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Abstract

Prominences and boundaries are the essential constituents of prosodic struc-
ture in speech. They provide for means to chunk the speech stream into linguis-
tically relevant units by providing them with relative saliences and demarcating
them within utterance structures. Prominences and boundaries have both been
widely used in both basic research on prosody as well as in text-to-speech syn-
thesis. However, there are no representation schemes that would provide for
both estimating and modelling them in a unified fashion. Here we present an
unsupervised unified account for estimating and representing prosodic promi-
nences and boundaries using a scale-space analysis based on continuous wavelet
transform. The methods are evaluated and compared to earlier work using the
Boston University Radio News corpus. The results show that the proposed
method is comparable with the best published supervised annotation methods.
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1. Introduction

Two of the most primary features of speech prosody have to do with chunk-
ing speech into linguistically relevant units above the segment and the relative
salience of the given units; that is, boundaries and prominences, respectively.
These two aspects are present in every utterance and are central to any represen-
tation of speech prosody. Arrangement of prominence patterns and placement
of boundaries reflect the hierarchical structure of speech, i.e., gradual nesting of
units, segments within syllables, syllables within (prosodic) words, words within
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phrases, phrases within utterances and beyond [1]. Borders between adjoining
units of higher order – words, phrases – present affordances for prosodic breaks of
different types and strengths. Attention of the listener can be selectively drawn
to individual units within the hierarchy; prominent syllables mark lexical stress,
prominent words signal focus, etc.

In speech, boundaries are usually signalled by a local reduction in one or
more signal characteristics (such as intensity or pitch) at a border spanning
several hierarchical levels. In a complementary fashion, prominence is typically
associated with an increase in some or all of these signal properties, typically
associated with a particular hierarchical level.

This simple insight suggests that these prosodic constituents could be rep-
resented within a uniform methodology that identifies both prominence and
boundaries as complementary phenomena manifested in speech signals. Such a
methodology would be beneficial to both basic speech research and speech tech-
nology, especially speech synthesis and recognition. At the same time, to be
useful for data oriented research and technology, the annotation system should
strive towards being unsupervised as opposed to the systems that rely on hu-
mans, either directly labelling speech data [2] or providing a manually labeled
training set used for training the system.

Ideally, the system should approach human-like performance but without
the variability of human labellers caused by complex interactions between the
top-down and bottom-up influences. In order to achieve that we propose here a
system based on Continuous Wavelet Transform (CWT) that (1) approximates
human processing of a complex signal relevant for identifying prominence and
boundaries, and (2) is capable of representing the speech signal in a manner
that captures the hierarchical nature of prosodic signalling.

In this paper we present a hierarchical, time-frequency scale-space analysis
of prosodic signals (e.g., fundamental frequency, energy, duration) based on the
CWT. The presented algorithms can be used to analyse and annotate speech
signals in an entirely unsupervised fashion. The work stems from the need to
annotate speech corpora automatically for text-to-speech synthesis (TTS) [3]
and the subject matter is partly examined from that point of view. However,
the presented representations should be of interest to anyone working on speech
prosody.

Wavelets extend the classical Fourier theory by replacing a fixed window
with a family of scaled windows resulting in scalograms, resembling the spec-
trogram commonly used for analysing speech signals. The most interesting
aspect of wavelet analysis with respect to speech is that it resembles the percep-
tual hierarchical structures related to prosody. In scalograms, speech sounds,
syllables, (phonological) words, and phrases can be localised precisely in both
time and frequency (scale). This would be considerably more difficult to achieve
with traditional spectrograms. Furthermore, the wavelets give natural means
to discretise and operationalise the continuous prosodic signals.

Figure 1 shows how the hierarchical nature of speech can be captured in a
time-frequency scale-space by CWT of a composite prosodic signal of an English
utterance. The scalogram is shown as a heat map in the top part of the figure
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Figure 1: An illustration of a CWT based analysis of a composite prosodic signal combining
energy, f0 and word duration (bottom) of an English utterance ‘Sometimes the players play in
festivities to enliven the atmosphere”. The hierarchical tree structure is highlighted in black.
Mother wavelets corresponding to syllables, prosodic words, and phrases are depicted on the
left. See text for more detail.

above the signal contour in blue. The scalogram is constructed from multiple
scale functions (see also Fig. 2). Each of these scale functions is a convolution
of the original signal and a dilated, i.e., scaled version of the mother wavelet
(the Mexican hat wavelet in this case). Three examples of the scaled wavelets
are shown to the left of the scalogram; as we can see, scalogram results from
the convolution with progressively more and more scaled up – wider and higher
– wavelets. The convolution operator depicts “similarities” between the two
convoluted functions, signal and the wavelet. As the highlighted area in the
figure illustrates, a local similarity in shape of the signal with the dilated wavelet
leads to a higher value of the scale function (red area in the heat map); the
most dissimilar portions of the signal (valleys compared to peak-like shape of
the wavelets) yield negative values of the scale function shown in blue.

