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Abstract 20 

 21 

The thick loess-palaeosol sequences in the Mangshan Loess Plateau (MLP; central China) along the south bank 22 

of the lower reach of the Yellow River provide high-resolution records of Quaternary climate change. In 23 

addition, substantial increases in grain-size and accumulation rate have been inferred in the upper part of the 24 

loess sequence, above palaeosol layer S2. This study investigates the sources of the long-term dust supply to 25 

the MLP and explores the mechanism behind the sudden increase in sediment delivery and coarsening of the 26 

loess deposits since S2 (~240 ka) by using end member modelling of the loess grain-size dataset and single-27 

grain zircon U-Pb dating. Our results indicate that the lower Yellow River floodplain, directly north of the 28 

MLP, served as a major dust supply for the plateau at least since the deposition of loess unit L9 and indirectly 29 

suggest that the integration of the Yellow River and the disappearance of the Sanmen palaeolake took place 30 

before L9 (~900 ka).The sudden change in sedimentology of the Mangshan sequence above palaeosol unit S2 31 

may result from an increased fluvial sediment flux being transported to the lower reaches of the Yellow River 32 
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because of tectonic movements (initiated) in the Weihe Basin around 240 ka. Furthermore, sediment 33 

coarsening can be explained by the gradual southward migration of the lower Yellow River floodplain towards 34 

the MLP since the deposition of palaeosol S2. The migration is evidenced by the formation of an impressive 35 

scarp, and is likely caused by tectonic tilting of the floodplain area.  36 

 37 
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 39 

1. Introduction 40 

Quaternary loess-palaeosol sequences are widespread in the Chinese Loess Plateau (CLP) of northern 41 

China. The sedimentological characteristics of these wind-blown deposits provide a powerful tool for the 42 

reconstruction of the past atmospheric circulation pattern and climate change (Liu, 1985; Kukla, 1987; An et 43 

al., 2001; Porter, 2001). A SE-ward decreasing trend in grain size, unit thickness and inferred sedimentation 44 

rate is recognised in the CLP loess sequences (Liu, 1985; Pye, 1995; Liu and Ding, 1998; Ding et al., 2002; 45 

Nugteren and Vandenberghe, 2004; Prins and Vriend, 2007). Two factors mainly control grain-size variations 46 

within the CLP, namely the strength of transporting winds and the locations of the source areas. Therefore, the 47 

sedimentary characteristics of the wind-blown deposits allow us to assemble information concerning past 48 

atmospheric circulation patterns and the distance to the source area. Previous studies suggested that the deserts 49 

and arid lands north and northwest of the CLP are the main source area of the CLP loess deposits (Liu, 1985; 50 

Derbyshire et al., 1998; Lu and Sun, 2000; Sun, 2002; Nugteren and Vandenberghe, 2004; Ding et al., 2005). 51 

However, recent evidence based on single grain zircon U-Pb dating found a genetic link between the Yellow 52 

River and loess sediments. These results emphasise the important contribution of reworked fluvial detritus 53 

delivered by the Yellow River from the NE Tibetan Plateau to the CLP (Stevens et al., 2013; Bird et al., 2015; 54 

Nie et al., 2015; Licht et al., 2016; Zhang et al., 2016). 55 

The Yellow River is the second longest river of China, with a total length of 5500 km.  It originates in the 56 

northeast Tibetan Plateau and runs eastwards around the Ordos block and the North China Plain before 57 

discharging into the Bohai Sea (Fig.1). The river course has traditionally been divided into upper, middle and 58 

lower reaches, with Hekou town in Inner Mongolia marking the upper/middle reach boundary, and Mengjin 59 
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of Henan province the middle/lower reach boundary of the river (Fig. 1). As the most sediment-laden river in 60 

the world, the Yellow River delivered more than one billion tonnes sediments each year to the sea between 61 

1951 and 1979 (Wang et al., 2015). Its sediment load increases most markedly in the middle reach, near the 62 

CLP and gradually declines downstream.  63 

Geological surveying has identified a palaeolake in the Weihe Basin, with its eastern boundary at the 64 

Sanmen Gorge (AFSOM, 1988; Jiang et al., 2007). It has been suggested that the Sanmen palaeolake formed 65 

~5 Ma (Wang, 2002) and  was drained when the Yellow River started to cut the Sanmen Gorge, leading to the 66 

formation of its modern course (Jiang et al., 2007; Zheng et al., 2007; Wang et al., 2013).The proposed timing 67 

of the incision of the gorge varies from late Miocene to Pleistocene (Lin et al., 2001;Wang, 2002; Jiang et al., 68 

2007; Wang et al., 2013; Kong et al., 2014; Hu et al., 2017), and Rits et al. (2017) concluded that the Sanmen 69 

Lake did not exist during the last ~1 Ma. The cutting of the Sanmen Gorge allowed the release and transport 70 

of substantial volumes of reworked loess towards the lower reaches of the river. As a result, large fluvial fan 71 

systems were created east of the Sanmen Gorge (Huang et al., 2009). Studying the evolution of the Yellow 72 

River is crucial for understanding the “source-to sink” process, influenced by tectonic activity and climate 73 

change at both a regional and global scale. However, the geological history of the Yellow River remains a 74 

topic of debate and active investigation, particularly for the development of its drainage system in its middle 75 

and lower reaches (Lin et al., 2001; Wang, 2002; Jiang et al., 2007; Pan et al., 2011; Wang et al., 2013; Kong 76 

et al., 2014; Hu et al., 2017; Li et al., 2017 ).  77 

Thick, continuous loess-palaeosol records of exclusively aeolian origin have been found on the Mangshan 78 

Loess Plateau (MLP) (Wu et al., 1999; Jiang et al., 2007; Zheng et al., 2007; Qiu and Zhou, 2015) which is 79 

located along the lower reach of the Yellow River (Fig. 1). Here the loess deposits above palaeosol S2 80 

(equivalent to MIS 7, ca. 225 ka) are significantly thicker than loess deposits on the CLP. For instance, the 81 

deposits of L1-S1-L2 of Xifeng, Luochuan and Lantian are between 10 and 20 m thick, whilst those at 82 

Mangshan are ~86 m thick. Consequently, sedimentation rates and mass accumulation rates are significantly 83 

higher at the MLP than in the central CLP (Prins et al., 2009). In addition, the upper part of the Mangshan 84 

record displays extremely high sedimentation rates and a coarser composition compared to its lower part, 85 

suggesting a dust supply from a more proximal source, i.e. the lower Yellow River floodplain (Wu et al., 1999; 86 

Jiang et al., 2007; Zheng et al., 2007; Prins et al., 2009). Study of the provenance and sedimentological 87 
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variations of the Mangshan loess records may therefore assist in the understanding of the mechanisms 88 

associated with dust supply from the Yellow River to the MLP and the drainage system development in the 89 

river’s middle and lower reaches.  90 

In this paper, the first record of single grain zircon U-Pb chronology of the Mangshan loess-palaeosol 91 

sequence is presented (Figs. 2 and 5, from the Holocene soil S0 through L6 and L9) and is compared with the 92 

U-Pb age signature of possible sources, including the upper, middle and lower reaches of the Yellow River 93 

deposits, the CLP loess, as well as river sediments from the nearby Taihang Mountains and Qinling Mountains. 94 

