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Abstract
For researching effects of gamification in foreign language
learning for children in the “Say It Again, Kid!” project we de-
veloped a feedback paradigm that can drive gameplay in pro-
nunciation learning games. We describe our scoring system
based on the difference between a reference phone sequence
and the output of a multilingual CTC phoneme recogniser. We
present a white-box scoring model of mapped weighted Lev-
enshtein edit distance between reference and error with error
weights for articulatory differences computed from a training
set of scored utterances. The system can produce a human-
readable list of each detected mispronunciation’s contribution
to the utterance score. We compare our scoring method to es-
tablished black box methods.
Index Terms: Computer Assisted Pronunciation Training, Mis-
pronunciation Detection, Multilingual Phoneme Recognition

1. Introduction
In Computer Assisted Pronunciation Training (CAPT) our goal
is to give speakers feedback on how to improve their pronunci-
ation skills. With the assumption that mispronunciations are
detectable as phoneme detection or classification errors, we
can apply variants derived from Automatic Speech Recogni-
tion (ASR) acoustic models to evaluate pronunciation skills of
a speaker. For example, mispronunciation detection with Ex-
tended Recognition Networks (ERN) [1] or Goodness of Pro-
nunciation (GOP) scoring based on posterior likelihoods [2, 3]
are based on normal ASR acoustic models. Deep Neural Net-
work (DNN) based acoustic modelling has improved ASR per-
formance vastly in the recent decade and DNN models form an
excellent basis for new experiments in CAPT tasks.

Our CAPT game “Say It Again, Kid!" [4, 5] is used to study
children’s foreign language acquisition. We have developed a
feedback mechanism with constraints set by the project:

(1) The feedback must be usable as a gaming element: We
need a 0-5 star feedback score for each individual utterance. We
also need to compute the score quickly, so we use single pass
unidirectional processing.

(2) The system must produce meaningful analytics for
teachers and researchers: We need statistics on what phones are
difficult for a speaker and what has been learned during game
play. As International Phonetic Alphabet (IPA) is widely known
among teachers, we report mispronunciations in IPA characters.

(3) We do not have resources to generate phonetic tran-
scriptions of pronunciation irregularities in L2 data: Our ana-
lytics system is trained on large native databases and the scoring
system is trained on a collection of roughly scored utterances.

(4) The single utterance annotation scores are not reliable:
The scoring system must be robust so it can be trained on noisy
annotations, and produce scores that the users find justified.

Describing utterances as chains of articulatory or phono-
logical feature vectors has been a popular approach for mis-
pronunciation detection [6, 7, 8, 9]. Noting that any realisable
articulatory feature vector can be represented by a phonetic unit
from the IPA alphabet, we settled on a simpler phone-based ap-
proach, extracting articulatory features by mapping phones to
feature vectors. For L2 CAPT, accurate scoring based on de-
tected phonemes requires a recogniser that covers the phones
of the target language as well as the phonetic space for mispro-
nunciations. To extend the phone set, the L1 of the speakers is a
natural choice, but including more languages will cover a larger
space of mispronunciations and decrease the L1 dependency.

We can use the list of string edit operations that show the
difference between the phonetic forms of scored and reference
utterance as analytical feedback. Additionally we can use the
list to compute Phonologically Weighted Levenshtein Distance
(PWLD) [10] based error, where the effect of every mispronun-
ciation is fully transparent, and use it as a basis for a point-based
feedback score. By computing error costs for phones based
on articulatory/phonological feature weights shared between all
phones, we can train a robust low-dimensional regression sys-
tem from a small number of annotated L2 learner samples.

Multilingual phoneme recognition is straightforward with
Connectionist Temporal Classification (CTC) [11] framework,
as it models all aspects of the speech sequence – both acous-
tic and linguistic aspects. It does not require segmentation of its
training inputs nor does it produce phone alignments in the same
way as Hidden Markov Model (HMM) based models do. Dura-
tion information is essential for language learning for languages
where phone duration is important in distinguishing words from
others. As our CAPT game aims to teach a standardised way of
pronunciation, feedback for phoneme duration is valuable also
in languages, where duration does not have such a phonemic
role. As phone duration is encoded within the network itself
and can be learned from native speech samples directly, CTC
provides a good base for producing duration based feedback.

