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Abstract   

Western-type diet (WD) is a risk factor for colorectal cancer but the underlying mechanisms 

are poorly understood. We investigated the interaction of WD and heterozygous mutation in 

the Apc gene on adenoma formation and metabolic and immunological changes in the 

histologically normal mucosa of ApcMin/+ (Min/+) mice. The diet used was high in saturated 

fat and low in calcium, vitamin D, fiber and folate. The number of adenomas was twofold 

higher in the WD mice compared to controls, but adenoma size, proliferation or apoptosis 

did not differ. The ratio of the Min to wild-type allele was higher in the WD mice, indicating 

accelerated loss of Apc heterozygosity (LOH). Densities of intraepithelial CD3ε+ T 

lymphocytes and of mucosal FoxP3+ regulatory T cells were higher in the WD mice, implying 

inflammatory changes. Western blot analyses from the mucosa of the WD mice showed 

suppressed activation of the ERK and AKT pathways and a reduced activation of the mTOR 

pathway as measured in phosphoS6/S6 levels. The expression of pyruvate dehydrogenase 

kinase 4 (PDK4) was strongly upregulated in both mRNA and protein levels. Microarray 

analyses showed changes in oxidation/reduction, fatty acid, and monosaccharide metabolic 

pathways, tissue organization, cell fate and regulation of apoptosis. Together, our results 

suggest that the high-risk Western diet primes the intestinal epithelium to tumorigenesis by 

programming a cancer-type energy metabolism, and by inducing metabolic and 

inflammatory oxidative stress, which accelerate LOH of the Apc gene. 

 

Introduction 

Colorectal cancer (CRC) is one of the most common cancer types in industrialized countries. 

An inactive lifestyle, obesity, and a high-fat diet with low micronutrient density are well-

known risk factors for CRC, and studies in various animal models support the role of a high-
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risk Western-type diet, i.e. a diet that is high in fat and low in fiber, calcium, vitamin D and 

folate, in colon tumorigenesis (1-4).  Mechanisms for how the unbalanced, high-energy 

yielding Western-type diet predisposes or promotes the intestinal epithelium to 

carcinogenesis are poorly understood.  

 

Components of the Wnt signaling pathway are almost ubiquitously mutated in CRC, most 

typically the Apc gene, and mutations in the APC gene are found in the majority of sporadic 

CRC cases (5). APC regulates β-catenin pools in cells. Increased nuclear accumulation of β-

catenin is one of the driving forces for colon tumorigenesis (6).  

 

Recent research connects the activation of Wnt signaling with dysregulation of energy 

metabolism so that its activation drives increased use of glucose, i.e. Warburg-type cancer 

metabolism (7). Increased glycolytic rate in transformed cells elevates the production of 

glycolytic intermediates, which are used in the biosynthetic pathways to satisfy the anabolic 

needs of dividing cells (8). This provides a selective growth advantage for transformed cells. 

Furthermore, mitochondrial metabolism is shifted to uncoupled oxidation of glutamine and 

fatty acids to maintain glycolysis. These alterations in cellular metabolism predispose cells to 

an increased load of reactive oxygen species that activate apoptosis or, if the cell does not 

undergo apoptosis, may induce tumorigenic proliferation and anchorage-independent 

growth (9). Earlier it was believed that the Warburg effect is secondary to transformation, 

but the metabolic changes seem to occur already during the transformation process and are 

governed by the same signal transduction pathways as proliferation (10). Interestingly, an 

earlier study (4) demonstrated that a Western-type diet reprograms the intestinal 
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epithelium towards a gene expression pattern resembling that driven by Apc mutations. 

Thus, dietary and genetic factors converge in driving intestinal tumorigenesis.  

In the glycolytic switch, pyruvate dehydrogenase kinases (PDKs) act as key regulators. These 

inactivate the pyruvate dehydrogenase complex, which catalyzes the rate-limiting step for 

channeling pyruvate into the tricarboxylic acid cycle. Increased PDK4 expression has been 

reported in preneoplastic intestinal epithelium of cancer-susceptible mice and CRC patients. 

In addition, it is known that PDK inhibition can suppress tumor growth (11, 12). On the other 

hand, many tumors show lower PDK4 expression in comparison to the normal tissue of 

origin, indicating that the metabolic demands in the various stages of carcinogenesis are 

different (13). PDK4 expression is negatively regulated by the PI3 kinase/AKT and ERK1/2 

pathways, which control nutrient uptake and convey growth factor signals to the mTOR 

kinase, promoting cellular growth and differentiation (13, 14). These pathways are 

commonly overactivated in CRC and other cancers (15, 16).  