By combining the provenance age distributions with a mixing model of the grain-size distribution data (Figs. 95 

2 and 3) and a dust flux model (Fig. 4) of the Mangshan sequence(s), it is intended to 1) characterise the 96 

contribution of subpopulations of the sediments and their corresponding transporting processes based on the 97 

grain-size dataset, 2) investigate the provenance signal of the Mangshan loess, comparing it to potential source 98 

areas (Fig. 6) and quantify their contributions (Fig. 7), and 3) discuss the mechanisms controlling 99 

sedimentology and provenance variations of the Mangshan dust during the Pleistocene and Holocene. The 100 

results also have implications for the evolution of the Yellow River system and the age of the Sanmen 101 

palaeoake. 102 

 103 

2. Material and methods 104 

 105 

2.1 Sites, samples and sediment analyses 106 

 107 

The MLP lies 25 km west of Zhengzhou on the south bank of the Yellow River (Fig. 1). The loess plateau 108 

is about 18 km in length (W-E) and 5 km in width (N-S), with its highest point reaching approximately 150 m 109 

above the Yellow River floodplain (Fig. S1). The deposits consist of a number of loess and palaeosol 110 

alternations with a total thickness of ~170 m (Jiang et al., 1998; Ji et al., 2004; Jiang et al., 2004; Jiang et al., 111 

2007; Zheng et al., 2007). Zheng et al. (2007) showed that the upper part of the sequence (0-97 m, including 112 

palaeosols S0, S1 and S2, and loess units L1 and L2) experienced extremely high sedimentation rates (on 113 

average 40 cm/kyr) in comparison with the lower part of the profile (97- 165 m; palaeosols S3-S10, loess units 114 

L3-L10) (see also  Fig. S1). 115 
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Here the grain-size, magnetic susceptibility, carbonate content and organic matter records for the loess-116 

palaeosol sequences are presented, based on samples from two localities (Fig. 1 and Figs. S1, S2 and S4). The 117 

northern (‘proximal’) loess section, here referred to as MS2006 (34°57.5’ N, 113°22.2’ E) (Fig. 1c), is exposed 118 

on the northern slope of the plateau, where the Yellow River and local gullies cut through the loess forming a 119 

valley with steep cliffs. Section MS2006 is ~130 m thick (Fig. S2) and is a composite of record X (0-59 m; 120 

Prins et al., 2009) and record Z’ (36-130 m; Zheng et al., 2007, see also Prins et al., 2009), analysed at a 10-121 

cm (X: 0-59 m) and 20-cm resolution (Z’: 59-130 m). The grain-size, organic matter and carbonate profiles of 122 

records X and record Z’ for the overlapping interval 36-59 m indicate the similarities between records X and 123 

Z’ (Fig. S3). The uppermost S0-L1-S1 loess-palaeosol complex has also been sampled at a more southern 124 

location, about 2.0 to 2.7 km south of the MS2006 section (Fig.1c and Figs. S1 and S4) to study the impact of 125 

increasing distance with respect to the Yellow River. The two sections MS2008W (34°56.4’ N, 113°22.2’ E) 126 

and MS2008E (34°56.1’ N, 113°22.4’ E), ~34 and ~14 m thick, respectively, have been sampled in 26 partly-127 

overlapping vertical trenches at a 10-cm resolution. 128 

 129 

2.2 Magnetic susceptibility, carbonate and organic matter analysis 130 

 131 

The samples were dried in an oven (50 °C), lightly ground and aliquots of ~8 g were analysed using a 132 

Bartington MS2 magnetic susceptibility meter at the School of Ocean and Earth Sciences, Tongji University 133 

(Shanghai). The organic matter and carbonate content of aliquots of ~2 g of these samples were analysed by 134 

thermo-gravimetric analysis (TGA), using a Leco TGA 601 at the Vrije Universiteit Amsterdam (VUA). 135 

Derivative weight loss curves most clearly indicate the temperature intervals during which weight loss is most 136 

apparent: replicate tests performed on the loess samples indicate that the temperature interval during which 137 

organic matter and carbonate minerals disintegrate is 200-550 °C and 700-1000 °C, respectively. 138 

 139 

2.3 Grain-size analysis and end-member modelling 140 

 141 

The Mangshan loess samples for grain-size analysis were prepared following the methods described by 142 

Konert and Vandenberghe (1997), with organic matter and carbonates being removed. All the measurements 143 
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were performed on a Fritsch Analysette 22 laser particle sizer at the VUA resulting in a grain-size distribution 144 

with 56 size classes in the size range 0.15-2000 µm.  145 

A mixing model of the combined Mangshan grain-size distribution dataset (n= 1931, from sections 146 

MS2006, MS2008W and 2008E) was constructed with the inversion algorithm for end-member modelling of 147 

compositional data EMMA (Weltje, 1997). EMMA is a non-parametric numerical-statistical technique and its 148 

advantage over the parametric curve fitting approaches, e.g. Weibull (Sun et al., 2002, 2004) or log-normal 149 

(Xiao et al., 2009, 2013) is that it does not require any prior knowledge about the grain size controlling 150 

processes (Weltje and Prins, 2007). This method has proven to be powerful in distinguishing aeolian from 151 

fluvial sediments in various marine settings (e.g. Prins and Weltje, 1999; Prins et al., 2000; Stuut et al., 2002, 152 

2014; Deplazes et al., 2014) and in partitioning multiple transport/deposition processes of Quaternary loess 153 

from the CLP (Prins and Vriend, 2007; Prins et al., 2007; Vriend et al., 2011; Shang et al., in press). Details 154 

of the technical aspects of the end-member modelling algorithm are given in Weltje (1997), Prins and Weltje 155 

(1999) and Weltje and Prins (2003). Prins et al. (2009) already applied this approach to the grain-size data of 156 

the upper 60 m of the MS2006 section (Fig. 3d). In this study, a new mixing model expressing the loess samples 157 

from all three sections as mixtures of three end members has been produced. 158 

The EMMA approach involves two modelling stages. In the first stage, the number of end members (EMs) 159 

is estimated on the basis of the mean and/or median coefficient of determination statistics (r2, Fig. 3a). The 160 

coefficients of determination represent the proportions of the variance of each variable (size class) that can be 161 

reproduced by the approximated data (Fig. 3b). In principal, the simplest model is chosen when the r2 shows 162 

satisfactory goodness of fit (usually r2 > 0.8, e.g. Fig.3a). In the second modelling stage, the compositions of 163 

the end members are estimated (Fig. 3c) and the proportional contributions of the end members in the analysed 164 

samples are calculated (Fig. 2c).   165 

 166 

2.4 Age model and dust flux calculations 167 

 168 

Peterse et al. (2011) presented an age model for the upper 0-60 m (S0-L1-S1) of the sequence in section 169 

MS2006, and sections MS2008W and MS2008E based on the correlation of the typical loess proxy records, 170 

i.e. magnetic susceptibility, carbonate content and grain-size, with the U-230Th dated oxygen isotope records 171 
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from Dongge, Sanbao and Hulu caves in central China (Cheng et al., 2009; Wang et al., 2008). Following a 172 

similar approach, we extended the age model for the upper 130 m (S0-L6) of the loess-palaeosol sequence 173 

