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 16 

Wood procurement in sawmills could be improved by resolving detailed 17 

three-dimensional stem geometry references from standing timber. This 18 

could be achieved, using the increasingly available terrestrial point clouds 19 

from various sources. Here, we collected terrestrial laser-scanning (TLS) 20 

data from 52 Scots pines (Pinus sylvestris L.) with the purpose of evaluating 21 

the accuracy of the log geometry and analysing its relationship with wood 22 

quality. For reference, the log-specific top-end diameter, volume, tapering, 23 

sweep, basic density and knottiness were measured in a sawmill. We 24 

produced stem models from the TLS data and bucked them into logs similar 25 

to those measured in the sawmill. In comparison to the sawmill data, the 26 

log-specific TLS-based top-end diameter, volume, taper and sweep 27 

estimates showed relative mean differences of 1.6%, -2.4%, -3.0%, and 28 

78%, respectively. The correlation coefficients between increasing taper 29 

and decreasing wood density and whorl-to-whorl distances were 0.49 and -30 

0.51, respectively. Although the stem-model geometry was resolved from 31 

the point clouds with similar accuracy to that at the sawmills, the 32 

remaining uncertainty in defining the sweep and linking the wood quality 33 
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with stem geometry may currently limit the method’s feasibilities. Instead 34 

of static TLS, mobile platforms would likely be more suitable for 35 

operational point cloud data acquisition. 36 

Introduction 37 

Sawmills account for stem dimensions and shape in optimizing the two-phase breakdown of stems 38 

into logs and sawn goods. Primary log breakdown (or bucking) is carried out according to a demand 39 

matrix that defines the allowable log length and top-end diameter combinations, as well as the 40 

desired number of logs in a given dimension category (Kivinen and Uusitalo, 2002). The secondary 41 

log breakdown (or sawing) is based on either optical or X-ray scanning data or both (Lundgren, 2000; 42 

Nordmark and Oja, 2004; Oja et al., 2004; Fredriksson, 2014), which in addition to log dimensions, 43 

also accounts for shape attributes, such as stem taper and sweep. Log dimension and shape 44 

properties restrict the choice of sawing pattern, i.e., they introduce constraints to an optimization 45 

problem of maximizing the timber volume sawn from a log (Nordmark, 2005). Both excessive log 46 

tapering and sweep are known to reduce the timber volume (Taylor and Wagner, 1996; Yerbury and 47 

Cooper, 2010). Moreover, stem geometry also indicates the expected wood quality; e.g., log sweep 48 

has been linked with increased reaction wood content (Rune and Warensjö, 2002). On the other 49 

hand, stem taper may indicate certain cellular wood properties (Lindström, 1996). For example, 50 

vigorous trees that have long live crowns exhibit strong tapering and increased proportions of 51 

juvenile wood (core wood, or crown wood) in the xylem (Lindström, 1996; Fabris, 2000). Juvenile 52 

wood has, among its other differences, lower wood density and higher microfibril angle in the 53 

secondary cell-wall middle layer and, as a result, lower strength and stiffness than matured wood 54 

(outer wood, or stem wood) (Burdon et al., 2004).  55 

Sawmills can use their databases of log geometry and wood quality for wood procurement planning, 56 

i.e. for timing and targeting the harvesting operations. Simulated sawing of virtual sawlogs 57 

reconstructed from the sawmill databases is currently the most detailed approach to optimizing log 58 

breakdown according to the properties of a specific batch of logs (Todoroki, 1990; Pinto et al., 2006; 59 

Auty et al., 2014). In addition, sawing simulators could enable estimating of optimal log breakdown 60 

patterns and sawn wood product recoveries from potential harvest sites, based on remote sensing 61 

(Barth et al., 2015; Sanz et al., 2018), if proper references from the standing timber were available. 62 

Due to the natural variability of wood quality between and within stands and individual trees 63 

(Björklund, 1997; Huuskonen et al., 2014; Ojansuu et al., 2018), the optimal references, i.e. inputs to 64 

sawing simulators, would describe the tree-specific stem geometry as a three-dimensional (3-D) 65 

stem model that could be virtually bucked, and linked with the wood quality data (Mäkelä et al., 66 

2010). 67 

The emergence of various sensors and platforms for acquiring high-resolution 3-D point cloud data 68 

from a forest environment could enable measurement of the standing timber’s stem geometry with 69 

the level of detail required in log breakdown optimization (Wallace et al., 2012; Liang et al., 2015; 70 

Liang et al., 2018b). While operationally functional systems (e.g. systems integrated in harvesters) 71 

are still under development, terrestrial laser-scanning (TLS) performed from a static platform is 72 

currently the most precise system for use in a forested environment and thus a viable tool for 73 

researching point cloud - based applications (Maas et al., 2008; Liang et al., 2016). Previous studies 74 

have investigated the applicability of TLS point clouds to stem modelling and demonstrated several 75 
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quantitative approaches that would enable highly automated retrieval of the stem geometry from 76 

standing timber in a forest environment (Liang et al., 2012; Raumonen et al., 2013; Hackenberg et 77 

al., 2014; Mengesha et al., 2015; Xia et al., 2015; de Conto et al., 2017). The following studies used 78 

harvester data as references to evaluate the accuracy of point cloud- based stem-model geometry or 79 

product recovery estimations: Murphy et al. (2010) used TLS-derived stem curves to estimate the 80 

primary log breakdown product recovery and reported standard errors of 7% and 8% for tree-81 

specific values and volume yields, respectively. Kankare et al. (2014) used allometric stem taper 82 

models based on generic tree descriptors derived from TLS point clouds and estimated the sawlog 83 

volume with 17.5% root-mean-squared error (RMSE). Liang et al. (2014) reported RMSEs of 1.13 cm 84 

and 29.3 dm3 for TLS stem-model diameter and volume estimations, respectively. 85 

