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Abstract
We present a novel, data-driven approach to assessing mu-

tual similarities and differences among a group of languages,
based on purely prosodic characteristics, namely f0 and energy
envelope signals. These signals are decomposed using contin-
uous wavelet transform; the components represent f0 and en-
ergy patterns on three levels of prosodic hierarchy roughly cor-
responding to syllables, words and phrases. Unigram language
models with states derived from a combination of ∆-features
obtained from these components are trained and compared us-
ing a mutual perplexity measure. In this pilot study we apply
this approach to a small corpus of spoken material from seven
languages (Estonian, Finnish, Hungarian, German, Swedish,
Russian and Slovak) with a rich history of mutual language con-
tacts. We present similarity trees (dendrograms) derived from
the models using the hierarchically decomposed prosodic sig-
nals separately as well as combined, and compare them with
patterns obtained from non-decomposed signals. We show that
(1) plausible similarity patterns, reflecting language family re-
lationships and the known contact history can be obtained even
from a relatively small data set, and (2) the hierarchical decom-
position approach using both f0 and energy provides the most
comprehensive results.
Index Terms: language comparison, prosodic typology,
wavelet transform, statistical modelling

1. Introduction
Contacts between neighboring communities leave marks on
the languages they speak; the languages in contact often lend
each other words, expressions, grammatical and morphologi-
cal elements as well as their melodic and rhythmic patterns –
prosody. Presumably, the dynamics of the transfer differs be-
tween these aspects of languages: shared features of grammar
and morphology often bear witness to ancient contacts embod-
ied in language family labels, while lexical items keep being
exchanged more freely and frequently throughout the history.

Comparing prosodic characteristics of multiple languages
is complicated by a multidimensionality of the task; the com-
parisons need to span and combine intonational and rhythmic
properties, resulting stress patterns, as well as suprasegmental
features such as presence and realisation of quantity contrast,
tonality, etc. Relatedly, development of a coherent prosodic
typology is hampered by the lack of a language independent
prosodic transcription system [1]. Several existing studies have
tried to supplant this shortcoming by adjusting the Autosegmen-
tal Metrical approach [2] for grouping languages according to
lexical and postlexical intonational features (tone, stress, pitch
accent languages) or devising various durational measures [3] to
divide them into rhythm classes (mora-, syllable-, stress-timed
languages) [4, 5, 6].

In this paper we propose an alternative, purely data-driven
approach to assessing mutual similarity among languages from
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Figure 1: Family and contact relationships between the ana-
lysed languages. Indo-European languages in rectangles (sha-
ded are Germanic, empty are Slavic), Finno-Ugric in ovals,
(shaded is Ugric, empty are Finnic). The arrows schematically
depict the intensity of historical language contact, the arrows
pointing in the prevalent direction of the influence, darker ar-
rows represent more intense contact.

statistical distributions of patterns obtained from hierarchically
decomposed f0 and energy envelope signals. We follow a sim-
ilar approach to Cummins et al. [7] who, inspired by language
recognition techniques, trained recurrent LSTM networks on f0
and energy contours on a speech corpus containing multiple lan-
guages and used the performance of resulting languages models
on different languages as a measure of inter-language distance.

Our approach presented here differs in several aspects.
First, we use much more simple statistical models, namely uni-
grams on f0 and energy envelope ∆-features (derivative). Sec-
ond, more importantly, we train the language models on sig-
nals decomposed using Continuous Wavelet Transform (CWT)
technique [8]. The individual signal components correspond
to intonation and energy patterns pertaining to three levels
of prosodic hierarchy, namely syllables, (prosodic) words and
phrases. This facilitates, in principle, capturing relationships
between changes in f0 and energy at these hierarchical levels in
parallel (e.g., f0 movement mid-syllable at the beginning of a
word towards the end of a phrase). Finally, we use a perplexity
measure as a basis for quantifying distances among languages.

We use this approach to compare seven languages from
two families: Finno-Ugric Finnish, Estonian and Hungarian
and Indo-European German, Russian, Slovak and Swedish. All
these languages are spoken in Europe and have a long and com-
plex history of mutual contact, depicted in a broad outline in
Fig. 1.

This contact history, historic as well as ancient, is pre-
sumably reflected in prosodic characteristics of these languages
(see, e.g, [9, 10, 11, 12, 13, 14]). One of those presumed to be
relevant for the present work is, for example, a word stress pat-
tern: while the Finno-Ugric languages and Slovak have fixed,
word-initial stress, the lexical stress in the remaining languages
is not fixed. Swedish, unlike the other languages considered
here, has contrastive lexical tones. Also, several of the lan-
guages (Finno-Ugric and Slovak) have fully-blown phonolog-
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ical quantity systems (and, at least in Finnish and Estonian, the
quantity contrast is co-signalled by pitch movement [19, 20]),
the quantity contrast of the other languages (Swedish and Ger-
man) is more limited and linked to vowel quality; the Russian
is said not to have phonological quantity whatsoever. Prosody
is of course involved in signalling other aspects such as phrasal
boundaries, sentence modality, etc.