MS2006 (Fig. 2a, b, c) based on the correlation of loess proxy records with the newly published speleothem 174 

records extended to 640 kyr B.P. in central China (Fig. 2d; Cheng et al., 2016, and references therein). The 175 

inflection points in the loess proxy records have been used as tie points between the loess record and the MIS 176 

boundaries recognised in the stacked speleothem 18O record. The depth and ages of the 11 selected time 177 

control points are listed in Table S1. Simultaneously, the loess-palaeosol sequence was also visually correlated 178 

with the stacked benthic oxygen isotope record (Lisiecki and Raymo, 2005) assuming that the palaeosols layers 179 

(S0, S1 … S5) correlate to interglacial Marine Isotope Stages (MIS1, 5…13-15) and the loess layers (L1, L2 … 180 

L5) correlate to glacial Marine Isotope Stages (MIS 2-4, 6 … 12) (Fig. 2e). Although a fully independent age 181 

control for the complete studied sequence is missing, a recent study by Qiu and Zhou (2015) provided OSL 182 

ages for the upper ~120 m of another section (covering the S0 to S5 interval) on the Mangshan Plateau. Their 183 

independent age model (based on the application of an elevated temperature post-IR IRSL (pIR200IR290) SAR 184 

procedure to polymineral fraction) is very similar to our findings presented in Figure 4 indicating that our age 185 

model suffices for the purpose of dust flux calculations.  186 

Mass-accumulation rates (MAR, in g/cm2/ka) of the well-constrained loess (L1, L2 … L5) and palaeosol 187 

(S0, S1 … S5) units of sections MS2006 and MS2008W were calculated according to Prins and Vriend, 2007:  188 

(1)  MAR = SR × BD 189 

Where SR is the sediment accumulation rate (in cm/ky), and BD is the sediment dry-bulk density (in g/cm3). 190 

SR values were calculated based on the age estimates (Table S1) and sediment thickness values for each of the 191 

loess and palaeosol intervals (Table S2). BD values of 1.48 g/cm3 were used (cf. Kohfeld and Harrison, 2003).  192 

Fractionated mass-accumulation rates (fluxes) for the modelled end members (FEM-x, in g/cm2/ka) were 193 

calculated according to Prins and Vriend (2007): 194 

(2)  FEM-x = MAR × pEM-x 195 

Where pEM-x is the proportional contribution (dimensionless) of end member EM-x, and 


3-EM

1-EMx

p x = 1. 196 
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In these calculations it was assumed that the loess-palaeosol samples are entirely composed of siliciclastics, 197 

which is just a first-order approximation as the contribution of other (non-siliciclastic) sediment phases like 198 

(detrital, pedogenic) carbonates and organic carbon has been ignored. 199 

2.5 Zircon samples and zircon U-Pb dating 200 

The zircon samples were collected from the MS2006 section, from loess units L1, L2, L3, L5, L6 and L9 201 

(as a reference sample for the bottom loess unit, Fig. 2 and 5). Samples collected from potential source areas 202 

in this study are shown in Figure 1b, including fluvial samples from the lower Yellow River, Yiluo River, Qin 203 

River and the Yu River alluvial fan northeast to the MLP. The detailed location and description of zircon 204 

samples including those from Kong et al. (2014), Bird et al. (2015) and Nie et al. (2015) are shown in Table 205 

S3.  206 

The zircon grains in the size range of 20 µm to 90 µm were extracted following the standard procedure of 207 

heavy liquids and Frantz magnetic separation at the Mineral Separation Laboratory of VUA (Shang et al., 2016) 208 

and randomly selected by hand-picking under an optical microscope and then mounted in epoxy resin and 209 

sectioned approximately in half and polished. Back-scattered electron images (BSE) were prepared for the 210 

zircons to target the spot sites. U–Pb dating analyses were performed using a Nu Plasma AttoM single collector 211 

ICPMS connected to a Photon Machine Excite laser ablation system at the Geological Survey of Finland in 212 

Espoo. Typical ablation conditions were: beam diameter: 20 μm, pulse frequency: 5 Hz, beam energy density: 213 

2 J/cm2. Raw data were corrected for the background, laser induced elemental fractionation, mass 214 

discrimination and drift in ion counter gains and reduced to U–Pb isotope ratios by calibration to concordant 215 

reference zircons, using the program Glitter (Van Achterbergh et al., 2001). Age related common lead (Stacey 216 

and Kramers, 1975) correction was used when the analysis showed common lead contents significantly above 217 

the detection limit (i.e., >50 cps). All the ages were calculated with 2σ errors and without decay constants 218 

errors. 206U/238Pb and 207Pb/206Pb ages were used for ages younger and older than 1 Ga, respectively. We used 219 

a 10-20% discordance filter to the generated data. 220 

3. Results 221 

3.1 Mangshan loess-palaeosol stratigraphy and sedimentology 222 
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The carbonate, organic matter and median grain-size records of section MS2006 are shown in Figure S2. 223 

On the basis of these parameters a clear distinction can be made between the loess and palaeosol layers. 224 

Palaeosol layers S0 to S5 characteristically consist of fine-grained sediments, i.e. median grain-size values 225 

below 25 µm, with low carbonate contents (1–2 %) and slightly, but consistently, elevated organic matter 226 

contents (up to 1.5–2 %). In contrast, loess layers L1 to L6 consist of coarser sediments, with median grain-227 

size values up to 30-35 µm in the lower part of the sequence (L3–L6), and up to ~45 µm in loess horizons L2 228 

and L1. The loess sediments typically show carbonate contents of ~10%, and low organic matter values (~0.5–229 

0.75 %). Distinct layers with high carbonate content (>10%) – reflecting the presence of carbonate nodules – 230 

occur near the base of palaeosol layers S1, S2, S3 and S4. 231 

A detailed stratigraphic picture of the S0-L1-S1 sequence in section MS2006, and its correlation with 232 

sections MS2008W and MS2008E, is shown in Figure S4. Overall, the three sections show relatively consistent 233 

trends in the analysed proxies during the last glacial-interglacial cycle: glacial loess unit L1 is characterised 234 

by relatively lower magnetic susceptibility of ~5 SI/g, higher carbonate content of ~10% and a coarser median 235 

grain size (30–50 µm), while a higher magnetic susceptibility (5–10 SI/g), lower carbonate content (<10%) 236 

and finer median grain sizes (20–40 µm) characterise the interglacial palaeosol units S1 and S0. In addition, 237 

higher-frequency and lower-amplitude patterns are visible in all three proxy records, within palaeosol unit S1 238 

and especially in the loess unit L1, pointing to highly variable sedimentation and pedogenic processes 239 

throughout the last glacial-interglacial cycle. The thickness of the loess unit L1 and palaeosol unit S1 decreases 240 

from the northern MS2006 section to the southern MS2008W and MS2008E sections (Figs. S1 and S4). For 241 

example, the thickness of L1 of the MS2006 section is about 42 m while in the MS2008W, it is around 22 m.  242 

3.2 Mixing model 243 

The ‘goodness-of-fit’ (r2) statistics were computed for mixing models with 2–10 end members. The results 244 

show that the loess sediments can be adequately described as mixtures of three end members (Figs. 3a and 3b). 245 