On the contrary, studies considering the relationship of TLS-derived stem-model geometry with 86 

wood quality data from sawmills are lacking. However, Van Leeuwen et al. (2011) reviewed the 87 

feasibility of using TLS point clouds to assess wood quality, and Stängle et al. (2014) were able to 88 

predict the clear-wood content of European beech (Fagus sylvatica L.) stems by analysing the stem 89 

shape and presence of branch scars. It is thus reasonable to assume that linking detailed structural 90 

measurements from high-density point clouds of standing timber with sawmill data could enable 91 

more sophisticated preharvest optimization of log breakdown. The minimal technical requirements 92 

for combining point cloud-based stem models and sawmill wood quality data for simulated sawing 93 

include that the log geometry derived from the point clouds must concur with the state-of-the-art in 94 

the sawmills and express logical relationships with wood quality. 95 

In this study, we aimed at examining the feasibilities of high-density terrestrial point cloud data 96 

contributing to preharvest log breakdown optimization. We evaluated the accuracy of top-end 97 

diameter, volume, tapering and sweep of logs measured from stem-model geometry based on TLS 98 

point clouds in comparison to the respective sawmill measurements that set the level for the 99 

operational applications, and analysed the relationship between log geometry and interior wood 100 

quality. 101 

Methods 102 

Study area 103 

Our study area encompassed a 1.7-ha stand located in Orivesi, southern Finland (latitude 61° 51' 13" 104 

N, longitude 024° 13' 7" E, elevation ~150 m above sea level) (Figure 1). The stand was comprised of 105 

homogenous Scots pine-dominated, mainly Vaccinium-type subxeric heath forest that was sown in 106 

1950 (Table 1). The selected stand represented a commonly available source of softwood timber in 107 

southern Finland. The latest national forest inventory in 2013 showed that 54% of the area with 108 

mature forests in Finland was Scots pine-dominated and that 43% of the annually harvested sawlog 109 

timber was Scots pine. The stand description based on a stand-wise forest inventory from 2015 is 110 

given in Table 1. 111 

Sample trees, terrestrial laser scanning data acquisition, and stem modelling  112 

In all, 52 Scots pine sample trees were selected in 10 groups of 2–5 trees distributed evenly to cover 113 

the entire stand. The trees were selected to represent the diameter distribution of the stand. Each 114 

tree was marked with an identification (ID) number to enable later recognition. The TLS survey was 115 

carried out on July 3, 2016. The nearest Finnish Meteorological Institute weather station showed 116 
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that the average wind speed on that day was less than 3 m/s. The terrestrial laser scanner used was 117 

a Trimble TX5 (Trimble Inc., Sunnyvale, CA, USA) phase-shift scanner. With the scanning resolution 118 

used, the point-to-point sampling distance at 10 m from the scanner was 3.1 mm. Quality parameter 119 

2 was used, which means that each measured point was an average of two distance measurements. 120 

Each tree group was scanned from 3–7 locations, with the scanner mounted on a tripod. The 121 

scanning locations were adjusted specifically for each tree group to obtain full data coverage on all 122 

sides of the trees. In all, we acquired 33 scans, with the scanning time being 7 min 9 s per scan (total 123 

work time with two operators: 8 h). Six target spheres (radii 9.8 cm) were set on tripods around the 124 

scanned trees to enable later coregistration of the individual scans into a common, local coordinate 125 

system. 126 

The point clouds were prefiltered and coregistered, using the built-in procedures in Faro Scene 5.4 127 

software (Faro Technologies Inc., Lake Mary, FL, USA). Points with fewer than two other points 128 

within a 3x3-cell grid in the two-dimensional (2-D) projection neighbourhood and points with 129 

intensity values lower than 300 (on a scale of 0–2084) were filtered out. 130 

The sample trees were identified, based on the ID numbers and extracted manually from the 131 

coregistered point clouds. The height of the root collar was estimated visually, and the points below 132 

that height were excluded. Points belonging to a stem were identified as flat, vertical structures and 133 

modelled by means of a cylinder-fitting method using a 20-cm vertical interval (Liang et al., 2012).  134 

To enable interpolation of the stem diameters and centre locations between the measuring points, a 135 

smoothing cubic spline (stats; smooth.spline (R, 2018)) was applied to the measured stem diameters 136 

and stem centre x- and y-coordinates as a function of height. The smoothing parameter of the spline 137 

function was set to 0.4 ( on a scale of 0–1, where 0 means the spline  crosses through every point in 138 

the original data and 1 is equal to a linear least-squares approximation), based on the sensitivity 139 

analysis carried out in Saarinen et al. (2017). The smoothing spline was also used to extrapolate the 140 

stem diameters beyond the last measured height up to the tree height (H), which was defined as the 141 

difference between the lowest and highest return in the manually extracted point cloud. The 142 

resulting stem taper curves of the sample trees are presented in Figure 2. 143 

Harvesting and sawmill measurements 144 

The study site was clear-cut in July 2016, and the trees were cut-to-length in the forest, based on the 145 

bucking matrix of the sawmill in Korkeakoski (UPM-Kymmene Oyj, Helsinki, Finland). The minimum 146 

allowed sawlog top-end diameter was 15 cm (over-bark). The allowable sawlog lengths ranged 147 

between 428 cm and 548 cm at 30-cm intervals. The sawlogs bucked from the sample trees were 148 

marked with ID numbers and kept separate from the remaining logs. This was done to enable linking 149 

the log-specific data with the respective stem models produced from the TLS point clouds. The 150 

harvester produced 103 sawlogs from the 52 sample trees: 52 butt logs, 42 middle logs and 9 top 151 

logs. 152 

The sample logs were measured at the sawmill in August 2016. The tree number and order of log 153 