 

We have earlier shown that high fat content in an otherwise balanced diet does not 

promote intestinal tumorigenesis in the Apc –mutated Min/+ mouse (17), a widely used 

murine model of human intestinal carcinogenesis. Here we have further studied tumor 

formation in the Min/+ mouse by combining the high fat content with marginal 

concentrations of fiber, calcium, vitamin D and folate to better mimic a typical Western-type 

diet. Several of these components have been shown to interact with β-catenin metabolism 

(18-20).  
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We found that the high-risk Western-type diet accelerated adenoma formation, but not 

growth, in the Min/+ mouse.  Increases in adenoma numbers were accompanied by loss of 

heterozygosity (LOH) in the Apc gene, downregulation of ERK1/2, AKT and mTORC1 

signalling pathways, as well as changes in the density of immune cells in the normal 

appearing mucosa of the Min/+ mouse. Microarray analyses showed several changes in the 

key cellular pathways regulating energy metabolism, tissue organization and cell fate, all of 

which could predispose the intestinal epithelium to enhanced tumorigenesis. 

 

Materials and Methods 

Animals and diets 

Male and female C57BL/6J Min/+ mice were bred at the Laboratory Animal Centre in Viikki, 

Helsinki, from inbred mice originally obtained from the Jackson Laboratory (Bar Harbor, ME, 

USA). After weaning, the mice were PCR screened for the Min/+ genotype. The 5-week old 

Min/+ mice were stratified by weight and litter background and assigned into experimental 

diets. The mice were housed in plastic cages in humidity- and temperature-controlled 

facilities with a 12-h light-dark cycle. They were fed ad libitum and had free access to tap 

water. The mice were weighed and monitored weekly and a record was kept on their growth 

throughout the experiment.  One mouse from the WD group had to be sacrificed before the 

end of the experiment due to considerable weight-loss during one week and was 

consequently excluded from the subsequent analyses.  The total number of mice included in 

the data was 12 in the WD diet group and 14 in the control diet group. The control diet was 

the semisynthetic unmodified AIN-93G diet. The WD was modified from AIN-93G, with high 

fat and low fiber, vitamin D, calcium and folate (Table I; Harlan Teklad, Madison, WI). We 
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used our own modification of the Western-type diet, which highly resembles the New 

Western Diet (NWD) used by Newmark et al (2). shown to induce benign and malignant 

neoplasms in the colon of normal B6 mice after an 18 month feeding experiment The main 

difference between NWD and our WD is the source of fat, which in our diet resembled the 

more typical consumption of fat in Western populations, and was largely composed of milk 

fat (66.4% of total fat from milk, and 33.6% from rapeseed and sunflower oil) while in the 

NWD the main fat source was corn oil.  The Laboratory Animal Ethics Committee, University 

of Helsinki approved the study protocol. 

 

Evaluation of adenomas and collection of samples 

After the 10-week feeding period, the mice were sacrificed by CO2 asphyxiation.  Blood was 

collected from the abdominal aorta and after centrifugation the plasma was stored at -70oC. 

The small intestine, caecum and colon were removed and opened along the longitudinal axis 

and rinsed with ice-cold saline. The small intestine was divided into five sections of equal 

length. The caecum and colon were separated from the small intestine and kept together for 

analysis. The intestinal sections were spread flat on microscope slides. Each section of the 

intestine and colon and caecum was analyzed under a stereomicroscope attached to a 

monitor. The number and diameter of each adenoma was recorded for all intestinal sections 

separately. The observers keeping record were blinded to the treatment. The intestinal 

adenomas were excised from the tissue and the normal-appearing mucosa that was left 

behind was scraped off from lamina propria. The tissue samples were snap frozen in liquid 

nitrogen and stored at -70oC. For immunostaining analyses, samples were collected from the 

distal small intestine, fixated in buffered 4% paraformaldehyde and processed for paraffin 
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sections. For microarray analysis, another 0.5 cm section was collected from the same 

intestinal area and stored in RNA later solution (Qiagen) at -20 oC.  