The tree structure superimposed in black over the scalogram in Fig. 1 joins
the red areas of high similarity with differently scaled wavelets, i.e., depicts
the hierarchy of portions of the signal that are “prominent” at various scales.
The hierarchical utterance structure has served as a basis for modelling the
prosody, e.g., speech melody, timing, lexical stress, and prominence structure of
the synthetic speech.

Controlling prosody in synthesis has been based on a number of different the-
oretical approaches stemming from both phonological considerations as well as
phonetic ones. The phonologically based ones stem from the so called Autoseg-
mental Metrical theory [4] which is based on the three-dimensional phonology
developed in [5, 6] as noted in [7]. These models are sequential in nature though
a hierarchical structure is explicitly referred to for certain features of the models
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(e.g., break indices in ToBI [2]). The more phonetically oriented hierarchical
models are based on the assumption that prosody – especially intonation – is
truly hierarchical in a super-positional and parallel fashion.

Actual models capturing the superpositional nature of intonation were first
proposed in [8] by Öhman, whose model was further developed by Fujisaki et
al.[9, 10] as a so called command-response model which assumes two separate
types of articulatory commands; accents associated with stressed syllables su-
perposed on phrases with their own commands. The accent commands produce
faster changes which are superposed on slowly varying phrase contours. Sev-
eral superpositional models with a varying degree of levels have been proposed
since Fujisaki [11, 12, 13, 14]. Superpositional models attempt to capture both
the chunking of speech into phrases as well the highlighting of words within an
utterance. Typically smaller scale changes, caused by e.g., the modulation of
the airflow (and consequently the f0) by the closing of the vocal tract during
certain consonants, are not modelled.

Prominence is a functional phonological phenomenon that signals syntag-
matic relations of units within an utterance by highlighting some parts of the
speech signal while attenuating others. Thus, for instance, some of the sylla-
bles within a word stand out as stressed [15]. At the level of words prominence
relations can signal how important the speaker considers each word in relation
to others in the same utterance. These often information based relations range
from simple phrasal structures (e.g., prime minister, yellow car) to relating ut-
terances to each other in discourse as in the case of contrastive focus (e.g.,
”Where did you leave your car? No, we WALKED here.”). Although promi-
nence impressions might be continuous, they may serve categorical functions.
Thus, the prominence can be categorised [16, 17] in, e.g, four levels where the
first level stands for words that are not stressed in any fashion prosodically to
moderately stressed and stressed and finally words that are emphasised (as the
word WALKED in the example above). These four categories are fairly easily
and consistently labeled even by non-expert listeners [18]. In sum, prominence
functions to structure utterances in a hierarchical fashion that directs the lis-
tener’s attention in a way which enables the understanding of the message in an
optimal manner. However, prominent units – be they words or syllables – do not
by themselves demarcate the speech signal but are accompanied by boundaries
that chunk the prominent and non-prominent units into larger ones: syllables to
(phonological) words, words to phrases, and so forth. Prominence and bound-
ary estimation have been treated as separate problems stemming from different
sources in the speech signals.

As functional – rather than formal, purely signal-based – prosodic phenom-
ena, prominences and boundaries lend themselves optimally to statistical mod-
elling (traditionally by supervised methods). The actual signalling of prosody in
terms of speech parameters is extremely complex and context sensitive: the form
follows function in a complex fashion. Capturing prominence and boundaries in
terms of one-dimensional values reduces representational complexity of speech
annotations in an advantageous way. In a synthesis system this reduction occurs
at a juncture that is relevant in terms of both representations and data scarcity.
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The complex feature set that is known to effect the prosody of speech can be
narrowed to a few categories or a single continuum from dozens of context sen-
sitive features, such as e.g, part-of-speech and whatever can be computed from
the input text. Taken this way, both prominence and boundaries can be viewed
as abstract phonological functions that impact the phonetic realisation of the
speech signal predictably despite a possible considerable phonetic variation.

The perceived prominence of a given word in an utterance is a product
of many separate sources of information; mostly signal-based although other
linguistic, top-down factors have been shown to modulate the perception [19,
18, 20, 15, 16, 21]. Typically a prominent word is accompanied with a clearly
audible f0 movement, the stressed syllable is longer in duration, and its intensity
is higher. However, because of the combination of the bottom-up and top-
down influences, and their manifestation in the hierarchical character of speech
discussed above, estimating prominences automatically is not straight-forward
and a multitude of different estimation algorithms have been suggested (see
Section 3 for more detail).