(i.e. butt, middle, top) were identified, based on their ID numbers. The measurements included two 154 

scanning repetitions with the sawmill equipment. The log-scanning system in use was a Visiometric 155 

LignaProfi (Visiolog Ltd., Lappeenranta, Finland) system that entails four static laser beams and three 156 

cameras. The system measured three stem curve diagrams of the logs, one from each of the camera 157 
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directions. The diagrams entailed the log diameters and centre points with a resolution of 5 cm in 158 

vertical direction that were used to calculate the top-end diameter, volume, taper and sweep of 159 

each log (Figure 3). The top-end diameter was the average of the top-end diameters of the three 160 

directions. The volume of a log was calculated as the volume of a truncated cone, using the log 161 

length and averaged over-bark diameters at the top-end and at the 2/3 length of the log (from the 162 

top-end). Taper (mm/m) was defined as the difference between the averaged log top-end over-bark 163 

diameter and over-bark diameter at the 2/3 length, divided by the length of the log. Sweep (mm/m) 164 

was determined as the maximum deviation of the surface model centre line from the log centre line 165 

(i.e. a direct line from the top-end centre point down to the centre point at the 2/3 length of the log) 166 

in any of the three measurement directions. The diameter and centre point at the 2/3 length of the 167 

log were used instead of those of the bottom-end to deduct the butt-swelling that will be planed off 168 

before the logs are sawn. 169 

To enable the interpretation of interior wood quality, a Wood-X 4D Tomo (Finnos Ltd., 170 

Lappeenranta, Finland) X-ray scanning device (digital radiographer) was used to estimate the basic 171 

density of the sapwood and to detect whorls present in the heartwood in each log. In X-ray scanning, 172 

the X-ray beams were transmitted through a log from four directions, and the attenuation values 173 

were used to image the log’s cross section at a given point along the log in two dimensions (2-D). 174 

The series of consecutive cross-sectional images were combined into a comprehensive 175 

reconstruction of the log, with 10 mm x 10 mm x 10 mm voxels, each associated with an intensity 176 

value representing the attenuation of the X-ray beams (Figure 4). Measurements from the merged X-177 

ray scanning log reconstruction data were taken, utilizing the in-house algorithms of Finnos Ltd. The 178 

estimation of the basic density of the sapwood (ratio of dry weight to green volume) involved the 179 

analysis of the X-ray beam attenuation and predictive modelling with respect to device-specific 180 

calibration measurements. In general, the measured attenuation coefficient can be linearly linked 181 

with the density of the material (Fromm, 2001; Bucur, 2003). The system used in this study 182 

converted the estimated basic density (kg/m3) to an index value (I) by compressing the original range 183 

of values into a smaller range, but preserving the relative differences between values. Knot whorls 184 

were identified from the X-ray data, based on their higher attenuation value in comparison to the 185 

surrounding wood, utilizing a pattern-recognition adaptation of neural networks (Hagman, 1995; Oja 186 

et al., 2003; Longuetaud, 2005; Fredriksson, 2012) (Figure 4). Whorl location was measured as the 187 

height from the log bottom to the centre of the whorl. The locations were used to calculate the 188 

mean whorl-to-whorl distance in each log. For further reading, applications of X-ray scanning data in 189 

wood property measurements and identification of the varying structures in wood were reviewed by 190 

Wei et al. (2011). 191 

Statistical analysis 192 

The final values of the sawmill measurements, used as the reference data and referred to as sawmill 193 

data from here on, corresponded to the mean values of the two repetitions. The accuracy of the 194 

sawmill references was analysed by calculating a mean difference (MD) and 95% confidence interval 195 

(CI) between the repetitions and using a paired t-test to determine whether the differences were 196 

statistically significant (p < 0.05). Relative MDs were also calculated as the proportion of the MD to 197 

the sawmill measurement. 198 
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Since this study focused only on a sample of trees instead of on an entire stand, we bucked the TLS 199 

tree models to logs, using the ID-numbered log lengths from the sawmill data. The exact stump 200 

height was unknown, but we assumed that the harvester had cut the first log just above the root 201 

collar. Log-specific over-bark top-end diameter, stem taper, sweep and volume were measured from 202 

the TLS-based stem models, applying the principles of the sawmill measurements (Figure 2), and 203 

compared with the reference. The comparisons were conducted separately for butt logs and other 204 

logs, i.e. the middle logs and top logs were bundled together, due to the small number (9) of top 205 

logs. Similarly, in the comparison of the sawmill measurement repetitions we used the MD, relative 206 

MD, 95% CI and paired t-test to determine the statistical significance of the differences between the 207 