 

Immunostaining 

Paraffin tissue sections were deparaffinised and subjected to heat-induced antigen retrieval 

(microwave heating for 15 min at 700W power in 250 ml of buffer, followed by a 20 min 

cooling period). Automated immunostaining was performed using the LabVision Autostainer 

480 and the Ultravision detection system (LabVision, Thermo Fisher Scientific). Proliferating 

cells were identified with an antibody against Ki67 antigen (clone SP6, Labvision), mitotic 

cells with anti-phospho-histone H3 (#06-570, Millipore), apoptotic cells with an antibody 

against cleaved caspase 3 (#CP229, Biocare), T lymphocytes with anti-CD3ε (clone SP7, 

Neomarkers), regulatory T cells with anti-FoxP3 (clone FJK16s, eBioscience) and B 

lymphocytes with anti-CD45R (clone RA3-6B2, Invitrogen). Antigen retrieval was performed 

using Na-citrate buffer, pH 6, for all markers except for cleaved caspase 3, where Tris-HCl-

EDTA, pH8 was used. The immunostained sections were photographed using a Leica 

DM4000 microscope and an Olympus DP70 camera. The digital photomicrographs were 

analysed using ImageJ.  

 

Western blotting  

Samples were prepared as described previously (21). Briefly, proteins were isolated from 

morphologically normal mucosa of the distal small intestine, representing approximately 

40% of the total small intestine. For proteinase and phosphatase inhibition, 0.4 mM 

leupeptin, 3.0 µM pepstatin and 1.0 mM PMSF (in DMSO), 0.5 M NaF and Na3VO4 were 
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added to the homogenisation buffer (20 mM Tris-HCl, pH 7.4; 2 mM EDTA; 10 mM EGTA; 

0.25 M saccharose). For the whole mucosa lysate, 10% triton-x was added to the 

homogenate, after which the sample was mixed for 20 minutes with 5 minutes intervals, 

followed by centrifugation (15 000 x g 10 minutes at 4oC). All protein samples were stored at 

-70oC.  Protein samples were loaded in equal concentrations to SDS-PAGE gels (6.5% gels for 

beta-catenin and AKT/phospho AKT, 10% gels for others). All samples were analyzed at least 

as duplicates. An internal standard was used in each gel to control interassay variation. After 

electrophoresis the proteins were transferred to either nitrocellulose (Hybond ECL 

membrane, Amersham Pharmacia Biotech.) or PVDF (Hybond P membrane, Amersham 

Pharmacia Biotech.) membrane. Membranes were incubated overnight in blocking solution 

containing 3.5% non-fat soya (β-catenin and lamin B analysis) or 5% non-fat milk (other 

analyses) in Tris-buffered saline with 0.1% Tween.  Membranes were incubated with primary 

antibodies for 2 hours or overnight with phospho-specific antibodies. Primary antibodies 

were anti-β-catenin (sc-7199, Santa Cruz Biotechnology), anti-phospho-β-catenin (Ser552 

#9566 and Ser675 #4176, Cell Signaling Technology), anti-ERK1 (sc-94, Santa Cruz 

Biotechnology), anti-phospho-p44/42 (#9101, Cell Signaling Technology), anti-AKT (#9272, 

Cell Signaling Technology), anti-phospho-AKT (#9271, Cell Signaling Technology), anti-S6 

(#2217, Cell Signaling Technology), anti-phospho-S6 (#4858, Cell Signaling Technology), anti-

PDK4 (NBP1-07047, Novus Biologicals), anti-lamin B (sc-6216, Santa Cruz Biotechnology), 

and anti-β-actin (A541, Sigma). For protein detection, secondary antibodies (sc-2030 and sc-

2031, Santa Cruz Biotechnology) and enhanced chemiluminescence reagents ECL or ECL+ 

(GE Healthcare) were used. The levels of phosphorylated and total protein were analyzed 

using the same membrane. After incubating the membrane with a phospho-specific 

antibody, the membrane was stripped in stripping buffer (78 mM Tris-HCl, 2% SDS, 0.68% 
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(V/V) mercaptoethanol) for 20 minutes at 65oC, followed by incubation in TBS-Tween for 20 

minutes at 65oC and incubation in TBS-Tween for 20 minutes at room temperature.  Blots 

were transferred to X-ray film (Amersham) and scanned and analyzed by GSA-800 Calibrated 

Imaging Densitometer and Quantity One Program (BioRad Laboratories). β-actin and lamin B 

were used to control equal loading of protein samples. Phosphorylated forms of β-catenin 

and PDK4 were detected using Odyssey infrared imager as described by Marttinen et al. 

(21). 

 

DNA isolation and analysis of loss-of-heterozygosity by qPCR 

Genomic DNA was extracted from histologically normal mucosa of the distal small intestine 

using the DNeasy Blood & Tissue Kit (Qiagen, Valencia, CA). 