In what follows we present recently developed methods for automatic promi-
nence estimation and boundary detection based on CWT (Section 2) which allow
for fully automatic and unsupervised means to estimate both (word) promi-
nences and boundary values from a hierarchical representation of speech (see
[22, 23, 24] for earlier work). The main insight in this methodology is that both
prominences and boundaries can be treated as arising from the same sources
in the (prosodic) speech signals and estimated with exactly the same methods.
These methods, then, provide for a uniform representation for prosody that is
useful in both speech synthesis and basic phonetic research. These representa-
tions are purely computational and thus objective. It is – however – interesting
to see how the proposed hierarchical method relates to annotations provided by
humans as well as earlier attempts at the problem (Section 3).

2. Methods

Wavelets are used in a great variety of applications for effectively compress-
ing and denoising signals, to represent the hierarchical properties of multidi-
mensional signals like polychromatic visual patterns in image retrieval, and
to model optical signal processing of visual neural fields [25, 26]. In speech
and auditory research there is also a long history going back to the 1970’s
[27, 28, 29, 30, 31, 32, 33, 34, 35]. A recent summary of wavelets in speech
technology can be found in [36].

In speech synthesis context, wavelets have been used mainly for parameter
estimation [37, 38, 39] but never as a full modelling paradigm. In the HMM
based synthesis framework, decomposition of f0 to its explicit hierarchical com-
ponents during acoustic modelling has been investigated in [40, 41]. These
approaches rely on exposing the training data to a level-dependent subset of
questions for separating the layers of the prosodic hierarchy. The layers can
then be modelled separately as individual streams [40], or jointly with adaptive
training methods [41].
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Figure 2: CWT of the f0 contour of a Finnish utterance. The lower pane shows the (inter-
polated) contour itself as well as orthographic words (word boundaries are shown as vertical
lines in both panes). The upper pane shows the wavelet transform as well as eight separated
scales (grey lines) ranging from segmentally influenced perturbation or microprosody (lowest
scale) to utterance level phrase structure (the highest level).

Figure 2 shows a CWT of interpolated f0 contour of the Finnish utterance
“Aluetta, jossa puhetta tutkivat eri tieteenalat kohtaavat toisensa on perin-
teisesti kutsuttu fonetiikaksi”, (The area where the sciences interested in speech
meet each other has been traditionally called phonetics.). The lower pane shows
the contour itself as well as orthographic words (word boundaries are shown as
vertical lines in both panes). The upper pane shows the wavelet transform in
a form of scalogram as well as eight separated scales (grey lines) ranging from
segmentally influenced perturbation or microprosody (lowest scale) to utterance
level phrase structure (the highest level). The potentially prominent peaks in
the signal occurring during most content words are clearly visible in the scalo-
gram as red areas, while the valleys shown in blue indicate intervals with low
f0 that might be associated with prosodic boundaries.

The time-scale analysis allows for not only locating the relevant features
in the signal but also estimating their relative salience, i.e., their prominence,
visible as positive local extrema (red in Fig. 2). There are several ways to
estimate word prominences from a CWT. Suni et al. [22] and Vainio et al. [23]
used amplitude of the word prosody scale which was chosen from a discrete set
of scales with ratio 2 between ascending scales as the one with the number of
local maxima as close to the number of words in the corpus as possible. A more
sophisticated way is presented in [24] where the lines of maximum amplitude
(LoMA) in the wavelet transform of f0 contours were used [42, 31, 43]. This
method was shown to be on par with human estimated prominence values (on
a four degree scale). However, the method suffered from the fact that not
all prominent words are identified and – more importantly – some words are
estimated as prominent whereas they should be seen as non-prominent parts of
either another phonological word or a phrase.

The current study extends this approach in two ways. First, instead of
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using f0 signal the CWT is performed on a composite signal combining f0,
energy and word duration information (Section 2.3). Second, estimation of
word prominences is supplemented by a procedure for identification of prosodic
boundaries using the same CWT approach. The strength of prosodic boundary
for each word can be estimated using lines of minimum amplitude at word
boundaries (Section 2.2).

In the remaining part of the section we describe the main steps for analysing
and annotating prominences and boundaries in a fully automatic and unsuper-
vised fashion using the CWT and LoMA on composite prosodic signal based on
fundamental frequency, intensity, and timing.

2.1. Wavelet decomposition

The basis for the modeling of hierarchies in speech signals is provided by
continuous wavelet transform (CWT) [44, 45]. The CWT is a decomposition
of a signal to a number of scales. To define the transform, let s be a one-
dimensional signal with real values and finite energy. Given a scale σ > 0 and
a temporal translation τ , the continuous wavelet transform can be defined as
Ws(σ, τ) = σ−1/2s ∗ ψτ,σ where ∗ denotes convolution and ψτ,σ is the Mexican
hat mother wavelet translated by τ and dilated by σ.

The Mexican hat mother wavelet belongs to a family of Gaussian wavelets.
These wavelets seem to give a suitable compromise between temporal and fre-
quency selectivity in the time-frequency representation of the prosodic signals.
Although the Mexican hat mother wavelet has infinite support, the values decay
exponentially fast far away from the origin and the mother wavelet effectively
acts on a support of seven units.