The three-end-member model explains on average more than 86% of the observed variance in the grain-size 246 

dataset (mean r2 of 0.86 and a median r2 of 0.92, Fig. 3b).  247 

The end members are characterised by unimodal, fine skewed grain-size distributions (Fig. 3c) with modal 248 

particle sizes close to 63 µm (EM-1), 37 µm (EM-2) and 26 µm (EM-3). The sand (>63 µm): silt (8–63 µm): 249 
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clay (<8 µm, cf. Konert and Vandenberghe, 1997) ratio for EM1, EM2 and EM3 are 32:54:14, 15:76:9 and 250 

2:55:43, respectively. The modelled end members presented here for the complete Mangshan dataset (Fig. 3c) 251 

resemble those of the upper (S0-L1-S1) Mangshan sequence (Fig. 3d) presented by Prins et al. (2009) and the 252 

CLP loess dataset (Fig. 3e) presented by Prins and Vriend (2007).    253 

The proportional contribution of the end members with depth in the MS2006 section is compared to the 254 

loess-palaeosol stratigraphy and median grain-size record in Figure 2. An evidently dramatic increase of the 255 

sandy EM-1 in the loess units and palaeosol units above S2 is present. By contrast, the proportion of clayey 256 

EM-3 decreased in the palaeosol units S0 and S1 compared to the lower units S2, S3, S4 and S5 (Fig. 2c).  257 

A detailed picture of the S0-L1-S1 sequence in sections MS2006, MS2008W and MS2008E is depicted in 258 

Figure S5. The proportion of the sandy EM-1 in MS2006 is significantly higher than in the southern two 259 

sections MS2008W and MS2008E which are situated at a more distant location with respect to the Yellow 260 

River floodplain (Fig. 1c and Fig. S1), whereas the proportions of the silty EM-2 increase from the northern 261 

MS2006 section to MS2008-W and MS2008-E (Fig. S5). The clayey EM-3 does not show a clear spatial 262 

increasing/decreasing trend. These trends suggest that the sandy and silty end-members of the upper three units 263 

(S0-L1-S1) of the Mangshan loess were derived from a nearby source area, the lower Yellow River floodplain, 264 

see below in the Discussion. 265 

3.3 Dust flux model  266 

Linear sediment accumulation rate (LSR), mass accumulation rates (MAR) and fractionated fluxes of the 267 

three end-members (FEM-1, FEM-2 and FEM-3) were calculated for the stratigraphic units of section MS2006 (S0-268 

L1-S1… L5-S5) and MS2008W (S0-L1-S1). Overall, a dramatic increase in the LSR is observed in the upper 269 

part of MS 2006 section (above S2) (Fig. 4a). The average SR value for the upper part of MS2006 section is 270 

36 cm/kyr while for the lower part (below S2) it is about 11 cm/ kyr. In more detail, the SR record shows an 271 

increasing trend from the base (S5) to the top (L1), superimposed on a clear glacial-interglacial variability with 272 

high LSR recorded during glacials (loess units) and low LSR during interglacials (palaeosol units). 273 

Figure 4b shows that bulk MAR values range between ~4 and ~88 g/cm2/kyr in section MS2006, with 274 

minimum values in the S5 palaeosol unit and maximum values in the L1 loess unit. The MAR values in section 275 

MS2008W varied between ~22 and ~53 g/cm2/kyr, with minimum values in the S1 palaeosol unit and 276 



11 
 

maximum values in the L1 loess unit. Similar to the SR record, the loess units display higher MAR than the 277 

palaeosol units. However, there is a significant increase in MAR from S2 and above. Note that the MAR values 278 

in palaeosol units S2 (25 g/cm2/kyr) and S1 (50 g/cm2/kyr) are even higher than the pure loess units L4 (9 279 

g/cm2/kyr) and L5 (22 g/cm2/kyr). Spatially, the loess unit L1 and palaeosol unit S1 of the MS2006 section 280 

also display overall higher MAR values compared to the units of MS2008W section, which is at a greater 281 

distance from the Yellow River.  282 

The summed fractionated fluxes of the coarse fraction (Fcf = FEM-1 + FEM-2) are plotted against the bulk 283 

MARs of the stratigraphic units in the sections MS2006 and MS2008W in Figure 4b. The coarse fraction and 284 

MAR are positively related by the linear regression equation: MAR = 1.10Fcf + 6.12 (r2 = 0.98). “6.12” reflects 285 

the constant absolute contribution of EM-3 over time. The variations in relative EM-3 content are thus 286 

dominantly caused by a variable input of end-members EM-1 and EM-2, with a negative relation between EM-287 

3 and MAR. Similar results have been described by Prins and Vriend (2007), Prins et al. (2007) and Vriend et 288 

al. (2011) from the CLP. 289 

3.4 The zircon U-Pb age distributions 290 

3.4.1 Mangshan loess-palaeosol sequence 291 

Figure 5 displays the zircon U-Pb age distributions for the Mangshan loess samples next to the loess-292 

palaeosol stratigraphy. All the loess samples are characterised by two dominant age populations, one at 200–293 

350 Ma (Permian–Triassic population) and the other at 350–550 Ma (Ordovician–Silurian population). 294 

Additionally, there are several minor age peaks in the ranges of 0-100 Ma, 0.7-1 Ga, 1.5–2.0 Ga and at ca. 2.5 295 

Ga. However, the relative abundance of the two dominant age peaks (200–350 Ma and 350–550 Ma) varies 296 

from sample to sample. The abundance is almost equal for the samples from the loess units L1 (MS-L1-1 and 297 

MS-L1-2) and L3 (MS-L3) whereas the age population at 200–350 Ma is more notable in sample MS-L2-1 298 

from the upper part of loess unit L2, and the peak at 350–550 Ma is dominant in the samples from the lower 299 

part of L2 (L2-2), the loess units L5 (MS-L5), L6 (MS-L6) and L9 (MS-L9).  300 

In order to minimise uncertainty introduced by varying number of grains analysed for each sample (n=213-301 

347), and to make the results more statistically meaningful, the zircon ages were grouped into an upper and a 302 
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lower Mangshan section. The comparison of the combined age spectra above S2 (n=1100) to those below S2 303 

(n=903) shows that the age populations 200–350 Ma and 350–550 Ma are dominant in both datasets (Fig. 6a 304 

and 6b), although, the <100 Ma and the 200–350 Ma age populations slightly increase (compared to the 350–305 

550 Ma population) in the upper part of the Mangshan sequence.  306 

3.4.2 Comparison of Mangshan loess with potential source areas 307 

Grain-size analyses and end-member modelling indicated that the nearby lower Yellow River floodplain 308 

is the likely source of the sandy and silty loess components. The comparison of the zircon U-Pb age spectra of 309 

the Mangshan loess with potential source areas (Fig. 6) confirm this and indicate that the overall pattern of 310 

Mangshan zircon U-Pb ages (Figs. 6a and 6b) is not only comparable to that of the lower reaches of the Yellow 311 

River as sampled at locations YR-20 and YR-33 (Fig. 1 b; Figs. 6k and 6l) but also to that of the loess deposits 312 

from the CLP (Beiguoyuan and Lingtai, Fig. 1; Fig. 6c), and even the upper  reaches of the Yellow River 313 

(Fig.6m). All these deposits exhibit two distinct Palaeozoic age populations at 200-350 Ma and 350-550 Ma 314 

(Figs. 6k, 6l and 6o). Additionally, the upper part of Mangshan loess record shows a <100 Ma zircon age peak 315 

(Fig. 6a). The zircon ages of the Mangshan loess are different from those of the middle reach of the Yellow 316 