 

The relative copy numbers of Min and wild-type Apc alleles in these genomic DNA samples 

were quantified by multiplex quantitative PCR, using the following primers and allelic 

discrimination probes: forward primer, 5’-GACAGTTCTCGTTCTGAG-3’; reverse primer, 5’- 

GTTGGATGGTAAGCACTG-3’; wild-type probe, 5’-[FAM] ctctcTccAaaCttCtgt [BHQ1]-3’; Min 

probe, 5’-[CY3] ctctcTccTaaCttCtgt [BHQ2]-3’. Locked nucleic acid (LNA) nucleotides were 

used in the probes to increase specificity and are indicated in the probe sequences in capital 

letters. The LNA probes were designed and synthesized by Sigma Aldrich. The amplification 

was carried out using the Maxima Probe qPCR Master Mix (Life Technologies) and a 

Stratagene MX3005P qPCR instrument (Agilent Technologies). The cycling conditions were: 

an initial denaturation at 95°C for 15 min, followed by 40 cycles of 95°C for 10 s and 61°C for 

30 s. 
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To obtain the actual ratio of Min and wild-type sequences in each sample, fold changes 

relative to reference DNA samples from Min/+ and wild-type mice were first calculated for 

the Min and wild-type probes, respectively. The ratio of these values was then compared to 

a standard curve obtained from known dilutions of Min/+ and wild-type DNA. The final 

results are averages of three separate parallel qPCR experiments. Individual measurements 

deviating more than 25% from the average of the three parallel runs were excluded from 

subsequent analyses (6% of all measurements).  

 

RNA isolation and gene expression analyses 

Total RNA was extracted from histologically normal-appearing mucosa of the distal small 

intestine using the RNeasy Mini kit (Qiagen). RNA was quantified using the Nanodrop 1000 

spectrophotometer (Thermo Scientific), and the integrity of the RNA samples was verified 

using Bioanalyzer 2100 (v2.6, Agilent Technologies, Inc.). Equal amounts of total RNA was 

taken from each mouse to make 8 pooled samples (2 samples per diet and per sex, 

containing 1-3 mice per sample). The quality of the pooled RNA samples was again 

controlled by Bioanalyzer (RIN >8). The pooled samples were then analyzed by Agilent 

Whole Mouse Genome 4x44K microarray assay. The labeling, hybridization and scanning 

were performed at the Biomedicum Functional Genomics Unit, University of Helsinki.  

 

Statistical analysis 

The non-parametric Mann-Whitney U-test was used to compare the data between the 

groups. The associations between variables were analyzed with the non-parametric 

Spearman’s correlation test. All statistical analyses were performed using the PASW Statistic 



 12

18 for Windows software (SPSS Inc.). The p-value of P< 0.1 was conceded as a significant 

difference between the groups from Western blot analyses. 

 

The gene-expression microarray data was analyzed with the CSC Chipster v1.4.6 software 

(http://chipster.csc.fi/). The data was normalized using mean normalization, and genes with 

detectable expression in four chips were used in further analyses. Genes with changes ±1.2 

and P < 0.05 were considered differentially expressed. The functional enrichment analyses 

were conducted with DAVID (22, 23). The data sets were reviewed and passed the following 

quality controls: The lists contained many important genes as expected for the study, the 

number of genes was reasonable, in range of few hundred genes in each list, the genes 

passed statistical thresholds (FC 1.2, P<0.05) so that the threshold would not have to be 

sacrificed (e.g., fold changes ≥1.1 and P-value ≤0.2) to reach a comfortable gene size, and 

notable portion of up- or down-regulated genes were involved in certain interesting 

biological processes, such as energy metabolism and Wnt signaling. The lists of enriched 

functional pathways were compared between the lists. The analysis of large gene lists is an 

exploratory, computational procedure rather than a purely statistical method. In order to 

diminish the effect of false positives, as only a large body of genes with similar functions 

may show a significant result in the enrichment analysis, statistics were applied to detect 

enriched functional categories or pathways associated with the genes regulated by the WD 

feed, using Database for Annotation, Visualization and Integrated Discovery (DAVID) v6.7 

(23).  
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Results 

Adenoma formation and loss of heterozygosity (LOH) of the Apc gene was increased in 

Min/+ mice consuming WD 

The average number of adenomas in the total small intestine was two times higher in the 

Western-type diet (WD) mice (median 36; range 14-76) compared to the control mice (Fig. 