The aim of this work is to verify whether simple language
technology methods can capture some of these similarities be-
tween the studied languages, and therefore help reveal underly-
ing typological relationships. Also, we address a broader ques-
tion of whether, and to what extent, can prosody alone encode
language contact and family relationships.

2. Methodology
2.1. Material

Small spoken material corpora from the analysed languages
were used (see Tab. 1). For Russian, we used the first 10 sen-
tences of the Phonetically balanced text from CoRuSS corpus
[15]. For the remaining languages, a version of the North Wind
and the Sun story was used; Estonian recordings come from the
Estonian North Wind and the Sun Corpus [16], German from
the Bavarian Archive for Speech Signals (BAS) and Hungarian
from a material used in a previous study [17]. The Finnish, Slo-
vak and Swedish corpora were recorded for the present study.

Table 1: Number of speakers, sentences in the text and the over-
all duration of the given language corpus.

Language Spkrs (female) Sentences Seconds

Estonian (est) 6 (3) 8 207
Finnish (fin) 7 (3) 6 226
German (ger) 9 (4) 5 349
Hungarian (hun) 6 (3) 7 213
Russian (rus) 5 (5) 10 178
Slovak (svk) 6 (3) 6 176
Swedish (swe) 4 (2) 5 138

2.2. Prosodic analysis and language model comparison

For each sentence, the f0-contour was extracted using the stan-
dard Praat pitch extraction routine with time step of 10 ms
and pitch range of 120–320 and 80–250 Hz for female and
male speakers, respectively [18]. The unvoiced intervals were
subsequently (linearly) interpolated and the resulting contour
was smoothed (10 Hz bandwidth). Signal envelope (energy)
was calculated for each utterance (and sampled at the same
time points as f0) as follows. First, the waveform, down-
sampled to 8 kHz, was decomposed using wavelet transform
(Morlet mother wavelet, ω0 = 3) to components with pseudo-
frequencies of 0.25, 0.5, 1, and 2 s. Subsequently, the energy
signals obtained for each component were summed to yield a
close approximation of signal energy envelope.

The f0 and energy signals obtained this way were de-
composed using continuos wavelet transform (Morlet mother
wavelet, ω0 = 2) to three components with pseudo-frequencies
of 200 and 800 ms and 1.6 s, roughly corresponding to syllable,
word and phrase durations, respectively (see the solid lines in
the shaded box in Fig. 2). A derivative (∆-feature) was calcu-
lated for each component (dashed curves in Fig. 2). For each
speaker, all the derivative values were collected, and divided to
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Figure 2: Converting a signal to states depicting prosodic hier-
archy, see text for details.

an odd number of bins with equal number of elements using ap-
propriate speaker-dependent percentiles (the bin boundaries are
shown as horizontal lines in Fig. 2). The values below 5th and
above 95th percentiles were marked as inadmissible for subse-
quent state calculation.

As shown in Fig. 2, the bin labels for all components and
all signals considered in evaluation (see below) were combined
to form a state for every time point. The states for which any
value fell outside the admissible 5–95th percentile range was
excluded from evaluation (see the middle one of the three de-
picted states in Fig. 2).

For each language, a unigram language model was calcu-
lated depicting likelihood of occurrence of each particular state
in all utterances of the given language in the corpus. We evalu-
ate the models using only f0 and energy contours, respectively,
and a combined model using both the f0 and energy ∆-features.
Also, we evaluated a model using the ∆-features calculated di-
rectly from the f0 and energy signals (combined) without the
prior wavelet decomposition. For the wavelet based models we
have limited the number of discretization bins to 3; in effect
simply depicting whether the signal component is going up,
down or staying relatively constant. For the non-wavelet ap-
proach with considerably fewer possible states we use 11 bins.

Finally, for each sentence in the corpus (the same as used
for the model training) we calculated the perplexity value for
each language model. (Perplexity depicts the “surprise,” the
mean –log-probability, of the model exposed to the given set of
states.) A confusion matrix was calculated with each [lang1,
lang2] cell depicting the average perplexity of the lang1 model
(on the x-axis in Fig. 3) across all sentences in the lang2 (y-
axis in Fig. 3). The dendrogram depicting similarity among the
language models was subsequently drawn.
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Figure 3: Clustering the languages and confusion matrix obtained using wavelet-decomposed signals.