The sampling rate of a digital signal determines the finest temporal scales
available for the analysis. In the statistical speech synthesis context a 5 ms
fixed window size is used for acoustical parameters. Every real signal also has
finite length and the coarsest scales become obsolete. The onset and offset of
the signal can create artifacts propagating to the wavelet image and here these
effects are counteracted by continuing the signal periodically.

The original signal s can be reconstructed approximately from the original
signal using a finite number of wavelet scales with

s(t) ≈ c
N∑
j=0

a−j/2Ws(a0a
j , t)

where a0 > 0 is the finest (smallest) scale, a > 1 defines the spacing between
chosen scales, N > 1 is the number of scales included, and c is a constant.

2.2. Lines of maximum and minimum amplitude

In order to quantify word prominence, lines of maximum amplitude (LoMA)
joining the nearby peaks on subsequent scales are created and each line is as-
signed a strength representing the cumulative sum of scale values forming the
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Figure 3: A fragment of speech from BURNC analysed with CWT-LoMA with composite
prosodic signal (combining energy, f0 and word duration). Maxima lines are drawn in black
and minima lines in white, with point size representing cumulative strength. Annotated
prosodic boundaries are marked with vertical lines and accented words with boldface type.

line (black lines in Fig. 3). This is similar to the rhythmogram approach [34, 35]
which has also been applied to prominence detection [46].

Formally, LoMAs are defined recursively by connecting local maxima across
scales. First, let t1,0, t2,0,. . ., tn,0 be the time points where the local maxima oc-
curred in the finest scale (σ = a0) in descending amplitude order, Ws(a0, t1,0) ≥
. . . ≥ Ws(a0, tn,0). Then the point ti,0, i = 1, . . . , n is connected to the nearest
local maximum (the mother candidate) to the right at the scale a0a if the deriva-
tive along the scale at ti,0 is positive, the distance to the mother candidate is
at most 200 ms, and the mother candidate was not connected to a child earlier.
If the derivative was negative, the search was done to the left. For consecutive
levels, the ordering is based on the cumulative weighted sum of the local maxi-
mum together with its descendants: for a local maximum in ti,j , j > 0, at level
a0a

j , with descendants in ti0,0, . . . , tij ,j at levels a0, . . . , a0a
j respectively, the

cumulative weighted sum is

Ws(a0, ti0,0) + . . .+ log(j + 1) a−j/2Ws(a0a
j , tij ,j).

Without the logarithmic term in the above sum, the formula resembles a lot
the reconstruction of the original signal. Since the local maxima often are close
to each other, the logarithmic term plays a crucial role in giving more weight
to the higher levels of hierarchy. Observe that the number of local maxima
decrease with increasing scales, every local maximum has at most one parent,
and every parent has exactly one child. Finally, the points connected as children
and parents form lines of maximum amplitude (LoMA) and the strength of such
a line is the weighted sum of all the elements included in the line.

In a corresponding manner, the lines of minimum amplitude (LomA) (shown
in white in Fig. 3) used for evaluation of boundary strength join the local minima
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Figure 4: Prosodic parameters used in LoMA analysis extracted from BURNC. Raw pa-
rameters are drawn in gray and interpolated final parameters are shown in red. Combined
prosodic signal is shown in the bottom. Gray vertical lines represent manually annotated
prosodic boundaries.

of scales; formally LomAs of a signal s are defined as the lines of maximum
amplitude of −s.

2.3. Preprocessing of the signals

The acoustic signal reflects the physiological control actions behind speech
communication. Emphasised words are often louder, higher in pitch, and longer
as a result of more production effort, higher fundamental frequency, and pro-
longed duration. For analysing the acoustic patterns, the abrupt changes in
f0 or gain, due to e.g. closures in the vocal tract during stops, create strong
hierarchical structures in the wavelet image that might not be part of the au-
ditory gestalt [47]. In order to better represent the more continuous underlying
articulatory gestures and seemingly more continuous percepts, the acoustic sig-
nals are “filled in” for the portions where signal cannot be found (for f0) or
where it is very weak (gain). In addition, a continuous (with respect to the
time) representation for duration is derived. Although inspired by the phys-
iology of vocal and auditory apparatuses, the aim of these transformations is
not to model these systems but to make the algorithm more comparable to the
other phenomenological approaches to describe the key prosodic patterns.

2.3.1. Intensity

Intensity variations in the speech signal are primarily caused by (deliberate
and random) fluctuations of subglottal pressure and the degree of hyperarticu-
lation (especially in fricatives). As a proxy to the articulatory effort, the gain of
the acoustical signal is transformed by iteratively interpolating the silent gaps.