1A; median 18; range 7-38; P = 0.003). Colon or caecum adenomas were rare and there was 

no difference between the groups. The average size of the adenomas did not differ between 

the groups (Fig. 1B; P = 0.781). Neither was there any difference in the weight gain between 

the diet groups. 

 

Loss of APC heterozygosity was analyzed by allele-specific quantitative PCR in genomic DNA 

isolated from tissue samples from the distal part of the small intestine. The ratio of the Min 

allele to the wild-type allele was significantly higher in the WD mice (Fig.1C; P = 0.026), 

suggesting that the high risk WD accelerated LOH. LOH was associated with adenoma 

number in the total small intestine (Fig. 1D; rs = 0.573, P = 0.03). 

 

Mucosal β-catenin, proliferation and apoptosis were not changed in the WD mice 

Levels of total β-catenin were analyzed from whole mucosa lysate and were 7.85 (median, 

min 2.48 max 14.6) in the WD mice compared to 5.54 (median, min 0.58, max 11.93) in the 

control group. The difference, however, was not significant (P = 0.118). The Ser552 and 

Ser675 -phospho-β-catenin in nuclear fractions were also measured. The Ser552-phospho-β-
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catenin showed a similar non-significant trend for increased nuclear accumulation, as did 

the total β-catenin (data not shown).  

 

Epithelial proliferation was assessed in the mucosa by the average height of the Ki67 antigen 

positive zone, measured from the crypt bases, and by the number of mitotic (phospho-

histone H3 positive) cells per crypt zone mm2. The rate of apoptosis was measured by 

counting cleaved caspase 3 positive cells per mucosa mm2. Proliferation and apoptosis did 

not differ between the groups (Fig. 2A and B). However, the ratio of proliferation to 

apoptosis was slightly lower in the WD mice compared to the controls (Fig 2C. P = 0.098).  

 

Decrease in the relative activation of mucosal ERK1/2 and AKT pathways in the WD mice 

Phosphorylation of ERK1/2 and AKT were analyzed from whole mucosa lysate from the distal 

part of the intestine. The activation of the ERK pathway was significantly suppressed in the 

WD mice. This was seen in both ERK1 (p44) and ERK2 (p42) phosphoprotein levels (P = 0.036 

and 0.031). When the p42 and p44 protein bands were analyzed together, the relation of 

phosphorylated to total ERK in the WD mice was 1.07 (min 0.07, max 2.82) while it was 3.38 

(min 0.14, max 10.58) in the control mice (Fig. 3A, P = 0.045). No difference was seen in the 

total amount of ERK1 or ERK2 (P = 0.43 and P = 0.59, respectively). The ratio of 

phosphorylated AKT to total AKT showed a tendency to decrease in the WD group (Fig. 3B, P 

= 0.090).  
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Decrease in the relative activation of mucosal mTOR pathway, with increase in PDK4 

protein level in the WD mice 

The WD mice had a reduced activation of the mTOR pathway as measured in pS6/total S6 

levels (medians 0.40 vs. 0.11) (Fig. 3C, P = 0.057). No difference was seen in the total 

amount of S6 between the groups (P = 0.92). The microarray data showed an expression 

level of PDK4 that was nine times higher in the WD mice when compared to the controls. 

Thus, the protein levels for PDK4 were also measured. These were 13.3 and 10.9 (medians, P 

= 0.057) for WD and control diet respectively (Fig. 3D), confirming an upregulation of PDK4 

signaling in the WD mice.  

 

The density of intraepithelial T lymphocytes and mucosal regulatory T cells were higher in 

the WD mice  

The density of intraepithelial CD3ε+ T lymphocytes and the density of mucosal FoxP3+ 

regulatory T cells were significantly higher in the WD mice, while the density of mucosal 

CD45R+ B lymphocytes did not differ significantly between the diet groups (Fig 4A-C; P = 

0.016, 0.027, 0.129, respectively). Adenoma numbers correlated significantly with the 

density of FoxP3+ cells (Fig. 4D; P = 0.006) and inversely with the density of CD45R+ cells (Fig. 

4E; P = 0.011).  

 

Global gene expression analyses revealed several changes in the WD mice 

Global gene expression profiles in the morphologically normal intestinal mucosa were 

analyzed using Agilent Mouse Genome 4 x 44K oligonucleotide arrays.  To gain further 



 16

insight into the diet-induced changes in gene expression, the data were analyzed for 

enriched pathways and categories. The enriched KEGG and Gene Ontology pathways are 

listed in Tables 2 and 3.  