In this paper we present 1) the implementation of a new au-
tomatic metric of word-level pronunciation in L2, and 2) con-
duct an exploratory study with Finnish learners of English, in
order to explore if this new metric can predict human ratings.

There are few academic reports on CAPT in learning
games, we found only one [12]. And generally work on scor-
ing of L2 utterances has been done on in-house data sets and
reported in statistical manner. Though we are unable to share
our audio data, by sharing our recognition results and scoring
experiments as an online compendium1 to the paper, we hope
to give some concrete samples for the field of automatic scoring
of L2 learners’ utterances.

1The online compendium can be found at https://github.
com/aalto-speech/interspeech2019_karhila_et_al
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Figure 1: Phoneme recognition sample results, their edit dis-
tances and scores.

2. Scoring based on PWLD
The Levenshtein distance used to compute error rates for ASR
evaluation treats all insertion, deletion and substitution opera-
tions identically with a unit cost of 1. Phoneme error rate based
on PWLD has been used for automatic prediction of intelligi-
bility in [10], where the substitution weights are based on the
number of differing articulatory features between each phone
pair.

We propose using a corpus of L2 utterances with anno-
tated scores to optimise weights for PWLD to form Data Driven
Phonologically Weighted Levenshtein Distance (DD-PWLD).
In our approach also insertion and deletion costs are computed
based on articulatory features. Thus the edit distance is com-
puted as

D = OsubFsub +OinsFins +OdelFdel (1)

where Osub, Oins and Odel are n × p vectors of substitution,
insertion and deletion operations for each utterance, Fsub, Fins

and Fdel are the f -dimensional vectors of articulatory error
costs for substitution, insertion and deletion costs. The oper-
ation matrices O are composed from edit operation lists of the
hypotheses with the smallest errors in N -best hypothesis lists
for the utterances. The mapping to a score in the range [0, r] is

ŷ = r
(
1− tanh

(
a
D

Ll

))
(2)

where L is a vector representing phoneme counts of the ref-
erence utterances, l is the length compensation variable, a is
general scaling for the mapping, y the human annotations for
the utterances. We want to choose Fsub, Fins, Fdel, l and a to
minimise the error between predictions ŷ and reference annota-
tions.

Samples of the mapped scores for different mispronuncia-
tions of the utterance "friend" are shown in Figure 1. The scor-
ing can be broken down as described by the list of edit opera-
tions that is a byproduct of the weighted Levenshtein distance.
One sample analytical scoring is shown in Table 1.

3. Experiments
We present an experiment of scoring L2 learner utterances
where target language is UK English and the speakers have a
Finnish background. Recognition results and scoring training
utilities are available at the compendium repository.

Table 1: Sample breakdown of scoring for a pronunciation at-
tempt using the transparent scoring scheme in a format that can
be shown to a user or a teacher.

Target pronunciation: /f ô E n d/
Your attempt: /p r E n: t/
Total errors: 2.3
Length compensation multiplier: 6.4
Mapped score: 2.8
Breakdown:
/f /→ /p/ Plosive instead of fricative -0.85
/ô/→ /r/ Trill instead of approximant -0.63
/n/→ /n:/ Too long -0.44
/d/→ /t/ Not voiced -0.38

3.1. Data

UK English as the target language is the most important. This is
covered by WSJCAM0 corpus for adult speech and PF-STAR
for children’s speech. Finnish as a the native language of the
language learner data set is also important, and is covered by the
Finnish SPEECON and SPEECHDAT databases, both of which
contain both adult and child speech.

As the CAPT game aims for UK pronunciation, we added
American English to the training pool to better detect non-UK
pronunciations. This was easily available in WSJ1 for adults
and TI-DIGITS for children (adult data from TI-DIGITS was
not used). As our aim is to cover as much of the IPA acoustic-
phonetic space for non-tonal languages as possible using the re-
sources easily available to us, we added Swedish from Spraak-
banken as Swedish includes vowels and retroflex consonants
that do not exist in the other languages available to us. This
is by far not a complete coverage of the IPA space, but is a solid
start for our current purposes.