Let φ be the Gaussian kernel and g the original gain signal (i.e. a logarithm
of the amplitude). A family of scaling functions, {φi}i is obtained by dilating

and scaling φ with constants λi = w
(i−n)/n
max w

−i/n
min , i = 0, 1, 2, . . . , n, where wmax
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is the maximum smoothing window size, wmin is the minimum window, and n
is the size of the family. The g is recursively smoothed. For i = 0, a pointwise
maximum is taken by g0 = max{g, g ∗φ0} where ∗ denotes the convolution. For
i > 0, gi = max{g, gi−1 ∗ φi}. This results in the preprocessed gain g = gn
shown in the top panel of Figure 4.

2.3.2. Fundamental frequency

The auditory pitch of the voiced sounds is closely related to the lowest eigen
resonances of the vocal folds. However, during unvoiced speech segments, the
association between the acoustic signal and the eigen resonances of the vocal
folds break apart. Importantly, even during the silent periods there are control
actions to the vocal folds that impact the f0 once the vibration its reinitiated
either by adducting the vocal folds or by restoring the airflow through the vocal
tract. In addition to the internal state of the larynx, the frequency of the glottal
pulsing is influenced by the subglottal pressure. Not surprisingly then, the f0
and intensity are strongly correlated. To estimate the state of the f0 control
during unvoiced portions, an algorithm is proposed where the surface f0 values
are left unchanged for the voiced passages and the underlying state of the vocal
folds is estimated by interpolation for unvoiced passages.

The gap filling for the unvoiced portions of fundamental frequency signal s
is similar to that for the gain. First, the signal is decomposed in voiced and
unvoiced portions by defining the set V of time points where the speech signal
is voiced.

In practice, the voicedness of a time point is defined using the GlottHMM
[48] analysis which applies low-frequency energy and zero-crossings thresholds
for voicing decision. Then, using the same smoothing family as before, the
smoothed s is defined iteratively: for i = 0, s0 = sχV +max{s, s∗φ0}χV C where
χA is the characteristic function of a set A and AC denotes the complement of
the set A. The analogous recursive formula then is

si = sχV + max{s, si−1 ∗ φi}χV C

resulting in the preprocessed fundamental frequency. Finally, to remove pertur-
bation around gaps, the iterated signal sn is smoothed using the same iterated
maximisation algorithm as for the gain.

To find suitable parameters in the above algorithms, two test utterances
were used. The following values were used: wmax = 100 ms, wmin = 1, for both
gain and f0; n = 100 for for gain, n = 200 for f0. For the final smoothing of f0
in order to remove perturbation around gaps (see above): wmax = 25 ms and
n = 50.

Observe that the repeated convolutions and maximums do not let the signals
grow in an unlimited way. Instead, every point converges and the resulting
(maximal) function has comparable energy to the original which can be seen
by iterating a result of Hardy and Littlewood [49], (for modern approach, see
Theorem 2.19 in [50]).
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2.3.3. Duration

The duration of a phonological unit varies as a function of its position within
an utterance. For instance the speech rate often changes across boundaries and
accented words are longer. Due to a lack of signal based speech rate estimators,
the duration signal has to be based on analytical linguistic units rather than the
raw signal. To quantify the duration, a relation between acoustical (continuous)
duration and a suitable discrete linguistic unit is needed. A natural candidate
could be a syllable but here an orthographic word is chosen instead as the
syllable boundaries might not be easy to derive from text without supervision.
To apply the wavelet analysis to the duration, it is expanded to a continuous
time dependent variable which ideally would reflect the local duration of the
linguistic units. For the current experiment provided word alignments were used.
The word boundaries, x0, x1, . . . , xNw

, where Nw is the number of orthographic
words within a given speech signal, and the associated durations di = xi−xi−1,
i = 1, . . . , Nw, are computed. The points {(xi−1 + di/2, di)} are connected
using cubic splines to yield a duration signal d defined for every time instant
from x0 to xNw with the same sampling rate as for fundamental frequency and
gain (see third panel from the top in Fig. 4). When annotated pauses and
breaths between words occurred, these were not taken into consideration, i.e.
the duration of these gaps was ignored by the interpolation procedure.

To approximate the local speech rate, the time derivative of the duration
signal d was used instead of the continuous duration.

2.4. Annotation

The annotation of accents and breaks (prominences and boundaries) is based
on wavelet decomposition of the fundamental frequency, gain, and duration
derivative signals. These three acoustic signals were normalized to have unit
variance and then different combinations of these signals (see Section 3.2) were
summed to yield the evaluated prosodic signal s.

To normalize the speech rate, the finest scale was selected for each utterance
separately through finding the word scale aW which is the ratio of word count
and utterance duration. For word prominence evaluation, the finest scale used
was one octave below the word scale, i.e. a0 = aW /2. As prosodic breaks
manifest mostly on larger scales, the word scale was taken as the finest scale
a0 = aW for boundary annotation. For both annotations, the coarsest scale was
three octaves above the finest scale, i.e. 8a0.