TLS measurements and the sawmill reference. In addition, a correlation matrix of Pearson’s 208 

correlation coefficients (r) was calculated between all the variables and between the TLS and sawmill 209 

data for all the logs and the various log types separately. To assess the relationship between wood 210 

quality and the TLS-derived variables describing log geometry, we inspected r between the log 211 

geometry variables, log-specific basic density and whorl-to-whorl mean distance values from the X-212 

ray scanning measurements.  213 

Results 214 

Statistical differences were found between the two sawmill measurement repetitions for top-end 215 

diameter and volume, but the relative MDs remained below 3%. Statistical differences were also 216 

found for butt log taper (relative MD 5.8%) and basic density values (relative MD 1.1%). The 217 

descriptive statistics of the sawmill measurement repetitions, their MDs and the results of paired t-218 

tests are presented in Table 2. 219 

The estimates of the log-specific top-end diameter and volume based on TLS stem models differed 220 

from the reference measurements in a  statistically significant manner, having relative MDs of 1.6% 221 

and -2.4%, respectively, considering all log types together (Table 3). For all logs together, as well as 222 

for the various log types separately, the top-end diameter and volume estimates were highly 223 

correlated between the TLS tree models and sawmill measurements, with r ranging between 0.88 224 

and 0.99 (Table 4). Figure 5 shows that the TLS stem models tended to slightly overestimate the top-225 

end diameter, especially as the diameter increased, while the log volume estimates were generally 226 

close to unbiased, and not dependent on the size of the log. 227 

The taper values of the TLS stem models showed a relative MD of -3.0% in comparison to the 228 

sawmill references, considering all log types. However, the difference was not statistically significant 229 

(Table 3), and r was more than 0.75 between estimates from sawmill measurements and TLS stem 230 

models for all log types together or separately (Table 4). The sweep estimates differed from the 231 

reference in a statistically significant manner, the relative MD showing a 78.13% difference between 232 

the data sets when all logs were considered and r ranging from 0.47 to 0.62 when all logs were 233 

considered or different log types were considered separately (Table 4). Neither taper nor sweep 234 

estimates were clearly associated with the magnitude of the variable (Figure 5). 235 

When we compared the log properties with the wood quality variables, the results showed negative 236 

correlations between the basic density and increasing top-end diameter, volume and tapering of 237 

logs (Table 4). The relationship between tapering and basic density in all logs together was more 238 

clear when the tapering value from the sawmill measurements was used (r = -0.62). A negative 239 
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correlation (r = -0.51) was found between the TLS-based tapering and mean whorl-to-whorl 240 

distances when all logs were considered (Table 4). Figure 6 illustrates the results of the comparison 241 

in scatter plots. Clear associations were observed between basic density and top-end diameter 242 

(Figure 6a), volume (Figure 6c) and taper for middle and top logs (Figure 6e), and between the mean 243 

whorl-to-whorl distances and taper, especially in the middle and top logs (Figure 6f). 244 

Discussion 245 

Our analysis of the applicability of stem models based on high-density terrestrial point clouds in 246 

contributing to preharvest log breakdown optimization at sawmills used state-of-the-art sawmill 247 

data as references.  Analysing the precision of the reference data is crucial to enabling proper 248 

interpretation of the comparison results. Paired t-tests of the sawmill measurement repetitions that 249 

made up the reference showed that statistically significant differences may exist between two 250 

measurement rounds. However, the relative MDs remained below 4% for all variables, which 251 

suggests high accuracy of the reference data and set the level for the TLS stem models. 252 

Our results showed that TLS point cloud-based tree models tend to slightly overestimate the log 253 

diameters, especially for the butt logs (Table 3). Errors in diameter estimation propagate to the 254 

volume and taper estimates. In this study, the volume estimates for the top logs differed from the 255 

reference in a statistically significant manner, while the taper values were estimated as being nearly 256 

unbiased (Table 3). It is worth noting that the diameter measurement heights may have varied 257 

somewhat between the TLS and sawmill data, because the exact stump height was not known. The 258 

stem diameter estimates were also extrapolated between the measurement points by means of 259 

spline interpolation, in which the estimation of H and selection of the smoothing parameter may 260 

also have resulted in errors to the estimates (Figure 2). Nevertheless, the estimation errors were 261 

similar in magnitude to those between the two repetitive sawmill measurements (Tables 2 and 3). 262 

The remaining differences were generally below 1 cm, and the accuracy of the stem dimensions 263 

estimation was thus higher than in most previous studies utilizing either cylinder or circle fitting 264 

(Henning and Radtke, 2006; Liang et al., 2012; Olofsson et al., 2014; Olofsson and Holmgren, 2016; 265 

Wang et al., 2016; de Conto et al., 2017; Koreň et al., 2017). This was probably due to the favourable 266 

scanning conditions (i.e. both understorey and wind were minimal) and a high scanning density 267 

(point-to-point distance 3.1 mm at 10 m). Also a possible source of overestimation is that the area a 268 

laser beam illuminates when emitted onto a cylindrical object is elliptical rather than circular, and 269 

TLS point cloud-based cylinder models are therefore generally prone to slight overestimation, as 270 

reported by Forsman et al. (2018). 271 

Sweep was largely overestimated in the TLS stem models. The result indicates that although the 272 

diameter estimates were in line with the references, the stem centre point estimation differs 273 

between the sawmill measurements and the TLS stem modelling. At the sawmill, the sweep was 274 

estimated from three directions, using a 2-D diagram of log centre points, and thus the orientation 275 

of the log on the measurement table affects the sweep measurement at the sawmill. In the TLS stem 276 

model, the centre point was estimated in 3-D as the centre of a cylinder fitted to the stem points. 277 