L2 UK English data was collected from Finnish 10-12 year
old children using the game prototype. Additional game data
was collected from native English speakers of the same age
group with Southern English dialect.

The dictionaries used are CMUdict for American English,
COMBILEX for American and UK English [13], Språkbanken
for Swedish and a combination of Speechdat lexicon and rule-
based mapping for Finnish.

3.2. Annotations

Annotations were made by a single annotator, a language
teacher with L1 Finnish. As it is generally known that the reli-
ability of labels produced by a single annotator is questionable,
we pay attention extra attention to downplay outlier influence
when training our scoring system in Section 3.8.

The annotations were first made on a 0-100 scale and later
mapped to the 0-5 scale. The utterances were grouped by ref-
erence phrase. The annotator listened to all the samples in a
group, and tried to find samples that represent the best pronunci-
ations and samples that represent typical errors. For most utter-
ance groups, there were one or more mispronunciation patterns
that showed up repeatedly These were usually one phoneme
away from the model pronunciation. If the attempt differed
from the model with one feature e.g. voicedness, the score was
deducted from 100 to 90. If the attempt differed more than that
the reduction was bigger, depending on the distance of articu-
lation place or manner. This kind of reduction according the
phonemes was possible with the best pronounced samples. The
more mistakes there were, the more difficult it was to calculate
the labelling with such a simple system.
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This scoring framework was possible as the samples were
mainly one-word long. With longer sentences the labelling was
more complicated and in these the main focus was on the words
that were pronounced mostly correctly. Because the samples
were short, prosody was not used as a criterion in the labelling.
Even though e.g. stress was in many cases foreign, it mostly did
not reduce the intelligibility and clarity of the phones.

3.3. Phoneme set

The phone set consists of all the phones used in the various pro-
nunciation dictionaries of the four languages or dialects. The
grouping of phones between languages is based on the IPA al-
phabet. Some phones are combined to form more meaningful
units for pronunciation learning. For example, all diphthongs
and many vowel sequences like /iø/ and /iA/ as well as some
combined consonants like /

>
dZ/ are represented as single units.

The phonetic units are listed in the online compendium. Of
the 157 different phonetic units used, 28 are unique to one lan-
guage, the rest are shared between at least two languages or
dialects. The dictionary mappings and phone combinations are
evolving work, and the list should not be used as a definite ref-
erence. For example, the geminated / >t:s/ present in the Finnish
language is represented by a single unit, but the more ubiquitous
normal length variation />ts/ is represented by /t/ and /s/ sepa-
rately. Also rhoticity at the end of vowel sequences needs a
closer look. Future versions will see these improved.

3.4. Models

Three model sets were used in the experiment. A HMM-GMM
model is trained to select correct pronunciation variants and pro-
duce alignments, a CTC model is trained to do phoneme recog-
nition, and a regression model to turn the recognition outputs
into scores.

3.5. HMM-GMM training

The speaker-adaptive HMM-GMM model is trained with
Kaldi [14]. It is only used to to choose best pronunciation
alternatives and provide segmentations for the training utter-
ances that are fed into the CTC training. Several model sets
are trained. First, a combined model set trained with all the data
is used for segmenting the training data. This is trained with
long and short variations of phonetic units merged. Another
model set is trained only on languages where duration informa-
tion is phonetically relevant. Where it matters, each segment
of training utterances as segmented by the combined system is
postprocessed to be short or long variation. This is more nor-
mative than descriptive. Our interest lies in guiding the users
of our system to attune the durations of their uttered phones to-
wards some standard, which becomes thus defined by the data.
By including the duration information in the model set, we en-
able the CTC recognition network to learn it.

Table 2 shows the reduction in performance caused by the
merged phone set. For most of the test sets, language mod-
els (LM) used for the decoding are trained from training data
labels. The table shows that data pooling over languages de-
grades performance. It also shows that performance for close
microphones is better than table microphones.

