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Abstract 

Bisthioureas reacted with either 2-(bis(methylthio)methylene)malononitrile or ethyl 2-cyano-3,3-

bis(methylthio)acrylate to give 1,3,4-thiadiazoles and 1,3-thiazoles. Only, the reactive allyl 

derivative of bisthioureas reacted with the bis(methylthio)methylene compounds to give 1,3-

thiazoles. The mechanism was discussed. The structures of products were proved by MS, IR, 

NMR and elemental analyses and X-ray structure analysis. 
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Introduction 

1,3,4-Thiadiazole derivatives have demonstrated a broad spectrum of biological properties in 

both pharmaceutical and agrochemical fields. They are known to exhibit diverse biological 

activities such as in vitro inhibition of cyclooxygenase and 5-lipoxygenase activities [1]. 

Acylated substituted 5-thio--D-glucopyranosylimino-1,3,4-thiadiazoles have been tested in 

vitro for antiviral activity against HIV-1, HIV-2 and human cytomegallo- virus (HMCV) [2]. A 

large number of thiadiazoles have also been patented in the agriculture field as herbicides, 

insecticides, fungicides, and bactericides [3]. Recently, 1,3,4-thiadiazole cores have received 

much attention in material science due to their interesting electronic and optical properties [4]. 

Various methodologies that exist in the literature [5] for their synthesis are associated with 

number of drawbacks that impedes their applicability in the long run. On the other hand, the 

thiazole nucleus is very in many biologically active compounds that makes it one of the most 

extensively studied heterocycles [6]. Thiazoles play a pivotal role in many drug structures. For 

example, Ritonavir (anti-HIV drug) [7], Dasatinib and Tiazofurin (antineoplastic agents) [8], 

Fanetizole, Fentiazac and Meloxicam (anti-inflammatory agents) [9], Nizatidine (antiulcer agent) 

[10], Ravuconazole (antifungal agent) [11], Nitazoxanide (antiparasitic agent) [12]. Inspired by 

these interesting previous biologically active compounds, we envisioned that treatment 2-

hydrazinocarbothioyl -N-substituted-hydrazine-carbothioamides 1a–d with 2-(bis(methylthio)-

methylene)malononitrile (2a) and ethyl 2-cyano-3,3-bis(methylthio)acrylate (2b) would form 

1,3,4-thiadiazole and/or 1,3-thiazole derivatives. 

Results and Discussion 
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Equimolar amounts of 2-(hydrazinocarbonothioyl)-N-substituted-hydrazine-carbothioamides    

1a–d and 2-(bis(methylthio)methylene)malononitrile (2) were stirred in tetrahydrofuran (THF) 

with catalytic amounts of trimethylamine (Et3N) at refluxing temperature for 1 h and at room 

temperature for 1-3 h. Bis-thioureas 1a-c provided from excellent to moderate yields of the 

respective diaminothiadiazoles. For the bis-arylthioureas having electron-donating substituent 

like 1b, the yield of 3b (84%) was superior to 3c (80%, Scheme 1). In general, 1,3,4-thiazole 

derivatives 3a-c were precipitated as colorless solids and as the sole products in 75–84% yields 

(Scheme 1). In the case of 1d reacting with 2a and/or 2b, 1,3-thiazole derivatives were obtained 

in a different manner (Scheme 1). The mass spectrum and elemental analysis proved the 

molecular formula of 3a as C14H12N4S (I removed the IR sentence). The phenyl protons in the 1H 

NMR spectrum of 3a appeared as two triplets at H = 6.94 (J = 7.6 Hz, 2H) and 7.27 (J = 7.6 Hz, 

4H) and a doublet at H = 7.54 (d, J = 7.6 Hz, 4H). The NH protons were absorbed as broad 

singlet at H = 9.38. The 13C NMR spectrum indicated the ring of 1,3,4-thiadiazole ring structure, 

by revealing the C=N carbon signal at C= 156.3.(I remove the previous sentence). All 

spectroscopic and analytical data are in a good agreement with the structure of (the full name 

was omitted) 3a [13,14]. Similarly, compound 1b (the full name was omitted) reacted with 2 to 

produce (the full name was omitted) 3b [13]. The structure proof of 3b was unambiguously 

supported by X-ray structure analysis (Figure 1). In the same manner, 1,3,4-thiadaizole-2,5-

diamine derivative 3c (the name was shortened) [14]. was obtained in 80% yield from the 

reaction of 1c with 2 (Scheme 1).  