Our results thus pointed out an issue that should be paid more attention to in the future: the 278 

measurement of sweep needs to be defined in such a way that uniform and comparable estimations 279 

are possible with either method. Previous research on sweep estimation is sparse. Thies et al. (2004) 280 
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demonstrated a sweep-estimation approach, but they had no references to show the accuracy of 281 

their approach. 282 

The log geometry variables from both the sawmill measurements and TLS stem models resulted in 283 

logical correlations with the inspected wood quality variables, namely wood density and knottiness 284 

of the logs that were measured by means of X-ray scanning. Based on our results, the wood density 285 

decreased together with increasing log dimensions (Figure 6). Downes et al. (2002) argued that the 286 

relationship between rapid growth and decreased wood density is not necessarily causal per se, but 287 

rather a likely consequence of prolonged juvenile wood formation in trees that maintain long live 288 

crowns and exhibit rapid axial growth (Mansfield et al., 2007; Kuprevicius et al., 2013). The larger, 289 

dominant trees in this study may have comprised larger proportions of juvenile wood, similar to 290 

trees from widely spaced and fertile sites. Cortini et al. (2013) linked increasing site fertility with 291 

increasing growth ring area for four different conifers, and Benjamin et al. (2009) associated the 292 

increasing tree spacing with decreasing modulus of elasticity in black spruce (Picea mariana [Mill.] 293 

BSP). Furthermore, the sapwood basic density decreased with increasing tapering, especially in butt 294 

logs (Table 4, Figure 6e), which is in line with previous results, e.g.  Lindström (1996) and Fabris 295 

(2000), who  linked heavy stem tapering to rapid axial growth and lower wood density. Our results 296 

also showed that, especially in middle and top logs (Figure 6f), the tapering was negatively 297 

correlated with the mean whorl-to-whorl distances (Table 4), which was also observed in studies 298 

conducted by Björklund (1997) and Mäkinen (1999). Tapering was minimal in the middle logs and 299 

increased again in the top logs (Table 2, Figure 2). The knots found in the middle logs were likely 300 

grown under heavy competition, their life cycle and consequently the length of the live crown having 301 

been shorter and the growth resources allocated to growth in the stem apex, resulting in small taper 302 

value and long whorl-to-whorl distances. The knots within the top logs, in turn, were likely grown 303 

after the final thinning, when the trees have allocated their growth resources to rapid axial growth 304 

instead of growth in H and the whorl-to-whorl distances have remained shorter. 305 

Since stem shape is closely associated with crown properties, similar estimates of log properties and 306 

wood quality could also have been estimated through crown geometry and individual branching 307 

parameters. For example, Blanchette et al. (2015) analysed stand-specific canopy structure and 308 

competition indicators measured from TLS point clouds and presented models for  predicting several 309 

wood properties, including wood density and microfibril angles. In Pyörälä et al. (2017), manual 310 

branch measurements from TLS point clouds were compared with  knots detected in X-ray scanning. 311 

The study concluded that approximately 55% of the whorls could be identified, with most of the 312 

discrepancy resulting from the bottom parts of the stem, where the branches had self-pruned. In 313 

addition, the increasing distance from the scanner results in diminishing point density in the upper 314 

parts of the tree crown and the terrestrial point clouds are not feasible for detecting individual 315 

branches deeper in the live crown. Therefore, it is reasonable to assume that both the stem taper 316 

data and branching data should be used in a complementary manner to comprehensively assess the 317 

wood quality of standing timber. Geometrical tree-modelling approaches to retrieve branching 318 

structures in addition to the stem have been demonstrated by Côté et al. (2012), Raumonen et al. 319 

(2013), Bournez et al. (2017) and Pyörälä et al. (2018). Further research should utilize these 320 

additional variables in the linking of standing timber properties to the wood quality variables from 321 

sawmill data. 322 
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It is worth noting that our test data were small and entailed high-density point clouds that covered 323 

individual trees as completely as possible. When the area of interest increases, the spatial range of 324 

TLS tends to limit the coverage, resolution and quality of the data achievable (Abegg et al., 2017; 325 

Wilkes et al., 2017; Liang et al., 2018a). Alternatively, a laser-scanner can also be mounted on a 326 

moving platform (MLS, mobile laser scanning), which enables faster acquisition of point cloud data 327 

with resolution similar to that of TLS (Liang et al., 2018b). The data- processing time for TLS and MLS 328 

point clouds may yet be long, but future developments in algorithms and computing power are likely 329 

to reduce the processing time.  330 

As an outlook, if sawmills gathered MLS data from the top of a harvester during harvesting 331 

operations and linked the standing timber’s stem (and branching) geometry with sawmill data, the 332 

resulting database could be used to optimize the sawing and predict sawn wood product recoveries 333 

at potential harvest sites, using remote sensing. Barth et al. (2015) and Sanz et al. (2018) used aerial 334 

remote-sensing data, field references and harvester bucking data from previously harvested forest 335 

sites. They produced lists of trees with 2-D stem profiles based on the field and harvester data, then 336 

bucked the tree lists in a simulation and imputed the log product recovery estimations to their study 337 

stands, using the remote-sensing data. If the field references involved 3-D stem models and were 338 

linked with wood quality information, simulated sawn wood product recoveries could be estimated 339 

at potential harvest sites and used to optimize the log breakdown prior to the harvest. 340 