3.6. CTC model training

The CTC model is a 3 layer deep and 600 units wide Gated Re-
current Unit (GRU) Recurrent Neural Network (RNN) running

Table 2: Error rates for the recognition systems. These should
not be compared to the state-of-the-art, as the only function for
the HMM-GMM models is alignment. What the results show
is that the extended phoneme set is not ideal for basic recogni-
tion tasks and how the performance drops when speech data is
pooled across languages. WER for HMM-GMMs is computed
on test sets, the PER for CTC on development sets.

HMM HMM CTC
Unmrg. Merged Rel. Merged

Data set WER WER change PER*
UK ENGLISH
PF-star 7.83 14.72 +87% 55.2
WSJ0 si mic1 26.47 31.43 +18% 51.5
WSJ0 si mic2 27.68 32.28 +17% 51.4
US ENGLISH
WSJ1 si mic1 - 31.43 - 51.5
WSJ1 si mic2 - 26.21 - 51.0
TIDIGITS - 0.83 - -
FINNISH
Speechdat 7.60 8.54 +12% 45.8
Speecon
- clean mic0 6.07 7.72 +27% 48.0
- clean mic1 8.41 10.47 +24% 51.0
- café mic0 6.98 7.72 +11% 50.1
- café mic1 7.55 9.70 +28% 49.2
- children mic0 11.69 12.90 +10% 48.1
- children mic1 12.83 15.45 +20% 48.2
SWEDISH
Spraakbanken - 41.46 - 53.4

on Tensorflow [15]. The model is trained with batches of 64 ran-
domly cut 2 second segments with random resampling between
0.95 and 1.05 speed. A random linear sum of noise signals is
added to the samples [16] and the final waveform is filtered by a
random filter to emulate microphone differences [17]. The ref-
erence labels are subsections of label strings and are cut based
on time alignments produced by basic HMM-GMM model. 40
Mel-weighted spectral bins computed on 512 point FFT on 25
ms frames at 10 ms interval on 8 kHz audio were computed
and appended with a binary vector of Speaker age groups (-5,
6-8, 9-12, 13-17, 18-64, 65-) and gender. Table 2 shows the
CTC Phoneme Error Rate (PER) performance. Already it per-
forms surprisingly consistently for all the native data sets, get-
ting around 50% of the phones right, and the performance drop
between close and table microphones is much smaller than with
the HMM-GMM systems.

3.7. Articulatory Features

Each phone is described by an articulatory feature vector. Our
articulatory feature set is based on question sets used in model
clustering parametric speech synthesis. Additional features
were added for diphthongs and vowel sequenecs, describing the
direction of movement of the articulation place. Table 3 lists
the features used in this work. Compared to the 18 articulatory
parameters in [9] or 14 in [10], our selection of 55 descriptors
is substantially larger and can cover a much larger segment of
the IPA space without duplicate mappings between phones and
feature vectors.

3.8. Scoring

Scoring was done by two linear regressors (LR) and two non-
linear ones. All optimisations are done on the L2 speech

1868



Table 3: Articulatory features used in this work
Articulatory features for vowels

dipthong, long, rhotic, unround-schwa
front, nearfront, central, nearback, back,
open, nearopen, openmid, mid, closemid, nearclose, close,
rounded, unrounded,
diphthong-forward, diphthong-backward, diphthong-opening,
diphthong-closing, diphthong-rounding, diphth.-unrounding,

Articulatory features for non-vowels
affricate, approximant, fricative, plosive, nasal, trill,
alveolar, bilabial, coronal, dental, dorsal, labial, labiodental,
lateral, postalveolar, velar
pulmonic, retroflexed, syllabic, palatalized, aspirated,
lenis, fortis, labialized, voiced, unvoiced, geminated

Table 4: Pearson correlation coefficients between predictions
and human annotations for the scoring test set.