3. Experimental Evaluation

As stated in the introduction, a solid method for annotating prosody would
be very welcome in the field of speech synthesis, where recent development has
concentrated on the acoustic modelling [51]. The motivation is crucial in build-
ing speech synthesizers for low-resourced languages, where neither linguistically
nor prosodically annotated corpora are available [3]. In this chapter, we asses
the utility of the proposed CWT-LoMA representation of prosody on the tasks

11



of unsupervised annotation of prosodic prominences and boundaries. Although
this hierarchical method lends itself naturally to multi-level prosody annotation
[23], here, we restrict ourselves to binary detection task, in order to produce
comparable results with previous studies.

Previous work on unsupervised prosody annotation has focused on accent
or prominence. For example, Ananthakrishnan & Narayanan [52] performed
two-class unsupervised clustering on syllable level acoustic features combined
with lexical and syntactic features, achieving accent detection accuracy of 78 %
using the Boston University Radio News Corpus (BURNC). In a similar vein,
Mehrabani et al. [53] annotated a corpus with four level prominence scale by
K-means clustering on foot-level acoustic features, achieving improved synthe-
sis quality compared to a rule-based prominence model. Using a more analytic
approach, Tamburini [54] derived a continuous prominence function, using ex-
pert knowledge to weight various acoustic correlates of prominence, achieving
80 % accuracy on syllable prominence detection on the TIMIT corpus. Word
prominence was annotated by Vainio & Suni [55] with a similar approach, addi-
tionally using the differences between synthesized and original prosodic features
as a normalizing method. An ambitious approach was presented by Kalinli &
Narayanan [56], who extracted multi-scale auditory features insipired on the pro-
cessing stages in the human auditory system, combined to an auditory salience
map. They achieved prominent word detection accuracy of 78 % with F-score
of 0.82 on BURNC, which, to our knowledge, is the best reported unsupervised
result on this corpus to date. Similar to the method proposed here, Ludusan
[46] applied a hierarchical rhythmogram model of loudness to annotate sylla-
ble prominence, achieving significant improvement over raw prosodic features
in terms of accuracy on multiple corpora.

Whereas the text-based break prediction studies are abundant due to its im-
portance in TTS, unsupervised acoustic boundary estimation has received less
interest. This probably stems from the fact that both acoustic pauses, which
can be obtained reliably by HMM forced alignment, and punctuation yield high
baseline accuracy on major boundaries, and for TTS purposes, this has been
considered satisfactory. For example in BURNC, intonational phrase boundaries
can be predicted by silence alone with 88 % accuracy, though with only 45 %
recall, and traditional acoustic features offer little improvement over this trivial
baseline [57]. In terms of combining text and acoustic evidence, Ananthakrish-
nan & Narayanan [52] obtained 81 % accuracy in combined intermediate and
intonational boundary detection with a two class k-means model.

3.1. Corpus

We performed the evaluation of our prominence and boundary detection
method on Boston Radio News corpus [58], chosen for its high quality prosodic
labeling and comparability with several previous methods also evaluated on
BURNC. The corpus consists of about two and a half hours of news stories
read by 6 speakers with manual Tone and Break Index annotations. The ToBI
labelling scheme was originally developed for transcribing phonologically dis-
tinctive elements of speech melody [2], thus high (H), low (L) and complex
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accent types are employed (H*, L*, L*+H, L+H*, H+ !H*), denoting sylla-
ble level shape and peak alignment. Prosodic boundaries are annotated with
boundary tones (L-, H-,L – L%, L – H%, H – H%, H – L%), again signalling
melodic shapes. Break strength is annotated in the form of break indices ranging
from zero (clitized) to four (intonational phrase boundary). For the boundary
detection task, we considered a word boundary as a prosodic boundary if the
last syllable of a preceding word was marked with break index three (interme-
diate phrase break) or four (intonational phrase break). Prominence, on the
other hand, has not been directly annotated and for the current experiment,
we made a simplifying assumption that a word is prominent if any of its sylla-
bles carries an accent. These binary boundary and prominence categories are
consistent with previous prosodic event detection studies [59, 60]. Almost all of
the annotated data were used for the experiment, totalling 442 stories or 29774
words. Three stories from speaker f2b, used for setting values of free parameters
were excluded as well as few cases were syllable and word alignments did not
match. Word level break and prominence labels were derived by combining the
provided, time aligned syllable and word labels. Manually corrected alignments
were used when available.

3.2. Features and Processing

The proposed method was evaluated using standard prosodic features; f0,
energy and word duration, as well as all combinations of those. Raw f0 and
energy parameters were analyzed from 16 kHz speech signals with GlottHMM
analysis-synthesis framework [48] with five millisecond frame shift. The method
uses iterative-adaptive inverse filtering to separate the contributions of vocal
tract and voice source, and performs f0 analysis on the source signal with au-
tocorrelation method. Log energy is calculated from the whole signal. Pitch
range was set separately for male and female speakers, 70–300 Hz and 120–400
Hz, respectively. The obtained f0 and energy parameter tracks were interpo-
lated using a peak preserving method. Word durations were transformed to
continuous signals as described in Section 2.3. Labeled pauses and breaths were
not considered in the duration transform. When evaluating the performance of
combinations of prosodic features, the individual parameters were normalized
utterance-wise to zero mean, unity variance, and summed prior to the wavelet
analysis, after which the composite prosodic signal was again normalized.