 

Based on the enrichment analyses, the WD strongly affected energy metabolism in the 

intestinal mucosa: the KEGG pathways, starch and sucrose metabolism, pyruvate 

metabolism, glycolysis/gluconeogenesis and PPAR signaling were significantly different 

between the groups (P < 0.05).  The Gene Ontology analysis showed that several genes 

associated with oxidation/reduction and fatty acid, hexose, glucose and monosaccharide 

metabolic processes were significantly differently expressed between the control and the 

WD groups. Of individual genes, the largest difference between groups was found in the 

expression of PDK4 that was nine times higher in the WD mice when compared to the 

controls. Other significantly up-regulated genes related to glucose metabolism were 

glucose-6-phosphatase and glucosidase, while the expressions of TCA-cycle enzyme 

oxoglutarate dehydrogenase and glycerol phosphate dehydrogenase from oxidative 

phosphorylation were downregulated in the WD mice.  

 

The genes up-regulated in WD mice and related to fatty acid oxidation and oxidative stress 

response included several cytochromes, the acyl-CoA thioesterase Acot12, the acyl-

coenzyme A dehydrogenase AcadI, glutathione and thiol reductases, and vanin-1, a sensor 

of oxidative stress in epithelial cells. The WD had an impact on the regulation of apoptosis 

and cellular death in the intestinal mucosa by modifying the expression of both pro- and 

anti-apoptotic genes, including e.g. up-regulation of angiopoietin-like 4 (Angptl4) and the 
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stem cell marker Bmi1. The WD also affected the Wnt receptor signaling pathway (as 

defined by both KEGG and GO).  Down-regulation of Tcf4 (reported with two probes) 

suggests that Wnt signaling was generally suppressed in the mice consuming WD. 

Interestingly, GO-based analyses revealed that the tissue organization pathway defined by 

e.g. filopodium and microspike assembly, as well as cell projection assembly genes, were 

different between the groups (Table 3).   

 

Discussion 

We studied how a high-risk Western diet affects the development of intestinal cancer in a 

murine model with genetic predisposition to tumorigenesis, the Min/+ mice. The Western 

type diet is expected to induce a metabolic stress due to the high fat content and the low 

content of fiber and several micronutrients. The WD accelerated the initiation of adenomas 

in our study, but did not promote tumor growth, indicating that the diet primarily impacted 

the preneoplastic, histologically normal intestinal epithelium.  

 

In the Min/+ mouse as in the vast majority of human CRC cases the driving force for 

tumorigenesis is an activation of the Wnt pathway due to the mutation in Apc gene. A 

prerequisite for adenoma formation is loss of Apc heterozygosity (LOH) (5). We found an 

increase in the ratio of the Min allele to the wild-type allele in the histologically normal 

intestinal mucosa in Min/+ mice consuming WD. This indicates acceleration of LOH by the 

diet. Furthermore, the LOH results correlated with the numbers of adenomas.  
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LOH occurs primarily by homologous somatic recombination in both human and Min/+ 

adenomas (24). Thus, the increased adenoma formation in WD mice could be partially 

explained by factors that induce recombination, such as oxidative DNA damage (25, 26). The 

oxidative stress induced by increased fatty acid metabolism on a high-fat diet has been 

reported to increase mitochondrial as well as nuclear DNA damage (27, 28). In our WD mice, 

gene expression analysis showed strongly upregulated oxidation/reduction pathways as well 

as oxidative stress responses in the intestinal mucosa, compatible with previous 

observations in the colonic mucosa of WD-fed wild-type mice (29). Oxidative DNA damage 

can also be caused by inflammation (30). We observed an impact of the WD on the 

inflammatory status of the intestinal mucosa. The density of intraepithelial CD3ε+ T 

lymphocytes and of FoxP3+ regulatory T cells was higher and the density of B lymphocytes 

lower in the histologically normal mucosa of the WD mice.  Akeus et al. (31) found an 

accumulation of FoxP3+ regulatory T cells and decreased density of B cells in the adenoma 

tissue of the Min/+ mouse in comparison to wild-type mouse mucosa, indicating that the 

immunological balance in the mucosa of our WD mice had already shifted towards the 

adenoma state.  