River (Fig.6n), which are characterized by only one dominant Palaeozoic age peak at 200–350 Ma and two 317 

old zircon populations at ca. 1850 Ma and ca. 2500 Ma (Stevens et al., 2013; Bird et al., 2015; Nie et al., 2015). 318 

The Qin River and Yu River alluvial fan zircon ages (Figs. 6i and 6j), considered to be representative of the 319 

provenance signal from the Taihang Mountains (Figs. 1a and 1b), are dominated by older zircon grains with 320 

age peaks at ca. 1850 Ma and ca. 2500 Ma, respectively. The Yiluo River sample  – representing the Qinling 321 

Mountains source (Figs. 1a and 1b) – displays similar double-age peaks at 200–350 Ma and 350–550 Ma (Fig. 322 

6d) as the Mangshan loess samples, with an additional younger age peak in the range of 60–180 Ma and a 323 

distinct peak at ca. 2300 Ma,  not present in the Mangshan loess. The Wei River, with its course north of the 324 

Qinling Mountains (Fig. 1b), forms an important tributary of the Yellow River  and carries sediments that are 325 

dominated by the 200–300 Ma and especially the 350–550 Ma age populations (Fig. 6e). Notably, zircon grains 326 

of early Cenozoic age (0–60 Ma) are also present in the Wei River sediments. Zircon ages of sediments from 327 

the Sanmen Gorge (Figs. 1a and 1b), including Sanmen palaeolake sediments (Fig. 6h), fluvial sands of the 328 

Sanmen Formation (Fig. 6f) and from the third and oldest river terrace (T3) of the Yellow River in Huangdigou 329 
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(HDG) of the Sanmen Gorge (Fig. 6g) (Wu et al., 1999) – all exhibit dominant peaks corresponding to 200–330 

350 Ma and 350–550 Ma, with two minor peaks at ca. 1850 Ma and ca. 2500 Ma. 331 

Non-metric Multi-Dimensional Scaling (MDS) maps (Vermeesch, 2013; Vermeesch et al., 2016) are used 332 

to visualize the (dis-) similarities between the zircon age profiles of Mangshan loess, CLP loess, Yellow River 333 

sediments and other potential contributors to the Mangshan loess (Fig. 7). The Mangshan loess plots close to 334 

the samples from the upper reach of the Yellow River and the CLP loess. The samples from the lower reach 335 

of the Yellow River shows a close link with both the Wei River and the Yiluo River samples. The samples of 336 

the Sanmen palaeolake and the river terraces in the Sanmen Gorge are located very close to each other. The 337 

Qin River sample and the Yellow River middle reach sample lie close to each other but plot away from other 338 

samples in the map.  339 

4. Discussion 340 

4.1 Genetic interpretation of the Mangshan loess end-member model 341 

The end-member modelling results of the Mangshan loess-palaeosol grain-size record show that the 342 

sediments are well described as a mixture of three different dust components which are comparable to the 343 

average mixing model of the CLP (Figs. 3c and 3e) (Prins et al., 2007; Prins and Vriend, 2007). Prins et al. 344 

(2007) interpreted the CLP loess-palaeosol records contain two different types of aeolian dust supplied from 345 

two distinct source areas and/or reflecting different sediment transport-deposition process. The sandy (EM-1) 346 

and silty (EM-2) loess components represent the coarse dust fraction transported by low level continental 347 

northwesterly monsoonal winds via modified saltation and short term suspension processes over relative short 348 

transport distances during major dust outbreaks. By contrast, the clayey loess component (EM-3) reflects a 349 

fine dust component distributed over longer distances by long-term suspension processes. The fact that EM-1 350 

and EM-2 are dominant in the Mangshan sequences indicates that most of the Mangshan loess was supplied 351 

from a proximal source during major dust events. The independent mixing model of the last glacial-interglacial 352 

sequence (S0-L1-S1) of the MS2006 section (Prins et al., 2009) shows that the clayey or ‘fine silty’ EM3 of 353 

the upper Mangshan sequence (with the mode at 32 µm; Fig. 3d) is coarser than EM3 of the composite MS2006 354 

section (mode at 26 µm; Fig. 3c). This observation suggests that the new mixing model allows better to make 355 

the distinction between the two types of dust supply patterns also observed on the CLP.  356 
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According to the equation MAR = 1.10Fcf + 6.12 (Fcf = FEM-1 + FEM-2) (section 3.3), the variation of FEM-3 357 

can be explained as a result of a “dilution effect” from the variation of the coarse flux FEM-1 and FEM-2, with 358 

high EM-3 content reflecting low MARs and low EM-3 content reflecting high MARs. Thus, variations in dust 359 

flux during glacials and interglacials are expressed by relative high EM-3 content in palaeosol units (S1, S2, 360 

S3, S4 and S5) and lower relative EM-3 content in loess units (L1, L2, L3, L4 and L5, Fig. 2c). The relative 361 

content of fine EM-3 in loess units L1, L2 and L3 in the MS2006 section is significantly lower than in the 362 

loess units L4, L5 and L6 in the lower part of the sequence, because of a higher input of the coarse dust fraction 363 

of EM-1 and EM-2 (FEM-1 + EM-2) in the loess units L1, L2 and L3, particularly in L1 and L2. This is due to a 364 

dramatically increased dust accumulation rate in the MS2006 section since the deposition of L3 (243–280 ka). 365 

It is noticeable that both median grain size and proportions of modelled end members of the Mangshan record 366 

fluctuate more frequently in the loess units L1 and L2 and palaeosol unit S1 (Fig.2). This observation might 367 

reflect more variable climatic conditions during the last two glacial-interglacial cycles.                                                                 368 

The results show a downwind (N-S) thinning and fining trend in grain-size (Fig. S5). In addition, the 369 

proportion of modelled coarse fraction EM-1 also decreases from the MS2006 section to the more distal 370 

MS2008W and MS2008E (Fig. S1). This spatial grain-size and EM-1 distribution pattern is also observed over 371 

a much larger scale across the CLP (Prins et al., 2007; Prins and Vriend, 2007). Although this N-S downwind 372 

pattern here is observed over a relatively small spatial scale (2.0-2.7 km), it likely suggests a proximal source 373 

region to the north of the MLP, i.e the Yellow River floodplain for the Mangshan loess deposits, and indicates 374 

that the near-surface northwesterly/northerly winter monsoon winds are responsible for the transportation of 375 

the dust from the source area to the Mangshan Plateau.  376 

4.2 Provenance signals of the Mangshan loess sequences 377 

The overall zircon age distributions (Fig. 6) and the MDS map (Fig. 7) show that the Mangshan loess 378 

deposits resemble those of the sediments from the upper and lower reaches of the Yellow River and of the CLP 379 

loess. A genetic link between Yellow River sediments and CLP loess has already been proposed in previous 380 

studies (Stevens et al., 2013; Bird et al., 2015; Nie et al., 2015). These studies suggested that the deposits on 381 

the CLP are largely derived from the northeastern Tibetan Plateau (NTP) carried by the Yellow River and later 382 

reworked by aeolian processes. A recent study by Licht et al. (2016) indicated further that the reworked Yellow 383 
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River sediments account for 60–70% of the supply to the CLP dust. The end member modelling on the grain-384 

size distribution of the Mangshan loess deposits imply that the coarse dust fractions EM1 and EM2 are derived 385 

from the Yellow River floodplain just north of the MLP. Together with the zircon U-Pb age spectra this seems 386 

to indicate that the Mangshan loess deposits have been constantly supplied by the lower Yellow River 387 

floodplain since L9.  388 

Sediments of the upper reach of the Yellow River exhibit two distinct Palaeozoic zircon age populations 389 

at 200-350 Ma and 350-550 Ma matching the NTP provenance signatures.  The lower reach of the Yellow 390 