3. Results
Fig. 3 shows the confusion matrices and derived dendrograms
for language models using f0 only, energy only, and combina-
tion of both f0 and energy features, respectively; all signal are
decomposed with continuous wavelet transform with 3 scales
corresponding to pseudo-frequencies of 0.4, 0.8 and 1.6 s.

The confusion matrices depict the average perplexity of
the language models with sentences in different languages, the
brighter the shade the higher the perplexity. Unsurprisingly,
the models are generally the least perplexed with the sentences
from their own language, the very sentences they were trained
on. Note, however, several exceptions, for example the energy-
feature est model that finds hun and svk sentences less perplex-
ing than its “own” est ones (the first column in the matrix in
Fig. 3B). Also, for the f0-based models, est sentences yield less
perplexity for the fin model than for the est one (the fourth row
in Fig. 3A). The combined f0+energy models provide more ro-
bust “language recognition” ability – in terms of perplexity with
their own versus other language material – than the single fea-
ture models. This is likely due to the considerably lower number
of possible states accounted for by the latter (27) compared to
the former (272 = 729).

Each set of features produces somewhat different distances
among the languages (language models). The f0 only features
(Fig. 3A) group fin with svk, and then with hun and est. This
cluster is then grouped with a ger–rus pair. swe is found quite
different from the other languages.

The energy only approach also groups fin, hun and svk, the
last two are slightly more similar to each other than either is to
fin. est is found similar to rus and is consequently moved to the
rus–ger cluster. Once again, swe is different.

The combination of f0 and energy features presents some-
what different picture. est, once again close to rus, is grouped
with the fellow Finnic language, fin. This cluster is further
grouped with the hun–svk branch. The Germanic languages,
ger and swe, are grouped together and found rather distinct

from the other languages.
For comparison, in Fig. 4 we present the dendrograms ob-

tained using directly the f0 and energy ∆-features, without
wavelet-based decomposition (the corresponding confusion ma-
trices are not shown). The signal derivatives were discretized
instead of the wavelet components, and used directly to train
the unigram language models. The numbers of discretization
bins were chosen to approximate the complexity of the wavelet-
based models, i.e., 5 yielding 25 states (close to 27 of the single
feature wavelet models) and 27 (729 states, the same as in the
combined wavelet approach).

The two resulting dendrograms are neither identical with
each other, nor with the corresponding picture (using the same
prosodic signals) in Fig. 3C. In all three, est and rus are grouped
closely together, and swe is different from most languages. The
grouping of est, rus, hun and svk closely together derived from
5-bin discretization can also be seen in Fig. 3C. fin, however,
is grouped with est and rus in both 27-bin based comparison
and the wavelet-based approach, but with swe – and far from
est–rus branch – when 5 discretization bins are used.

4. Discussion
Before discussing the possible interpretations of the results, we
need to address some potential issues with the reported work.
First, the corpus used for this pilot project is very small, more-
over, all speakers of the same language utter the same set of
sentences. This somewhat limits the scope of the modelled
prosodic variation for each language and increases the danger
of overfitting; nevertheless, our approach provides a meaning-
ful clustering of languages despite these limitations.

Second, to warrant generalizability of the language models,
we would ideally want to train the models on a different data
set than that subsequently used for comparison. The main rea-
son we abandoned this standard machine-learning principle is
the diminutive size of our multi-lingual corpus1. Also, it is not

1In order to test the generalizability and mitigate the differences be-
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Figure 4: Clustering the languages obtained using non-
decomposed f0 and energy signals.

our aim at this stage to design a fully-fledged language recog-
nition system based on prosody. In fact, the language models
only take into account the positive examples from their own lan-
guage; the language comparison is performed on the full corpus
that, for each individual model, predominantly consists of the
other-language material not used for its training. Nevertheless,
when testing our approach on larger corpora in the future we
will divide the data to training and testing subsets; this will help
us to assess the potential usability of our approach for building,
for example, a prosody-based language recognition system.

Third, in contrast with, e.g., language recognition task, in
our enterprise of comparing languages based on their prosodic
characteristics we lack a clearly defined ground truth, that is an
independently given correct grouping of the tested languages.
The lack of such ground truth is in fact related to the pioneering
nature of the present investigation. In any case, we need to eval-
uate our results using the known language family relationships,
suprasegmental and prosodic characteristics of the languages
(such as quantity systems, stress patterns) and the history of
mutual language contacts outlined in Introduction.