The newly prepared 3-thioxo-1,2,4-triazolidine-1-carbothioamide 4a (the name was shortened) 

was obtained as pale red crystals in 90% yield (Scheme 1).  
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Scheme 1. Reactions of bisthioureas 1a-d with -deficient compounds 2a,b 

 

The results of combustion analyses and spectroscopic data suggested the molecular weight of the 

products results from the sum of the two reactants 1d with 2a accompanied by loss of a HCN 

molecule (see the experimental section). The IR spectrum showed the amino and nitrile groups at 

max = 3230 and 2210 cm-1. The thiocarbonyl group absorbed in the IR spectra at max =1225         

cm-1.  The 1H NMR spectrum revealed the SMe protons as a singlet at he two allyl-

CH2N protons appeared as two broad singlets in different regions at and 3.90 (see the 

experimental section). Allyl-CH= and allyl-CH2= protons resonated as two multiplets and 

appeared at and 5.20-5.14 (4H).The 13C NMR spectrum of 4a supported 

the allylic structure of 4a and exhibited peaks at C133.0, 130.8 (allyl-CH=), 118.2, 

allylC and 44.0, 42.6 (CH2). Moreover, the exo-azomethine carbon (thiazole C-2) 

appeared in the 13C NMR of 4a at C4.0 (see the experimental section). Whilst, the 

distinctive thioamide (C=S) and the nitrile carbons appeared at C.2 and 115.0, 

respectively. The same trend was obtained during the reaction of 1d with ethyl 2-cyano-3,3-

bis(methylthio)acrylate (2b). (the sentence here was wrong and omitted). Compound (the full 

name was omitted) 4b was obtained during reaction of 1d with 2b (Scheme 1).  The structure of 

4b was proved by IR, NMR and elemental analysis and was supported by mass spectroscopy and 

elemental analysis that gave its molecular formula as C14H20N4O2S3. IR showed the NH 
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stretching at max = 3330-3240, whereas the aliphatic and carbonyl groups appeared at max = 

2960-2870 and 1700 cm-1, respectively. Strong vibrational coupling was also noted due to the 

nitrogen containing thiocarbonyl derivative appeared at max = 1390 cm−1. 1H NMR spectrum of 

4b revealed the ester group as a triplet at J = 7.2 Hz) and quartet at The 

SMe protons resonated as a singlet in the 1H NMR spectrum centered at  whereas the 

two allyl-NCH2 protons appeared as two broad singlets in different regions at and 3.90 

(see the experimental section). Two multiplets were recognized in the 1H NMR spectrum of 4b 

indicated the allylic asymmetric structure (allyl-CH= and allyl-CH2=) of 4b, appeared at 

and 5.19-5.15 (4H).The 13C NMR spectrum of 4b indicated the allylic 

carbons at Callyl Callyl-CH=), and 44.8, 42.4 (allyl-CH2-

N).  The exo-azomethine carbon of thiazole C-2 appeared at C2.0 (see the experimental 

section). Mechanistically, the reaction between 1a-c and 2a or 2b can be described as due to 

nucleophilic attack of the sulfur lone pair of 1 at the C-2 carbon of 2 to form salt 5 (Scheme 2). 

Thereafter, further nucleophilic attack of the other sulfur lone pair at the positively charged 

thiocarbonyl would cause cyclization to give intermediate 6. The cyclization is followed by 

hydrogen transfer followed by neutralization to form 3a-c and 7. Ultimately, elimination of H2S 

from 7 would reproduce 2 (Scheme 2).  It might therefore be concluded that compound 2 

initiates internal cyclization process of 1a-c. The same trend occurs between 1d and 2a,b to form 

salt 5 (Scheme 3). Instead of the aforementioned second step in Scheme 2, neutralization 

occurred via proton transfer to form intermediate 8 (Scheme 3). Finally cyclization occurs with 

the nitrogen lone pair accompanied by elimination of the HCN molecule to form 4a or 4b 