Conclusion 341 

The results of the current study showed that stem diameters along the length of the sawlog section 342 

can be estimated with similar accuracy to that at the sawmill, using high-density terrestrial point 343 

clouds scanned under favourable conditions. The results thus imply that stem-model dimensions 344 

resolved from point clouds could be used to link sawmill wood quality data with standing timber. 345 

However, the proposed approach may not yet be fully feasible, due to the non-uniform definition of 346 

sweep, and although logical relationships exist between the stem-model geometry and wood 347 

quality, the correlations in this study remained moderate at best. In further studies, the additional 348 

information obtainable from the point clouds should be included to further explore the possible 349 

advantages that the 3-D point cloud data provide for wood procurement planning. Moreover, in an 350 

operational setting, mobile platforms are probably better suited for data acquisition than the static 351 

TLS. 352 
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 542 

Table 1. Study site description based on stand-wise forest inventory from year 2015. G = basal area, 543 

Dgm = basal area-weighted mean diameter, Hgm = basal area-weighted mean height, and V = total 544 

stem volume per hectare. 545 

Regeneration Sow 

Established (year) 1950 

Thinnings (year) 1983, 1999 

Site type Sub-xeric 

Vegetation type Vaccinium 

Area (ha) 1.7 

Stems (No./ha) 617 

G (m2/ha) 28.0 

Dgm (cm) 25.0 

Hgm (m) 21.0 

V (m3/ha) 281.0 
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Table 2. Minimum, mean, maximum and standard deviation (SD) values of two repetitions of the 546 

sawmill measurements (Sawmill 1 and 2), and the log-specific differences and results of a paired t-547 

test: mean difference (MD) with absolute and relative values, 95% confidence interval (95% CI), 548 

degrees of freedom (df) defined as N–1 where N is the number of logs, the t-statistic (t) and the 549 

statistical significance (p) between the repetitions for all logs and different log types. The data 550 

included 52 butt logs, 42 middle logs and 9 top logs. Statistically significant differences (p < 0.05) are 551 

marked with an asterisk (*). 552 

 
Sawmill 1 Sawmill 2 Accuracy 

 

Min Max Mean SD Min Max Mean SD MD (%) 95% CI df t p 

Length (m)  3.78 5.57 4.77 0.48 3.78 5.56 4.77 0.48 0.00 (0.00) 0.00 - 0.00 102 0.57 0.57 

Butt logs  3.78 5.57 4.87 0.49 3.78 5.56 4.87 0.49 0.00 (0.00) 0.00 - 0.00 51 0.75 0.45 

Middle logs 4.01 5.48 4.72 0.48 4.02 5.48 4.72 0.48 0.00 (0.00) 0.00 - 0.00 41 -0.11 0.91 

Top logs 4.26 4.89 4.48 0.26 4.26 4.90 4.48 0.26 0.00 (0.00) 0.00 - 0.01 8 0.37 0.72 

Top-end diameter (cm) 14.10 27.10 18.98 2.93 13.70 25.70 18.72 2.87 0.26 (1.38) 0.18 - 0.34 102 6.48 <0.01* 

Butt logs 14.10 27.10 20.15 3.03 13.70 25.70 19.83 2.96 0.32 (1.60) 0.20 - 0.44 51 5.46 <0.01* 

Middle logs 14.80 23.20 18.18 2.28 14.60 23.50 17.97 2.33 0.21 (1.16) 0.09 - 0.32 41 3.59 <0.01* 

Top logs 14.90 18.60 15.94 1.14 14.70 18.00 15.82 1.11 0.12 (0.76) -0.17 - 0.42 8 0.96 0.37 

Volume (dm3) 68.00 335.00 167.80 57.14 64.00 347.00 163.67 56.26 4.13 (2.49) 3.41 - 4.85 102 11.36 <0.01* 

Butt logs 68.00 335.00 193.60 62.97 64.00 347.00 187.94 62.62 5.65 (2.96) 4.41 - 6.90 51 9.12 <0.01* 

Middle logs 91.00 242.00 145.81 35.81 88.00 239.00 143.19 35.82 2.62 (1.81) 2.12 - 3.12 41 10.66 <0.01* 

Top logs 106.00 169.00 121.33 22.12 101.00 166.00 119.00 22.53 2.33 (1.94) 1.25 - 3.42 8 4.95 <0.01* 

Taper (mm/m) 3.10 16.50 8.13 2.39 2.60 14.10 7.98 2.31 0.15 (1.86) -0.06 - 0.36 102 1.42 0.16 

Butt logs 4.60 16.50 8.23 2.39 2.60 14.10 7.77 2.31 0.46 (5.75) 0.15 - 0.77 51 2.98 <0.01* 

Middle logs 3.10 10.00 7.23 1.52 2.90 10.90 7.46 1.61 -0.23 (-3.13) -0.55 - 0.09 41 -1.45 0.16 

Top logs 7.90 14.80 11.72 2.30 7.60 13.70 11.57 2.09 0.16 (1.37) -0.23 - 0.54 8 0.92 0.38 

Sweep (mm/m) 1.30 13.00 4.53 2.30 1.10 12.50 4.43 2.20 0.10 (2.23) -0.01 - 0.21 102 1.74 0.08 