The signal was then used as such in the wavelet analysis, without any fea-
ture extraction step. Continuous wavelet transform was performed using the
second derivative of gaussian (Mexican hat) wavelet, with a half octave scale
separation. A scale corresponding to word level was estimated individually for
each paragraph in order to normalise the differences caused varying speech rate.
Lines of maximum and minimum amplitude were then estimated from the scalo-
gram. The strongest peak LoMA of each word was assigned as the prominence
value of the word and strongest valley LomA between each two word’s strongest
peak LoMA as a boundary value. If a word contained no peak LoMA, valley
LomA was searched between the midpoints of adjacent words. Further, if either
peak LoMA or valley LomA was not found, prominence or boundary value was
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set to zero respectively. To verify the utility of hierarchical modelling and to
rule out the possibility that improvements were achieved only due to feature
engineering, we also calculated word maximum (to represent prominence) and
minimum between midpoints of adjacent words (to represent boundary) from
the raw prosodic signal to be used as a baseline. In order to compare the pre-
dicted continuous prominence and boundary values against manual labels, the
values were converted to a binary form by searching for an optimal value for
separating the two classes in terms of classification accuracy, using 10 % of the
manual labels. Although continuous values could be used as such in other appli-
cations, it might be argued that this step weakens our claim for unsupervision
for the current task. Thus, for the best configurations, we also report results
based on dividing the prominence and boundary distributions to two classes by
unsupervised k-means clustering.

3.3. Results

Results on CWT-LoMA analysis of f0 (f0) energy (en) and duration (dur)
and their combinations on prominence and boundary detection are reported
here. The performance of gap-filling on energy is evaluated separately, and
whenever the gap-filling improves the performance for prominence or boundary
annotation, it is used for energy in combined features as well. Boundaries were
defined as manual break indices of either 3 or 4; prominence if any syllable of a
word carries an accent. Results are presented on word level, in terms of percent-
age of correct detections, i.e. accuracy, as well as precision, recall and F-score.
As baselines, we report the majority class, predictions derived from the best
combination signal without wavelet analysis, as well as current state-of-the-art
unsupervised and supervised acoustic results. Note that these results are only
roughly comparable, as there are minor differences in data selection. The results
presented in Table 1 show an improvement of both prominence and boundary
detection compared to baseline unsupervised methods when the combined signal
is used. More importantly, the CWT method further improves the detection in
terms of accuracy, F-score, precision and recall. Interestingly, the improvement
in accuracy over non-CWT approach (f0 en dur raw ) is significant (p < 0.001)
not only for the CWT method using all three signal components (f0 en dur )
but also for several other combinations of prosodic signals.

Strictly unsupervised results using two class k-means clustering on the pre-
diction distributions using all acoustic features were 84.0 % accuracy and 0.86
F-score for prominence and 85.5 %, 0.73 for boundary detection respectively.

Examining the results of individual acoustic features, we note similar per-
fomance for f0 and energy in both tasks, and word duration not far behind.
f0 appears more important for prominence detection, which is expected as the
reference labeling concerned pitch accents. Filling the unvoiced gaps of the en-
ergy signal helps in boundary detection, but not in the accent detection task,
perhaps due to syllable level features of the signal being smoothed too much. In-
terestingly, combining f0 and energy yields only modest improvement, whereas
combining either with duration provides substantial gain; accuracy increases
approximately 3 % in accent detection and 4 % in boundary detection. Though
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Table 1: Summary of results on BURNC with comparison to earlier experiments. The bolded
figures depict the best results both in current experiments and the literature. 1Kalinli &
Narayanan [56],2Rosenberg & Hirchberg [61],3Ananthakrishnan & al. [52],4Ananthakrishnan
& al. [59]. Asterisks mark the significance of accuracy % being higher for the methods using
CWT analysis in comparison with non-hierarchical f0 en dur raw baseline (Wilcoxon signed
rank test with continuity correction ∗∗∗ < 0.001 < ∗ < 0.05)

Prominence Detection
feature acc.% F-score prec. rec.

CWT-method
f0 80.9∗∗∗ 0.82 0.84 0.81
en 79.5∗ 0.83 0.77 0.89
en interp. 78.3 0.81 0.77 0.86
dur 79.5 0.81 0.81 0.81
f0 en 82.5∗∗∗ 0.85 0.81 0.88
f0 dur 84.2∗∗∗ 0.86 0.85 0.87
en dur 82.5∗∗∗ 0.84 0.82 0.86
f0 en dur 84.6∗∗∗ 0.86 0.84 0.90
Baselines
majority 54.5
f0 en dur raw 79.2 0.81 0.82 0.80
unsupervised1,2 78.1 0.82 0.78 0.86
acoustic sup.3,4 84.2 0.86

Boundary Detection
acc.% F-score prec. rec.