River, after the confluence of Wei River and Yiluo River, shows a similar zircon age distribution as the upper 391 

reach of the Yellow River (Figs. 6m and 6o). According to Nie et al. (2015), this indicates the effects of the 392 

Wei River and the Yiluo River (Fig.1b) which have brought abundant Phanerozoic zircon grains with a double 393 

peak (200–550 Ma) from the Weihe Basin and Qinling Mountains to the lower Yellow River (Fig. 6), resulting 394 

in a similar signal between the lower and upper reaches despite different source admixtures. In contrast, the 395 

sediments of the middle reach of the Yellow River are distinctive from the upper and lower reaches of the river 396 

by displaying a prominent single peak Palaeozoic age population at ca. 300 Ma (Fig. 6n) and two old 397 

Proterozoic age populations at ca.1850 Ma and ca.2500 Ma. These ages are more similar to the source signals 398 

of the Cretaceous bedrock and Northern China Craton, inherited from a river incision through Jihshan and 399 

Sanmen canyons (Stevens et al., 2013; Bird et al., 2015; Nie et al., 2015; Zhang et al., 2016). The contribution 400 

of debris from the Taihang Mountains to the lower Yellow River floodplain seems not significant as only a 401 

subdued component of the older zircon age population (1800–3000 Ma) has been seen in the lower reach of 402 

the Yellow River sediments.  403 

Samples collected in the Sanmen Gorge area (Fig. 1) include fluvial sands of the Sanmen Formation (SM-404 

Fm) with an age of 1.4 Ma (Kong et al., 2014), lacustrine sands (SM-lake) from the upper Sanmen palaeolake, 405 

and river terrace sands (SM-T3) from the third terrace in Huangdigou (HDG, Fig.1b) in the Sanmen Gorge . 406 

(Jiang et al., 2007). Sediments of the Sanmen Formation (Fig. 6f) show similar zircon age distribution pattern 407 

as that of the middle reach of the Yellow River, which has zircon age peaks at ca. 280 Ma, ca. 1850 Ma and 408 

ca. 2500 Ma. This suggests that the Yellow River has flowed through Sanmen Gorge since 1.4 Ma (Kong et 409 

al., 2014). The lacustrine sands of the Sanmen palaeolake (Fig. 6h) and the river terrace sample (SM-T3, Fig.6g) 410 

also display a dominant zircon age peak at ca. 280 Ma, suggesting a major contribution of the middle reach of 411 
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the Yellow River sediments. However, it is interesting to note that compared to the other samples from the 412 

Sanmen Gorge, the zircon age of the Sanmen palaeolake (SM-lake, Fig. 6h) and the river terrace sample (SM-413 

T3, Fig.6g) show an increase in the 350–550 Ma age population which is the dominant age component in 414 

sediments from the Wei River (Fig. 6e). Consistent with the age distribution patterns, the Sanmen palaeolake 415 

sample also lies close to the Wei River in the MDS map (Fig. 7). Based on the zircon provenance signal, Kong 416 

et al. (2014) concluded further that the Wei River primarily flowed through the Sanmen Gorge 1.3–1.5 Ma ago 417 

and then was followed by the Yellow River, which started to flow through the gorge from 1.3–1.4 Ma ago. As 418 

the time range provided by Kong et al. (2014) for the Yellow River and Wei River running through Sanmen 419 

Gorge largely overlap, it seems likely that both rivers flowed into the Sanmen palaeolake before it drained 420 

through Sanmen Gorge at around 1.3 Ma. 421 

4.3 Implications from the sedimentological and provenance variations of the Mangshan loess-palaeosol 422 

sequences  423 

The zircon U-Pb age data reveal that provenance signals of the upper and the lower reaches of the Yellow 424 

River dominate the Mangshan loess deposits from L9 to L1 (~900 ka to 15 ka), implying that the lower Yellow 425 

River floodplain has consistently served as the main source supply for the MLP since 900 ka. This conclusion 426 

is in agreement with results from Pan (2005), Hu et al. (2012), Kong et al. (2014) and Hu et al. (2017), showing 427 

that the Yellow River has flown through Sanmen Gorge at least since the early Pleistocene. Therefore, the 428 

observed dramatic increases in Mangshan Loess grain size and sedimentation rate since S2 could result from 429 

(1) approaching of the source area or extension of the floodplain of the lower Yellow River, (2) an increased 430 

sediment supply from the lower Yellow River, or (3) an increased wind strength. Because the sedimentation 431 

rate and grain size below and above palaeosol unit S2 in the loess-palaeosol sequences from the CLP 432 

(Vandenberghe et al., 1997; Ding et al., 2002; Sun, 2004; Sun and An, 2005; Sun et al., 2006) do not show a 433 

similar abrupt change as demonstrated in the Mangshan loess (Zheng et al., 2007), it is unlikely that winter 434 

monsoon intensity related wind strength changes played an important role. Thus, the sudden shift in 435 

sedimentology in the Mangshan sequence since 240 ka most probably arose from either the increased sediment 436 

supply of the lower Yellow River or the advance of its floodplain towards the MLP, or both.  437 
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Hu et al. (2012) found that the average incision rate of the Yellow River to the north of the Weihe Basin 438 

(Fig. 1b) increased dramatically since 240 ka as a result of local tectonic uplift. A recent study of the 439 

sedimentological infill of the Weihe Basin also suggests an increased incision rate of the fluvial system at 440 

approximately 240 ka resulting from enhanced tectonic activities (Rits et al., 2017). The finding suggests that 441 

differential tectonic movements in the Weihe Basin resulted in an increased sediment transfer propagating 442 

through the Sanmen Gorge. As a consequence, a wider alluvial fan system formed to the east of the Sanmen 443 

Gorge, next to the MLP (Fig. 1b). As this fan system served as a primary source for the MLP from ~240 ka 444 

onwards (Zheng et al., 2007), the accumulation rate on the plateau would have increased dramatically. An 445 

additional tectonic explanation for the observed sedimentation rate increase is the migration of the lower 446 

Yellow River floodplain towards the Mangshan Plateau. The high scarp present along the northern and eastern 447 

limits of the MLP is the result of lateral erosion by river action, and evidences a southward migration of the 448 

lower Yellow River floodplain during the late Pleistocene. The migration provided a more proximal dust 449 

source area for the Mangshan loess deposits. The southward migration are probably induced by subtle vertical 450 

motions related to NW-SE directed faults in the subsurface (Hao et al., 2008; Zhang et al., 2008).  451 

5. Conclusions 452 

The Mangshan loess-palaeosol record provides a high-resolution archive of dust supply from the Yellow 453 

River floodplain. The high accumulation rates, the coarse-grained character of the loess, and the distinct 454 

thinning and fining of the loess deposits in a north-south direction, clearly indicate increased coarser dust 455 

supply from the Yellow River floodplain to the Mangshan Plateau during the last two glacial-interglacial 456 

intervals. An independent provenance record by single grain zircon U-Pb ages confirms the lower Yellow 457 