Butt logs 1.60 13.00 5.38 2.59 1.90 12.50 5.20 2.55 0.18 (3.40) 0.02 - 0.33 51 2.28 0.03 

Middle logs 1.30 8.20 3.79 1.60 1.10 7.80 3.70 1.48 0.08 (2.14) -0.1 - 0.26 41 0.94 0.35 

Top logs 1.40 5.80 3.07 1.40 2.30 5.10 3.36 1.02 -0.29 (-9.02) -0.66 - 0.09 8 -1.77 0.11 

Basic density (I) 114.00 135.00 125.98 5.14 115.00 135.00 126.87 4.69 -0.89 (-0.70) -1.17 - -0.61 102 -6.32 <0.01* 

Butt logs 114.00 131.00 122.67 4.57 115.00 132.00 124.04 4.31 -1.37 (-1.11) -1.77 - -0.96 51 -6.7 <0.01* 

Middle logs 121.00 135.00 129.19 3.16 120.00 135.00 129.67 2.97 -0.48 (-0.37) -0.86 - -0.09 41 -2.5 0.02 

Top logs 125.00 135.00 130.11 2.76 124.00 134.00 130.22 3.27 -0.11 (-0.08) -1.09 - 0.86 8 -0.26 0.8 

Whorl-to-whorl (m) 0.15 0.47 0.27 0.07 0.14 0.46 0.28 0.08 0.01 (3.64) -0.65 - 0.09 102 -1.52 0.13 

Butt logs 0.15 0.28 0.22 0.03 0.14 0.29 0.22 0.04 0.00 (0.00) -0.27 - 0.46 51 0.52 0.61 

Middle logs 0.25 0.47 0.34 0.05 0.26 0.46 0.35 0.05 0.01 (2.90) -1.43 - 0.07 41 -1.84 0.07 

Top logs 0.24 0.35 0.28 0.04 0.25 0.34 0.29 0.03 0.01 (3.51) -1.96 - 0.74 8 -1.05 0.33 

 553 

Table 3. Log-specific minimum, mean, maximum and standard deviation (SD) values of the measured 554 

variables for sawmill and terrestrial laser-scanning (TLS) data as well as the results of the paired t-555 

test: mean difference (MD) in both absolute and relative terms, 95% confidence interval (95% CI), 556 

degrees of freedom (df) defined as N–1 where N is the number of logs, t the t-statistic and p the 557 

statistical significance. A positive MD indicates that TLS resulted in overestimation of the value, and 558 

vice versa. Statistically significant differences (p < 0.05) are marked with an asterisk (*). 559 

 

Sawmill TLS Accuracy 

 

Min Max Mean SD Min Max Mean SD MD (%) 95% CI df t p 

Top-end diameter (cm) 13.90 26.40 18.85 2.89 13.68 27.38 19.15 3.17 0.30 (1.59) 0.18 - 0.43 102 4.8 <0.01* 

Butt logs 13.90 26.40 19.99 2.99 14.15 27.38 20.57 3.19 0.57 (2.85) 0.45 - 0.71 51 8.95 <0.01* 

Other logs 14.75 23.35 17.69 2.29 13.68 24.01 17.71 2.44 0.02 (0.11) -0.16 - 0.21 50 0.24 0.81 

Volume (dm3) 66.00 341.00 165.73 56.68 71.00 340.00 161.73 58.58 -4.01 (-2.42) -5.77 - -2.24 102 -4.5 <0.01* 

Butt logs 66.00 341.00 190.77 62.76 71.00 340.00 188.44 63.63 -2.33 (-1.22) -5.03 - 0.38 51 -1.73 0.09 
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Other logs 89.50 240.50 140.21 34.91 81.00 248.00 134.49 37.03 -5.72 (-4.08) -7.97 - -3.46 50 -5.09 <0.01* 

Taper (mm/m) 2.85 15.30 8.05 2.28 3.14 15.41 7.80 2.43 -0.24 (-2.98) -0.54 - 0.05 102 -1.65 0.1 

Butt logs 3.60 15.30 8.00 2.29 3.14 15.41 7.69 2.70 -0.31 (-3.88) -0.82 - 0.19 51 -1.24 0.22 

Other logs 2.85 14.25 8.10 2.30 4.77 13.81 7.92 2.14 -0.18 (-2.22) -0.51 - 0.15 50 -1.12 0.27 

Sweep (mm/m) 1.20 12.75 4.48 2.23 1.01 27.32 7.98 4.93 3.50 (78.13) 2.65 - 4.35 102 8.16 <0.01* 

Butt logs 1.75 12.75 5.29 2.55 1.31 26.57 7.42 4.71 2.13 (40.26) 1.04 - 3.22 51 3.93 <0.01* 

Other logs 1.20 8.00 3.65 1.47 1.01 27.32 8.54 5.13 4.89 (133.97) 3.67 - 6.12 50 7.99 <0.01* 

 560 

Table 4. Correlations (r) between the terrestrial laser-scanning (TLS)-derived stem-model attributes 561 

and X-ray-derived basic densities and whorl-to-whorl distances in various log types and in all logs 562 

(boldface). The grey values indicate the absolute magnitude of the correlation. 563 

  

TLS Sawmill 

 

 

Top-end 

diameter Volume Taper Sweep 

Top-end 

diameter Volume Taper Sweep 

Basic 

density Whorl-to-whorl 

TL
S 

Top-end 

diameter 1.00 

  