 

Our diet was low in calcium and vitamin D, both needed for tight junction physiology. In the 

calbindin-null mice, a calcium and vitamin D deficient diet resulted in down-regulation of 

tight junction genes (32). Tight junction protein expression is regulated through ERK1/2 and 

AKT signaling (33, 34), both of which were clearly down-regulated in our WD mice. Our 

results suggest that low levels of calcium and vitamin D in the diet negatively affect the 

expression of tight junction proteins and, as a result, down-regulate the ERK1/2 and AKT 



 19

signaling in the WD mice. The microarray expression data showed down-regulation of five 

tight junction genes, casein kinase 2α1, membrane associated guanylate kinase, PKCδ, 

spectrinβ2, and symplekin in the WD mice (data not shown). Downregulation of these genes 

has been shown to promote tumorigenesis in different cancers (35-39). Disruption of the 

tight junction barrier may also explain the inflammatory changes we observed (40). In 

addition, differently expressed tissue organization pathways, filopodium, microspike and cell 

projection assemblies support disturbed tissue or cellular functions in the WD group.   Our 

results are well in line with an earlier study showing that adding calcium and vitamin D 

significantly decreased the number of colonic tumors in a long-term WD feeding experiment 

with wild-type mice (3). In this study, folate did not explain tumor formation. As the folate 

level was the same as in our WD diet, the low folate content probably had no major role for 

adenoma formation in our study either. 

 

The gene expression data and protein-level analyses show that the WD had a profound 

effect on energy metabolism in the intestinal mucosa. PDK4 expression was up-regulated at 

mRNA and protein levels in the WD mice. Together with the activated glucose and fatty acid 

metabolic pathways, these findings suggest that the WD pushed the intestinal mucosa 

towards Warburg-type aerobic glycolysis.  A switch toward oxidative glycolysis, directly 

driven by PDKs, is an early step in cellular transformation.  Shifting to oxidative glycolysis 

enables the cancer cells to acquire building blocks for the proliferation of new cells instead 

of efficient ATP production (8). Glycolysis genes are ubiquitously overexpressed in cancers 

(41). Thus, the glycolytic switch could pre-program the intestinal epithelium to a 

carcinogenesis-compatible metabolic state. In mice consuming a WD, PDK4 may be activated 
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by the high concentrations of free fatty acids, enhanced fatty acid metabolism and up-

regulated PPAR signaling, all of which are known to affect PDK expression (42, 43). The 

decreased Erk signaling is also expected to allow up-regulation of PDK4 expression (13).  

Like the ERK1/2 pathway, also the mTOR signaling was clearly down-regulated. mTOR 

negatively regulates stem cell proliferation and renewal in the intestinal crypts (44). 

Deregulated ribosomal S6K has been linked to disturbed establishment of a stem/progenitor 

population (45). It has also been linked to inhibition of mTOR signalling in cancer cell lines 

with the up-regulated stem cell marker CD133 (46). Our microarray data suggest that the 

stem cell marker Bmi1 was up-regulated in the WD mice. The decreased mTOR signaling 

may also suggest that the high fat diet suppressed insulin signaling in the intestinal 

epithelium, as observed in other tissues of diet-induced obese mice (47, 48). The potential 

depression of insulin signaling in the intestinal epithelium may contribute also to the 

increased PDK4 levels, as observed during starvation and in diabetes (14). 

 

Epithelial proliferation and apoptosis were not markedly changed in WD mice, although the 

ratio of proliferation to apoptosis showed a tendency (P = 0.098) to be lower. However, 

gene expression analysis showed a clear impact of the WD on both pro- and antiapoptotic 

pathways in the mucosa, suggesting a disturbance in the regulation of epithelial renewal. 

The proliferation/apoptosis ratio did not correlate with the number of adenomas, suggesting 

that the regulation of apoptosis as such is not the direct cause for increased adenoma 

number.   
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Mucosal β-catenin levels showed only a tendency towards elevation in the WD mice, and 

the gene expression data suggest that the Wnt pathway was rather attenuated than 

activated. This suggests that other functions of truncation of Apc in the WD mice, beside 

changes in β-catenin-regulated transcription, may explain the higher number of polyps. The 

location of a mutation in the Apc gene regulates the number of adenomas and the level of β-

catenin in epithelial tissue (49).  In comparison with the Min mutation, an Apc1322T mutation 

results in lower β-catenin levels in the enterocytes but a much higher total number of polyps 

(49). In our earlier study in the Min/+ mouse, β-catenin levels in adenomas were significantly 

associated with adenoma size but not number, demonstrating the active role of β-catenin in 

driving the growth of tumor tissue rather than promoting the initiation phase (50).  

