches along one 1-m stem section). A negative value on the y-axis refers to the quantitative model 612 

underestimating the parameter, and vice versa. The dotted line shows the best linear fit between the 613 

variables. 614 

 615 



616 
Figure 7. The effect of 3D distance from the scanner and the self-occlusion as indicated by the height 617 

above the base height of the live crown (Hlc), (color-coded bars) on the sample-specific mean number 618 

(± standard deviation) of manually detected branches (left), and quantitatively detected branches 619 

(right). 620 