    

  

  

  Butt logs 1.00 

  

    

  

  

  Other logs 1.00 

  

    

  

  

  Volume 0.95 1.00 

 

    

  

  

  Butt logs 0.96 1.00 

 

    

  

  

  Other logs 0.91 1.00 

 

    

  

  

  Taper 0.08 0.11 1.00     

  

  

  Butt logs 0.27 0.24 1.00     

  

  

  Other logs -0.15 -0.04 1.00     

  

  

  Sweep 0.17 0.19 -0.03 1.00   

  

  

  Butt logs 0.23 0.27 0.07 1.00   

  

  

  Other logs 0.29 0.32 -0.17 1.00             

Sa
w

m
ill

 

Top-end 

diameter 0.98 0.94 0.10 0.18 1.00           

Butt logs 0.99 0.96 0.24 0.25 1.00 

  

  

  Other logs 0.96 0.88 -0.05 0.25 1.00 

  

  

  Volume 0.92 0.99 0.11 0.18 0.93 1.00 

 

  

  Butt logs 0.93 0.99 0.19 0.27 0.95 1.00 

 

  

  Other logs 0.85 0.98 0.05 0.27 0.86 1.00 

 

  

  Taper 0.09 0.17 0.79 0.02 0.11 0.20 1.00   

  Butt logs 0.31 0.31 0.75 0.08 0.31 0.34 1.00   

  Other logs -0.14 0.02 0.86 -0.05 -0.11 0.09 1.00   

  Sweep 0.35 0.29 0.15 0.47 0.33 0.27 0.14 1.00 

  Butt logs 0.17 0.10 0.34 0.56 0.17 0.11 0.30 1.00 

  Other logs 0.36 0.27 -0.16 0.62 0.29 0.19 -0.09 1.00     

Basic density -0.62 -0.61 -0.49 -0.13 -0.60 -0.62 -0.62 -0.41 1.00 

 Butt logs -0.61 -0.55 -0.19 -0.36 -0.60 -0.56 -0.53 -0.29 1.00 

 Other logs -0.23 -0.26 -0.12 -0.16 -0.25 -0.27 -0.09 -0.10 1.00 

 Whorl-to-

whorl -0.32 -0.32 -0.51 0.04 -0.28 -0.30 -0.70 -0.37 0.62 1.00 

Butt logs -0.02 0.14 0.16 -0.09 0.02 0.17 -0.38 -0.18 0.29 1.00 

Other logs 0.16 0.09 -0.48 -0.09 0.14 0.07 -0.53 -0.14 0.24 1.00 
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 564 

Figure 1. Left: The stand examined is highlighted in red in the aerial imagery (by the National Land 565 

Survey of Finland). Coordinates are given in EUREF-FIN. The dot on the map of Finland indicates the 566 

location. Right: A photograph of the stand showing a group of three sample trees marked with 567 

identification numbers. 568 

 569 

Figure 2. Sample tree stem curves (52). The stem diameter at a given height corresponds to the 570 

result of the cubic spline smoothing of the diameters of the cylinders fitted to the stem point clouds. 571 

DBH = diameter-at-breast-height. 572 

 573 

Figure 3. Illustration of the log geometry metrics used in this study, overlaid on a terrestrial laser-574 

scanning point cloud of a butt log. The log length (5.18 m) is given by the vertical arrow on the left-575 

hand side. The log top-end diameter (18.4 cm) and diameter at 2/3 length from the top-end (25.8 576 

cm) are indicated with horizontal arrows above and below the log, respectively. The log taper (14.3 577 
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mm/m) is calculated as the difference of the two diameters, divided by the length of the log. The 578 

horizontal arrows in the middle give the maximum deviation between the log centre line (dashed) 579 

and the direct line (solid) from the top-end down a 2/3 length of the log (58 mm); sweep (11.2 580 

mm/m) is calculated from this value by dividing it with the full length of the log. 581 

 582 

Figure 4. A general example of log reconstruction from four-directional X-ray scanning. In cross-583 

sectional images as shown in A), heartwood (blue) is separated from knots and sapwood (red). The 584 

arrows in the cross-section give the knot directions. The log data as shown in B) are reconstructed 585 

longitudinally by merging consecutive cross-sectional images. The attenuation of the X-ray beams is 586 

used to interpret different structures in the log. (B): Knot whorls (red) are identified from the image, 587 

based on their higher density in comparison to the surrounding heartwood (yellow-green), and the 588 

basic density of the sapwood (cyan) is interpreted from the attenuation values with respect to the 589 

device-specific calibration measurements. The bark is illustrated in blue. The red horizontal line 590 

indicates the location of the cross-sectional image (A). The figure is by courtesy of Finnos Ltd., and 591 

the log is not from this study. 592 

 593 

Figure 5. Scatter plots representing the differences between the terrestrial laser-scanning (TLS) point 594 

cloud measurements and the sawmill measurements with respect to the magnitude of the Inspected 595 

variable. A positive error indicates that TLS resulted in overestimation of the value, and vice versa. 596 

The number of butt logs is 52 and other logs 51. 597 

 598 

Figure 6. Scatter plots representing the relationship between the terrestrial laser-scanning stem- 599 

model-derived log-specific top-end diameter, volume, taper and sweep and the X-ray scanning - 600 

derived basic density and whorl-to-whorl distances. The number of butt logs is 52 and other logs 51. 601 