 

All in all, our results suggest that a high-risk Western diet that is high in fat and low in 

calcium and vitamin D, primes the intestinal epithelium to tumorigenesis by changing tissue 

organization and programming a cancer-type energy metabolism together with induced 

oxidative stress, which accelerates the loss of Apc heterozygosity.  The synergistic effects of 

the genetic predisposition and the diet result in significantly accelerated intestinal 

tumorigenesis.   
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TABLES 

 

Table I: Composition of diets 

Component AIN-93G Western diet 

protein, %kcal 18.8 18.5 

CHO, %kcal 63.9 42.3 

fat, %kcal 

milk fat; %fat/ %diet 

oil; %fat/ %diet 

17.2 

- 

100/ 7.0 

39.2 

66.4/ 13.2 

33.6/ 6.7 

kcal/g 3.8 4.6 

Ca, g/kg 5.0 0.5 

folic acid, mg/kg 2.0 0.2 

vitamin D, IU/kg 1000 100 

 

 

Table 2. Enriched KEGG pathways at significance level of P < 0.05  
(±1.2 fold change) in the WD group as compared to the control group.  
 

KEGG Pathway Number of genes P - value

Starch and sucrose 

metabolism 

            5 0.0074 

Pyruvate metabolism 5 0.0012 

Glycolysis/Gluconeogenesis  6  0.0160 

PPAR signalling pathway 6 

 

0.0280 
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Table 3. Enriched GO biological processes the WD group as compared to the control group. 
Differences were considered significant at P < 0.05. 
 
GO pathway Number 

of genes 

P - value 

Oxidation reductation 29 0.0004 

Filopodium assembly  4 0.0009 

Microspike assembly 4 0.0013 

Regulation of apoptosis 23 0.0027 
Regulation of programmed cell death 23 0.0031 
Regulation of cell death 23 0.0034 
Fatty acid metabolic process 11 0.0051 
Hexose metabolic process 10 0.0088 
Glucose metabolic process 9 0.0088 
Regulation of transcription from RNA polymerase promoter 23 0.0094 
Cell projection assembly  6 0.0150 
Transmembrane transport 18 0.0160 
Monosaccharide metabolic process 10 0.0180 
Wnt receptor signaling pathway 8 0.0190 
Regulation of small GTPase mediated signal transduction 11 0.0210 
Muscle maintanence 3 0.0210 

 

  



 29

FIGURE LEGENDS  

 

Figure 1. The high-risk Western-type diet (WD) enhanced intestinal tumorigenesis and loss 

of APC heterozygosity in Min/+ mice (n = 12-14 per group). A. The mean number of 

adenomas in the small intestine was increased as compared to the AIN-93G control diet in a 

10-week feeding study. B. The diameter of adenomas did not differ. C. The ratio of the Min 

to the wild-type allele was significantly higher in the WD group and (D) correlated with 

adenoma numbers.  

 

Figure 2. The high-risk Western-type diet (WD) did not change (A) the proliferation or (B) 

apoptosis indexes in the mucosa of the small intestine in Min/+ mice (n = 12-14 per group), 

as compared to the AIN-93G control diet. C. The ratio between proliferation and apoptosis 

was, however lower on the WD diet. Examples of immunostainings for Ki67 antigen (D) and 

cleaved caspase 3 (E) are shown below. 

 

Figure 3. The high-risk Western-type diet (WD) induced changes in central pathways 

involved in carcinogenesis in Min/+ mice (n = 12-14 per group). The activation of the ERK (A), 

AKT (B) and mTOR  (C) pathways was suppressed in the WD mice as compared to the AIN-

93G mice as assessed by the relation of phosphorylated to total protein levels in Western 

blots. D. WD diet up-regulated PDK4 signaling reflected in higher PDK4 protein levels in the 

WD group. Representative examples of Western blots are shown below. 

 

Figure 4. The high-risk Western-type diet (WD) changes inflammatory status in the mucosa 

of Min/+ mice (n = 12-14 per group). The density of intraepithelial CD3ε+ T lymphocytes (A) 

and the density of mucosal FoxP3+ regulatory T cells (B) in the distal small intestine was 

increased in the WD group. The density of mucosal CD45R+ B lymphocytes did not differ 

significantly between the diet groups (C). Examples of immunostainings for these markers 

are shown below the boxplots. The number of adenomas correlated significantly with (D) 

the density of FoxP3+ cells and inversely with (E) the density of CD45R+ cell. 
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