Outliers
System All removed
PWLD-LR 0.31 0.36
DDPWLD-LR 0.47 0.54
PWLD-SVM 0.52 0.61
PWLD-RF 0.49 0.56

database, with training data used once with real labels and
scores, and once with shuffled labels and rejected scores. One
tenth of the training data is split to be the development set.
PWLD-LR uses the default phonological weights and only
terms a and l used for mapping the distance to a score are op-
timised. DDPWLD-LR additionally optimises the phonologi-
cal weights F for computing the distance. Optimal values are
found with the BFGS optimiser. To reduce outlier influence in
optimisation, Cauchy norm (using log of error) and appropri-
ate bounds for values are used. The initial best paths from the
N -best list are computed with the cost presented in [10]. Sup-
port Vector Machine Regressors (SVR) and Random Forest Re-
gressors (RF) are trained on the same parameterisations as the
PWLD, concatenated with the length of the reference utterance
in number of phones. Robust parameters are selected using the
separate development set.

3.9. Results

Table 4 lists the Pearson correlation coefficients between human
annotations and predictions. The left result column shows the
correlation for all data and the right column shows the results
when outliers have been removed from the test set. If at least
two of the regressors produced an error more than 2 standard
deviations above their mean error, the data item in question was
marked as an outlier. Out of the 4313 test items, 205 were con-
sidered outliers. Compared to PWLD, data-driven estimation
of weights for DDPWLD improved the performance by around
50%, almost to the level of SVM and RF performance. The
black box methods still beat the DDPWLD by a margin, but the
drop in performance is compensated in DDPWLD by the ability
to assign a cost for every individual operation.

4. Discussion
The description of errors as string operations and describing the
sum of string operations as vectors of articulatory differences
between reference and hypothesis is an efficient way of param-
eterising pronunciation mistakes. It gives a robust basis for a

scoring system. The system’s leniency is dependent on the qual-
ity of the underlying phoneme recogniser. Most recognition er-
rors reduce the score rather than improve it. Therefore the worse
the recogniser, the harder it is to get a high score. At the moment
the recogniser is performing at around 50% phoneme error rate
for the native test sets, which is still considerably higher than the
30% letter error rates reported for the original CTC setups [11].
By using N -best lists, the system works well enough for de-
ployment in a game. As mentioned in Section 3.3, the phoneme
merging between the data sets is not finished and some perfor-
mance gains are expected from correcting errors there.

Another problem lies mostly on the recogniser’s side. Al-
lowing mid-utterance code-switching is difficult with only na-
tive utterances in the training data. The CTC network relies
too much on past information and is not able to correctly find
phoneme sequences that contain phone sequences unique to
different languages. An example is a mispronunciation of the
Finnish word “korkea” /korkea/ with the trill /r/ replaced by an
alveolar approximant /ô/ results in /koôkha/. Here, the vowel
sequence /ea/, which is foreign to UK English, is replaced
by /kha/. Another is a mispronunciation of the English word
“friend” /fôEnd/ with the alveolar approximant replaced by a trill
resulting in the recognition as /prEn:t/. As the combination /fr/
is not adequately presented in the training data, the whole utter-
ance is recognised as if it were in the Finnish phonetic space.

The quality of the test data gathered from language learn-
ers using an early version of the CAPT data is very variable in
speaking and recording quality, and the recordings can start and
stop in the middle of the utterance. The code switching issue
needs to be investigated. The fact that the GRU internal states
are reset to zero for every training batch probably makes the
system less prone to code-switching. Reusing the internal state
as is for the next batch might also be problematic, as the extra
speaker information is included at a low level. A review of best
practises needs to be done.

Word boundaries are also problematic. For example the
Finnish utterance, “on koala” is pronounced either /on koAlA/
or /oNkoAlA/, but always with a vowel sequence /oA/, whereas
the utterance “onko ala?” is pronounced either as /oNko AlA/ or
/oNkoAlA/, with the /oA/ combination either as vowel sequence
or as slightly separated phones.

5. Conclusions
We have presented a rather simple two-component system for
scoring L2 learner utterances using a CTC phone recogniser and
DDPWLD as an error measure. We found that this simple linear
scoring method performs almost as well as the established black
box regression methods.

Future work includes improving the integration of the dif-
ferent phoneme sets and dictionaries and develop further our
phoneme recogniser. An in-depth comparison to more estab-
lished pronunciation quality methods (DTW-based path costs
and forced alignment of canonical transcription) using the same
data sets is an on-going work. Future work includes also solving
the code-switching issue for the CTC training.
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