(Scheme 3) 
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Figure 1. Molecular structure analysis of N,N’-bis(4’-methylphenyl)-1,3,4-thiadiazole-2,5-diamine (3b) 

with crystallographic C2-symmetry (displacementparameters are drawn at 50% probability level) 

  
Scheme 2. Plausible mechanism of internal cyclization 1a-c during its reaction with 2a,b 

(The scheme was declared) 

 
Scheme 3. Plausible mechanism describing reaction between 1d and 2a,b 

(the scheme was declared) 

 

Conclusion  
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Although there are many reports of the synthesis of thiadiazoles, few reports are available for the 

synthesis of symmetrical 2,5-disubstituted amino-1,3,4-thiadiazoles in the literature. Therefore 

our method is a valuable addition to the literature for the synthesis of this class of compound in 

good yields without requiring the aforesaid hazardous acidic conditions.  

Experimental 

Melting points are uncorrected. The IR spectra were recorded as KBr disks on a Shimadzu-408 

infrared spectrophotometer, Faculty of Science, Minia University. TLC analysis was performed 

on analytical Merck 9385 silica aluminum sheets (Kieselgel 60) with PF254 indicator. The NMR 

spectra were measured using a Bruker AV-400 spectrometer at Institute of Organic Chemistry, 

Karlsruhe, Germany. Chemical shifts were expressed as δ (ppm) with tetramethylsilane (TMS) 

as internal reference. The samples were dissolved in DMSO-d6, s = singlet, d = doublet, dd = 

doublet of doublet and t = triplet. Mass spectra were recorded on Varian MAT 312 instrument in 

EI mode (70 eV), Centre of National Research, Dokki, Cairo, Egypt. Elemental analyses were 

carried out using Varian Elementary device in the National Research Center, Giza, Egypt, or by 

the Microanalytical Unit at Cairo University, Cairo, Egypt. 

Crystal Structure Determination of 3b 

The single-crystal X-ray diffraction study was carried out on a Bruker D8 Venture diffractometer 

with Photon100 detector at 123(2) K using Cu-Ka  radiation (l = 1.54178 Å. Direct Methods 

(SHELXS-97) [G. M. Sheldrick, Acta Crystallogr. 2008, A64, 112-122] were used for structure 

solution and refinement was carried out using SHELXL-2014 (full-matrix least-squares on F2) 

[G. M. Sheldrick, Acta Crystallogr. 2015, C71, 3-8]. Hydrogen atoms were localized by 

difference electron density determination and refined using a riding model (H(N) free). A semi-

empirical absorption corrections was applied. 
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3b: colourless crystals, C16H16N4S, Mr = 296.39, crystal size 0.36 × 0.18 × 0.09 mm, monoclinic, 

space group Pbca (No. 60), a = 6.6154(3) Å, b = 8.5679(3) Å, c = 25.561(10) Å, V = 

1448.80(10) Å3, Z = 4, ρ = 1.359 Mg/m-3, µ(Cu-Kα) = 1.963 mm-1, F(000) = 624, 2max = 144.4°, 

7112 reflections, of which 1435 were independent (Rint = 0.026), 100 parameters, 1 restraint, R1 

= 0.031 (for 1316 I > 2σ(I)), wR2 = 0.086 (all data), S = 1.03, largest diff. peak / hole = 0.227 / -

0.273 e Å-3. CCDC 1494906 (3b) contains the supplementary crystallographic data for this 

paper. These data can be obtained free of charge from The Cambridge Crystallographic Data 

Centre via www.ccdc.cam.ac.uk/data_request/cif.  

Starting materials 

1,6-Disubstituted 2,5-dithioureas were parepared according to published procedures as were 

N,N’-diphenylhydrazine-1,2-dicarbothioamide (1a) and N,N’-bis(benzyl)hydrazine-1,2-

dicarbothioamide (1c) [14] and N,N’-bis(4’-methylphenyl)hydrazine-1,2-dicarbothioamide (1b) 

[14] and N,N’-diallylhydrazine-1,2-dicarbothioamide (1d) [4,14]. 2-(bis(methylthio)-

methylene)malononitrile (2a) and ethyl 2-cyano-3,3-bis(methylthio)acrylate (2b) were bought 

from Fluka. 