River floodplain as the likely main source for the Mangshan dust deposits, at least since loess unit L9 (900 ka). 458 

This implies that the Yellow River incised the Sanmen Gorge before 900 ka (~MIS 22, i.e. late Early 459 

Pleistocene). The dramatic sedimentological change in the Mangshan sequences above S2 most likely 460 

originates from the tectonic activity in the Weihe Basin since 240 ka. This resulted in accelerated incision rate 461 

of the fluvial systems and associated release of eroded material through Sanmen Gorge towards the lower 462 

reach of the Yellow River floodplain. Meanwhile, a simultaneous southward migration and lateral erosion of 463 
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the (lower) Yellow River resulted in a more proximal location of the dust source area, all contributing to 464 

increased loess deposition on the Mangshan Plateau during the late Pleistocene.  465 
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Figures 654 

Figure 1. (a) Digital elevation model (DEM) map of northern China showing the Yellow River, Chinese Loess 655 

Plateau (CLP) and Mangshan Loess Plateau (MLP). The grey arrows indicate the direction of winter monsoon 656 

winds. The red letters indicate the boundary of upper, middle and lower reaches of the Yellow River. The 657 

white triangles indicate the loess sections on the CLP referred to in the text and the white dots indicate the 658 

previous published Yellow River samples of zircon U-Pb ages (Nie et al., 2015). Samples 1-11, 12-13 and 14-659 

15 are representative for the upper, middle and lower reaches of the Yellow River respectively. (b) Map 660 

showing the zircon sampling sites in the Weihe Basin, middle and lower reaches of the Yellow River. The red 661 

triangle marks the MLP. The black dots show samples collected within this study while the white dots represent 662 

samples cited in Kong et al. (2014). Detailed sample description is presented in Table S3. HDG is abbreviation 663 

for Huangdigou, where SM-T3 and SM-lake being collected. (c) Loess section MS2006, MS2008W and 664 

MS2008E on the MLP of this study marked with red triangles. Figure (c) is produced with Google Earth. 665 

Imagery © 2017 TerraMetrics. Data © Europa Technologies Ltd. 666 

 667 

Figure 2. (a) Palaeosol (S0, S1 … S5) and loess (L1, L2 … L6) stratigraphy in section MS2006 with black 668 

dots indicating the levels of zircon samples; (b) median grain size distribution of the MS2006 section, (c) the 669 

proportional contribution of the end members against depth. The age model of MS2006 is based on tuning to 670 

the following ‘target curves’ (time series): (d) the oxygen-isotope composite record from Dongge, Sanbao and 671 

Hulu caves in central China (Cheng et al., 2009; Cheng et al., 2016; Wang et al., 2008), here superimposed on 672 

the summer (21 July) insolation at 65ºN (Berger, 1978), and (e) the stacked marine benthic oxygen-isotope 673 

record (Lisiecki and Raymo, 2005). The grey bars indicate palaeosol layers and corresponding interglacial 674 

stages / marine isotope stages (MIS). The tie points linking the loess-palaeosol record to the target isotope 675 

curves are listed in Table S1. Section MS2006 (a) is ~130 m thick and is a composite of record X (0-59 m; 676 

Prins et al., 2009) and record Z’ (59-130 m; Zheng et al., 2007, see also Prins et al., 2009). 677 

 678 

Figure 3. End-member modelling results of the composite MS2006 section. (a) The mean/median r2 across 679 

the full-size range as a function of the number of end members (q). (b) Coefficient of determination (r2) 680 

statistics for each size class for end-member models (EMM) with 2–5 end members. (c) Modelled end members 681 
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according to a three-end-member model representing sandy loess (EM-1, modal size ~63 µm), silty loess (EM-682 

2, modal size ~37 µm) and clayey loess (EM-3, modal size ~26 µm) for the composite MS2006 section in this 683 

study, (d) the last glacial-interglacial sequence (S0-L1-S1) from the Mangshan Plateau (Prins et al., 2009) and 684 

(e) the Chinese Loess Plateau (Prins and Vriend, 2007). 685 

 686 

Figure 4. (a) Age-depth plot (dashed line) of the loess-palaeosol boundaries in the MS2006 section, based on 687 

the correlation of the loess-palaeosol record to the target isotope curves shown in Fig. 2, and corresponding 688 

linear sedimentation rate (LSR) estimates per loess and palaeosol unit (solid line). (b) Scatter plot of the ‘coarse 689 

fraction’ flux (Fcf, i.e. flux of EM1 and EM2) versus the total mass-accumulation rate (MAR) of all major loess 690 

(L1, L2 …L5) and palaeosol units (S1, S2 … S5) in MS2006 (and MS2008W, see legend). Linear regression 691 

formula for the MS2006 dataset is shown. Data are listed in Table S1 and Table S2. 692 

 693 

Figure 5. (a) Palaeosol (S0, S1 … S5) and loess (L1, L2 … L6) stratigraphy in section MS2006 with red dots 694 

showing the level of samples for zircon U-Pb age analysis. (b) Zircon U-Pb age distributions of Mangshan 695 

loess samples. The black lines are normalised probability density function plots (PDP); the orange shades are 696 

Kernel Density Estimation (KDE) plots for different units; the open rectangles are age histograms. The blue 697 

rectangle indicates the 0–100 Ma age population while grey rectangles mark the dominant age population 250–698 

350 and 350–550 Ma in the spectra. 699 

 700 

Figure 6. Detrital zircon U-Pb ages for samples analysed within this study and the previously published dataset 701 

for CLP loess (Bird et al., 2015), the Wei River (Kong et al., 2014), the Sanmen Formation (Kong et al., 2014) 702 

and the Yellow River upper, middle and lower reaches (Nie et al., 2015). The samples’ locations are indicated 703 

in Fig. 1 and detailed description are presented in Supplementary Table S3. MS-upper (6a) and MS-lower (6b) 704 

are the combined zircon age dataset of samples from the upper part (L1-1, L1-2, L2-1 and L2-2) and lower 705 

part (L5, L6 and L9) of the MS2006 section respectively. Note we excluded sample L3 from the combination 706 

dataset because loess unit L3 is a transition period in the sedimentology of the stratigraphy. The black lines 707 

are normalised probability density function plots (PDP); the colour shades are Kernel Density Estimation 708 
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(KDE) plots for different units and the open rectangles are age histograms. Vertical dash lines indicate the 709 

major age peaks of the spectra.  710 

 Figure 7. Non-metric multi-dimensional scaling (MDS) map visualising the comparison between the 711 

Mangshan zircon age dataset (MS-U and MS-L), the loess of the Chinese Loess Plateau (CLP Loess), and 712 

zircon datasets of fluvial deposits of the Yellow River upper reach (YR-U), middle reach (YR-M) and lower 713 

reach (YR-Ln, combination dataset of samples YR-L, YR-20 and YR-33 in Fig. 6), the Yiluo River (YL-R), 714 

the Wei River (WR), the Qin River (QR) and samples of the Sanmen palaeolake (SM-lake) and fluvial sands 715 

of the Sanmen Formation (SM-Fm). The stress value is 0.35%, indicating an “excellent fit” of the data. The 716 

solid lines link the closest neighbours and the dashed lines the second closest neighbours.  717 
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Supplementary material 

 

Table S1. Depth and estimated ages of the stratigraphic boundaries between loess and palaeosol units in 

sections MS2006 and MS2008W 

 
Stratigraphic 

boundary 
MS2006 

Depth (m) 
MS2008W 
Depth (m) 

Age (ka) 

S0-L1 1.28 2.45 11.5a 
L1-S1 40.18 26.15 77.1a 
S1-L2 57.73 33.75 129a 
L2-S2 85.24  191.8a 
S2-L3 93.94  242.5a 
L3-S3 104.00  281a 
S3-L4 107.40  336a 
L4-S4 111.20  396a 
S4-L5 114.10  424a 
L5-S5 121.50  473a 
S5-L6 125.10  624a 

aAges according to speleothem oxygen isotope records of  Cheng et al. (2016) and references therein. 
 