81.1 0.56 0.79 0.44
78.6 0.54 0.68 0.45
81.0 0.56 0.79 0.44
80.3 0.64 0.66 0.61
81.7 0.59 0.80 0.47
85.7∗∗∗ 0.72 0.79 0.67
85.2∗∗∗ 0.73 0.75 0.70
85.7∗∗∗ 0.72 0.80 0.65

72.0
82.1 0.62 0.76 0.53
81.1 0.66 0.64 0.69
84.6

a näıve feature, word duration may capture both lengthening effects as well
as lexical information, separating most of the function and content words, and
disambiguating the alignment of LoMA. Combining all features provides best
results, but not by a significant margin. Comparison of the detection estimates
from raw combined signal to ones provided by CWT-LoMA confirm the impor-
tance of hierarchical modelling with a solid advantage in both tasks.

Compared to previous methods, our results improve upon the unsupervised
state-of-the-art by a significant margin, and at least match the accuracy of
acoustic-based supervised methods. The results are not far from performance
of supervised methods using acoustic, lexical, and syntactic evidence, where
reported accuracies for both word level prominence and boundary detection
range from 84 % to 87 % [59, 60].

4. Discussion and Conclusions

The results show that prominences and boundaries can be viewed as manifes-
tations of the same underlying speech production process. This has, of course,
many theoretical implications. As foremost is the fact that the suprasegmental
variables used (f0, energy envelope, duration) seem to work seamlessly to the
same end, which is to signal the hierarchical and parallel structure of the lin-
guistic signals. The role of signal energy as a reliable determinant of prosodic
structure is interesting, but not altogether surprising [62]. On the one hand, it
diminishes the role of f0, while on the other hand, it also provides it with more
freedom for other (post-lexical) prosodic functions that are not strictly related
to the hierarchical structure.
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In contrast to most published work on speech prosody, the results here show
that prosodic structure can – and probably should – be studied and represented
in a unified framework comprising all relevant signal variables at the same time.
Although our methodology is unsupervised and purely signal based and does
not model – explicitly or implicitly – the top-down processes associated with
prosodic parsing by humans, the system models the judgements of human anno-
tators to a considerable degree. This suggests that at least some of the top-down
aspects of prominence and boundary identification are sufficiently captured by
the hierarchical nature of our analysis that takes into consideration contextual
information present in the signal on different time scales.

Prominence (and, to a lesser degree, boundaries) may also be marked with-
out the increase in intensity/pitch/duration that is implicitly assumed in our
approach or, indeed, by intentional violation of this expectation. While using a
combination of all three signal dimensions simultaneously facilitates detecting
prominent units with at least one of these attributes magnified, our method does
not fully supplant the human-like top-down processing that might be needed to
detect these cases. In fact, the method presented here can be used to automat-
ically identify this type of phenomena (in a labeled corpus) for further, more
detailed study. Also, languages differ both in terms of their hierarchical struc-
ture and the way their speakers mark prominence. One of the means to address
this language-dependency using the present approach is to vary the way the
signal dimensions (duration, intensity, f0) are weighted in the combined signal.
The future empirical work on this issue is necessary to establish to what extent
our methodology can be applied to other languages.

As mentioned above, the methods and representations brought forward in
this study have been designed to be feasible in a broader scientific spectrum
keeping in mind their psychological plausibility. Although the wavelet represen-
tation of prosody has a strong correspondence with the manual annotations of
the evaluation corpus (highlighting their relationship with perception), the neu-
ral computations performed by the auditory system might differ considerably in
contributing to the percepts underlying the accent and break judgments of the
labellers. In particular, the scheme for iteratively filling the gaps in the acoustic
signals is not a plausible algorithm for neural processing. However, the assumed
temporal integration model [63, 64] to explain silent gap detection gives similar
“filling” behaviour as the current processing of gain signal. Importantly, the
parameters and particular formulas were only inspired by the known auditory
processes but chosen based on performance on a few test sentences. In the fu-
ture, more principled grounding of our approach in perceptual processes, e.g.,
akin to auditory primal sketch theory of Todd [34, 35], should be investigated.

Also, in the proposed accent and boundary annotation the wavelet analysis
is performed to a few one-dimensional signals. However, a neurally more plausi-
ble approach would be a truly multidimensional representation of speech signal
similar to the multi-scale visual analyses [26]. Crucially, the wavelet trees relate
the accents and boundaries together phonetically hinting at a unified mecha-
nism, in both production and perception, between the phonetic realisation of
these primary concepts of prosodic phonology.
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