General Procedure 

Reaction of bisthioureas 1a-d with compounds 2a or 2b 

A mixture of a dithiouears (1a-c, 1 mmol), an activated nitrile 2a or 2b (1 mmol), and a few 

drops of triethylamine in THF (30 mL) gently refluxed for 1 h; the reaction was followed by 

TLC analysis. After cooling at room temperature, the the preceiptates of 3a-c were collected by 

suction filtration, washed with THF, and dried at room temperature. Compounds 3a-c were 

identified by comparing their mp,s, IR and NMR spectra and their analytical data.  

http://www.ccdc.cam.ac.uk/data_request/cif
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N,N’-Diphenyl-1,3,4-thiadiazole-2,5-diamine (3a), colourless crystals (DMF), 0.20 g, (75%), 

m.p. 239-240 °C (lit. [13,14] 239-240 °C). 

N,N’-Bis(4’-methylphenyl)-1,3,4-thiadiazole-2,5-diamine (3b), colourless crystals (DMF), 0.25 g 

(85%), m.p. 137-138 °C (lit. [13,14] 240-243 °C). 

N,N’-Bis(benzyl)-1,3,4-thiadiazole-2,5-diamine (3c). colourless crystals (MeOH), 0.24 (80%),  

m. p. 138-140 °C (lit. [14] 137-139 °C). 

Z-N-Allyl-2-(3-allyl-4-cyano-5-(methylthio)thiazol-2(3H)ylidene)hydrazine-1-carbothioamide 

(4a). Pale yellow crystals (CHCl3/MeOH), 0.28 g (90%), m.p. 166-168 oC. IR (max): = 2980-

2860 (Aliph-CH), 3230 (NH), 2210 (CN), 1225 (C=S) cm-1. 1H NMR (DMSO-d6): H = 10.20 (s, 

1H, NH), 9.40 (s,1H, NH), m, allylCH5.20-5.14 (m, 4H, allyl-CH2=), 

bs, 2H, allyl-NCH2), 3.90 bs, 2H, allyl-NCH2), 2.60 (s, 3H, SCH3).
13C NMR (DMSO-d6): 

C =180.2 (C=S), C=N), 133.0, (allyl-CH=), 131.6 (C-4), allyl-CH=), 129.2 (C-5), 

allyl-C0 (CN), 44.0, 42.6 (CH2), 15.4 (SCH3). MS (70 eV, %): m/z = 

325 (M+, 100), 310 (22), 278 (18), 252 (24), 137 (24). Calcd for C12H15N5S3 (325.47): C, 44.28; 

H, 4.65; N, 21.52. Found: C, 44.10; H, 4.55; N, 21.65.  

Ethyl (Z)-3-allyl-2-(3-allylcarbamothioyl)hydrazono-5-(methylthio)-2,3-dihydrothiazole-4-

carboxylate (4b). Pale yellow crystals (MeOH), 0.34 g (92%), m.p. 198-200 °C. IR (max): = 

2960-2870 (Aliph-CH), 3240 (NH), 1700 (CO-ester), 1390 (C=S) cm-1. 1H NMR (DMSO-d6): H 

= 10.20 (s, 1H, NH), 9.40 (s,1H, NH), m, allylCH5.19-5.15 (m, 4H, allyl-

CH2=), bs, 2H, allyl-NCH2), 4.00 (q, 2H, CH2-ester), 3.90 bs, 2H, allyl-NCH2), 2.65 (s, 

3H, SCH3), 1.22 (t, J = 7.2 Hz).  13C NMR (DMSO-d6): C =180.4 (C=S), 165.4 (CO-ester), 

(C=N), 133.2, 130.6  (NCH=), 130.2 (C-4), 129.2 (C-5), 118.0, allylC 50.0 

(CH2-ester), 44.8, 42.4 (allyl-NCH2), 15.4 (SCH3), 12.4 (CH3-ester). MS (70 eV, %): m/z = 325 
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(M+, 100), 310 (22), 278 (18), 252 (24), 137 (24). Calcd for C14H20N4O2S3 (372.52): C, 45.14; H, 

5.41; N, 15.04. Found: C, 45.30; H, 5.55; N, 15.20.  
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