 
 
Table S2. Data of sections MS2006 and MS2008W used to calculate the end-member specific fluxes per 

loess/palaeosol unit, including sedimentation rate (SR), mass-accumulation rate (MAR) and end-member 

proportions (pEM-x) 

Section Unit Thickness (m) SR (cm/ka) MAR 
(g/cm2/ka) 

pEM-1 pEM-2 pEM-3 

MS2006 S0 1.28 11 16 0.18 0.41 0.40 
 L1 38.90 59 88 0.45 0.41 0.14 
 S1 17.55 34 50 0.17 0.50 0.33 
 L2 27.52 44 65 0.37 0.46 0.17 
 S2 8.70 17 25 0.04 0.46 0.50 
 L3 10.06 26 39 0.09 0.77 0.14 
 S3 3.40 6 9 0.04 0.34 0.62 
 L4 3.80 6 9 0.01 0.62 0.37 
 S4 2.90 10 15 0.06 0.37 0.57 
 L5 7.40 15 22 0.12 0.51 0.37 
 S5 3.60 2 4 0.03 0.29 0.68 

MS2008
W S0 2.45 21 32 0.07 0.55 0.38 
 L1 23.70 36 53 0.20 0.62 0.18 
 S1 7.60 15 22 0.04 0.55 0.41 

 

 

 

 



Table S3. Description of location and nature of the zircons U-Pb samples used in this study 

Sample 
name 

Coordinates Nature Reference 

N (°) E(°) 

MS-L1-1 34.96° 113.37° Loess unit L1, MS2006 section This study 

MS-L1-2 34.96° 113.37° Loess uit L1, MS2006 section This study 

MS-L2-1 34.96° 113.37° Loess unit L2, MS2006 section This study 

MS-L2-2 34.96° 113.37° Loess unit L2, resampled from Mangshan This study 

MS-L3 34.96° 113.37° Loess unit L3, MS2006 section This study 

MS-L5 34.96° 113.37° Loess unit L5, MS2006 section This study 

MS-L6 34.96° 113.37° Loess unit L6, MS2006 section This study 

MS-L9 34.97° 113.37° Loess unit L9, resampled from Mangshan This study 

Qin River 35.14° 112.79° River sediment This study 

Yiluo River 34.71° 112.59° River sediment This study 

YR-20 34.85° 112.62° Yellow River sediment, near Mengjin county This study 

YR-33 34.98° 113.38° Yellow River sediment, near Mangshan  This study 

SM-Lake  34.87° 111.3° Sanmen palaeolake, fluvial sand This study 

SM-T3 34.82° 111.28° River terrace sediment in Huangdigou This study 

Yu River 35.43° 113.45° Modern alluvial fan sand This study 

Wei River 34.45° 109.52° River sediment, Wei River 
 Samlpe SM18 in  
Kong et al., 2014 

SM Fm 34.7° 110.29° Fluvial sands from Sanmen Formation 
Sample SM12 and 13 in 

Kong et al., 2014 

CLP loess Loess samples from Beiguoyuan and Lingtai Bird et al., 2015 

YR-U Yellow River sediment, upper reach Nie et al., 2015  

YR-M   Yellow River sediment, middle reach Nie et al., 2015 

YR-L     Yellow River sediment, lower reach Nie et al., 2015 
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Figure S1. Schematic N-S transect from the Yellow River floodplain to sections MS2006 and MS2008W on 

the Manghan Loess Plateau. Large dots with error bars indicate altitude measurements (from GPS) at the 

three sites (top of sections). The present-day geomorphology of the plateau is characterized by a natural N-S 

sloping southern flank with an angle of ~1.15º (gradient of 40 m over 2 km horizontal distance). Solid 

correlation lines between the two loess sections highlight the N-S thinning of loess unit L1 (38%) and 

palaeosol unit S1 (55%). Extrapolation of these ‘thinning factors’ to the successive L2-S2 sequence in 

MS2008W (dashed correlation lines) suggests that the wedge-shape geometry of the loess-palaeosol 

sediment package exists since the formation of palaeosol S2. B/M is the Bruhnes/Matuyama boundary which 

is found in the lower part of L8 in the MS2006 section (Zheng et al., 2007). 



 

Figure S2. Carbonate, organic matter and median grain size compared to palaeosol (S0, S1 … S5) and loess 

(L1, L2 … L6) units in section MS2006 (composite of records X and Z’). Note the overall change in 

character of the loess-palaeosol layers from base to top: the palaeosol and loess layers in the lower part of the 

profile (S3-S5, L3-L6) are relative thin, fine-grained and organic-rich, whereas the palaeosol (S0-S2) and 

loess layers (L1 and L2) in the upper part of the sequence are significantly thicker, coarser-grained and 

contain less organic matter. The grey rectangle indicates the overlap part of record X and Z’ (Fig. S3).  

 

 

 

 

 



 

Figure S3. Median grain size, organic matter and carbonate content in the interval 36-60 m of section 

MS2006, i.e. the interval where records X (solid lines with symbols) and Z’ (solid lines without symbols) 

overlap. The stratigraphic profiles in records X and Z’ are very similar, despite the fact that the records have 

independent depth scales (see Prins et al., 2009 for details). 

 

 

 

 

 

 



 

Figure S4. Magnetic susceptibility, carbonate content and median grain size, compared to palaeosol (S0, S1) 

and loess (L1, L2) units in (the upper part of) section MS2006 (record X), MS2008W and MS2008E. Dashed 

lines correlate lithological (and marine-isotope stage) boundaries. Note that section MS2006 and the two 

MS2008 sections are separated by ~3 km. Profiles MS2006 and MS2008W are lined up with respect to the 

top of their S0 units (ground level) to highlight the N-S thinning of the S0-L1-S1 sequence; profile MS2008E 

is lined up with respect to the S1 unit in profile MS2008E, showing a local (palaeo-) relief of ~3.7 meter. 

Figure modified after Peterse et al. (2011). 

 

 

 

 

 

 

 

 

 



 

Figure S5. Proportional contribution of the end members and magnetic susceptibility compared to palaeosol 

(S0, S1) and loess (L1, L2) stratigraphy in (the upper part of) section MS2006 (record X), MS2008W and 

MS2008E. Dashed correlation lines coincide with lithological (and marine-isotope stage) boundaries. Note 

the significant lateral changes between sections MS2006 and MS2008W in L1 and S1 layer thicknesses and 

corresponding shifts in the end-member mixing coefficients. 
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