Despite these limitations, our approach yields meaningful
results that largely reflect the known prosodic characteristics of
the tested languages. In most cases, the quantity languages with
word-initial lexical stress – est, fin, hun and svk – are found
mutually closer to each other than to other languages (quantity
contrast, as shown at least for est and fin, is co-signalled by
pitch patterns [19, 20]). This grouping is most prominent for
the f0 wavelet-based model (Fig. 3A) with fin–svk–hun–est
forming a similarity group (in this order), subsequently joined
by ger–rus branch (languages with non-fixed stress pattern), all
these languages found dissimilar to swe, the only language with
tonal patterns. Wavelet-decomposed energy envelope (Fig. 3B)
keeps the fin–svk–hun group, but finds est similar to rus and
both these languages closer to ger than to the previous group.

The wavelet-based approach using both f0 and energy en-

tween number of speakers for different languages, we also trained the
models on randomly selected subsets consisting of three speakers for
each language. The language comparison was done on the full corpus.
Despite some variability, the clustering results–not reported here–were
not considerably different from the reported ones.

velope (Fig. 3C) presents probably the most comprehensive
picture. Only in this case, the Germanic ger and swe are
grouped together, with the remaining languages forming a sepa-
rate branch. Within this branch, hun and svk with the long con-
tact history and many documented prosodic similarities (despite
different language families) form a sub-branch. Another sub-
branch contains est, rus and fin. Grouping fin and est close to-
gether based on many shared prosodic characteristics, language
affinity and the history of contact is expected. The closeness
of est and rus in the dendrogram (repeated in all other results
except f0-based wavelet approach) is, in our opinion, more dif-
ficult to justify. Despite the very long history of language con-
tact between these two languages (e.g., most Estonians born be-
fore 1980, and many younger ones, would have good command
of Russian) we find this result spurious: there are simply too
many differences in prosodic characteristics between these lan-
guages2. In any case, this persistent finding deserves further
investigation in the future.

The dendrograms produced directly from the f0 and energy
signals (Fig 4) deviate further from our expectations than the
wavelet-based ones. est and rus are still found very similar, but
neither quantity / word-initial stress languages nor Germanic
languages are grouped together consistently. Similarly to the
approaches using the single signal (f0 or energy, respectively)
swe is kept further apart (grouped with fin in one case), ger,
svk and hun form an intermediate group with differing similar-
ity judgements depending on sensitivity of analysis (number of
discretization bins).

Overall, the presented results support the viability of our
approach. The wavelet decomposition of the signals allows
for statistical evaluation of f0 and energy envelope movement
distribution patterns on multiple hierarchical levels (syllables,
words, phrases). Perhaps even more importantly, it takes into
account the mutual interdependencies between these patterns
across the hierarchical levels; our results suggest that this type
of hierarchical decomposition is beneficial for the classifying
(and perhaps also language-recognition) task. Also, in line with
the findings of [7], the results indicate that although f0-based
∆-features alone serve very well for the language comparison
task (cf. [21]), combining them with energy envelope features
seems to further improve classification results.

The present pilot work will be expanded in several direc-
tions in the future. More (and more diverse) languages, with
considerably larger corpora will be incorporated. Also, in the
future work we will explore a more complex and state-of-the-
art language modelling techniques, primarily (deep) recurrent
networks. Finally, a method of direct, semiautomatic identifi-
cation of the prosodic patterns primarily responsible for the de-
tected differences between the languages – in essence the pat-
terns yielding the highest perplexity in another language – is
currently under preparation.
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Kocharov, Štefan Beňuš and Marcin Włodarczak for their help
with recording and sharing the speech material.

2Given the lack of the ground truth brings a temptation to justify
almost any possible pattern as a result of the complex mutual contact
history and/or family-relationships within the small group of languages.
We don’t want to fall into this trap.

1216



6. References
[1] D. Hirst and A. Di Cristo, Intonation systems: a survey of twenty

languages. Cambridge University Press, 1998.

[2] C. Wightman, P. Price, J. Pierrehumbert, and J. Hirschberg,
“ToBI: A standard for labeling English prosody,” in Proceedings
of the 1992 International Conference on Spoken Language Pro-
cessing, ICSLP, 1992, pp. 12–16.

[3] E. Grabe and E. L. Low, “Durational variability in speech and the
rhythm class hypothesis,” Papers in laboratory phonology, vol. 7,
no. 515-546, 2002.

[4] S.-A. Jun, Prosodic typology: The phonology of intonation and
phrasing. Oxford University Press on Demand, 2006, vol. 1.

[5] L. M. Hyman, “Word-prosodic typology,” Phonology, pp. 225–
257, 2006.

[6] D. Gil, “A prosodic typology of language,” Folia Linguistica,
vol. 20, no. 1-2, pp. 165–232, 1986.

[7] F. Cummins, F. Gers, and J. Schmidhuber, “Automatic discrimina-
tion among languages based on prosody alone,” Dalle Molle Insti-
tute for Artificial Intelligence, Lugano, Switzerland, Tech. Rep.,
1999.
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