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Highlights

*  We sampled 107 boreal lakes to identify how euticgiton affects the
nutritional value of phytoplankton.

* The increase in phosphorus correlated with thé pitgioplankton biomass, as
well as with the biomass of high-quality algae.

* High spatial and seasonal variation was observédeiplanktonic production
and content of amino acids, sterols, and long cha@npolyunsaturated fatty
acids.

* The results showed that the nutritional value oftpplankton decreased with
eutrophication, although the contribution of higlatity algae did not
decrease.
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Abstract

Eutrophication (as an increase in total phosphg¢i®]) increases harmful algal
blooms and reduces the proportion of high-qualitytpplankton in seston and the
content ofw-3 long-chain polyunsaturated fatty acids (eicostgenoic acid [EPA]
and docosahexaenoic acid [DHA]) in fish. Howevdr,isi not well-known how
eutrophication affects the overall nutritional valaf phytoplankton. Therefore, we
studied the impact of eutrophication on the proiducfas concentration; pg1) and
content (Lg mg C) of amino acids, EPA, DHA, and sterols, i.e., tiwritional value
of phytoplankton in 107 boreal lakes. The lakes ewveategorized in seven TP
concentration categories ranging from ultra-oligphic (< 5 ug L) to highly
eutrophic (> 50 pg ). Phytoplankton total biomass increased with TRy=ected,
but in contrast to previous studies, the contrdoutf high-quality phytoplankton did
not decrease with TP. However, the high variatieflected instability in the
phytoplankton community structure in eutrophic kkeWe found that the
concentration of amino acids increased in thermpilbn whereas the concentration of
sterols decreased with increasing TP. In terms hyftigplankton nutritional value,
amino acids, EPA, DHA, and sterols showed a sigaifi quadratic relationship with
the lake trophic status. More specifically, the mmnacid contents were the same in
the oligo- and mesotrophic lakes, but substantiallyer in the eutrophic lakes (TP >
35 ug L/ 1.13 umol Y. The highest EPA and DHA content in phytoplankigas
found in the mesotrophic lakes, whereas the steamitent was highest in the
oligotrophic lakes. Based on these results, theitimital value of phytoplankton
reduces with eutrophication, although the contrdoubf high-quality algae does not
decrease. Therefore, the results emphasize thaipéidtation, as excess TP, reduces
the nutritional value of phytoplankton, which magvie a significant impact on the
nutritional value of zooplankton, fish, and othguatic animals at higher food web
levels.
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1. Introduction

Cultural or anthropogenic eutrophication (defingdHasler, 1947) was highest before
the 1970s and '80s in Europe, when urban and wastesventered lakes directly,
resulting in algal blooms consisting majorly of ngéacteria (Jorgensen, 2001). After
wastewaters were diverted, and phosphorus was ehisem sewage effluent, the
concentration of phosphorus begun to decrease ny ha&es. Nevertheless, human-
induced climate change has intensified eutroplopatn many places due to the
higher precipitation, intensified storms, and milohters (Moss et al., 2011; Ventela
et al., 2011), resulting in changes in ecosystemstian and fish community structure
(Jeppesen et al., 2010, 2012; Ventela et al., 2015)

Physical and chemical factors strongly shape theposition of the phytoplankton
(including photoautotrophic and mixotrophic phytmpkton) community (Reynolds,
2006; Maileht et al., 2013). For example, high ltgtaosphorus (TP) concentrations
suppress the relative abundance of cryptophytes cangsophytes, enhancing the
abundance of cyanobacteria, euglenoids, and gilgare éReynolds, 1998; Watson et
al., 1997; Taipale et al., 2016a), whereas dineflates usually have a curvilinear
response to increasing T®atson et al., 1997). In pelagic food webs, phigokton
synthesize essential biomolecules, fatty acids lafsl amino acids (AAs), which are
not produced by consumers (zooplankton, fish, aadnmals)de novo(Reynolds,
2006; Arts et al., 2009; Peltomaa et al., 2017)tHaamore, many invertebrates,
including zooplankton, require sterols in theirtdokue to their inability to synthesize
sterol precursors (Goad, 1981; Behmer and Nes, )2003dditionally,
microzooplankton (also referred to as heterotroginmozoans or protists), grazing
pico-sized phytoplankton, can be an important limétween phytoplankton and
zooplankton by increasing the availability of sterand essential fatty acids (Chu et
al., 2009). Essential AAs and FAs are needed fer aptimal performance of
zooplankton and fish (Martin-Creuzburg and Von EI2009; Brett et al., 2009; Fink
et al.,, 2011; Peltomaa et al., 2017; Taipale et 2018). The availability of
eicosapentaenoic acid (EPA, 203 and docosahexaenoic acid (DHA, 223¢ from
aquatic sources is also important for many tendshirds and mammals, because
terrestrial plants do not synthesize EPA or DHA ({gsoroplis et al., 2014; Hixson et
al., 2015; del Rio et al., 2016; Twining et al. 1B8). The ability of phytoplankton to
synthetize essential AAs, FAs, and sterols, howelifers at the class level (Ahigren
et al., 1992; Taipale et al., 2016a; Peltomaa.eR@ll7), and thus, eutrophication can
influence sestonic biomolecule profiles and conegiuns (Muller-Navarra, 2008).

The essential omega-6-6) and omega-3u-3) polyunsaturated fatty acids (PUFAS),
linoleic (LIN; 18:2w6), and alpha-linolenic acid (ALA, 18u3), are precursors of
other physiologically active essential PUFAs, sumh arachidonic acid (ARA,
20:406), EPA, and DHA (Arts et al., 2009). Previous stsd(Arts et al., 2009)
showed that DHA is the most important PUFA for quué#s and many fish, while
EPA is important for the cladocer@aphniaspp. and for many other invertebrates.
Although zooplankton and fish may convert EPA andlACfrom ALA via elongation,
they usually acquire these amino acids directlynftbeir diet, because the conversion
efficiency is generally low, and the aquatic enmirent has high levels ab-3
PUFAs (von Elert, 2002; Tocher, 2010; Taipale et2011, 2018; Koussoroplis et al.,
2014). Among all freshwater phytoplankton, only taer taxa (cryptophytes,
chrysophytes, diatoms, dinoflagellates, euglenoais] raphidophytes) are able to
synthesize EPA and DHAe novo(Ahlgren et al., 1990, 1992; Taipale et al., 2013,
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2016a). However, not all of these taxa are suitdbtel sources for herbivorous
zooplankton because, for example, they are toee)avg their shape is too complex
(de Bernandi et al., 1990; Santer, 1996; Peltorhah,&2017).

The primary sterol in consumers, including zooptankis cholesterol (cholest-5-en-
3p-ol; Goad, 1981; Teshima, 1971), which is a premursf steroid hormones
(Grieneisen, 1994) and is required for forming #mabryonic structures (Porter,
1996). Cladoceran zooplankton (Martin-Creuzburg ®od Elert, 2009), as well as
all arthropods and microzooplankton (i.e., heteqahiic protozoans), need to obtain
sterols from their diet (Zandee, 1962; O’'Connell7/Q; Teshima et al., 1982; Nisbet,
1984). Although copepods may synthesize sterols facetate via the mevalonate-
squalene-lanosterol pathway (Nes and McKean, 19@&iy, egg production increases
by 1.5- to 2.0-fold (Hassett, 2004) with a cholestsupplemented diet, emphasizing
the nutritional requirements of diets (Martin-Creumy and Von Elert, 2009).
Zooplankton converts diet-obtained phytosterolgtiolesterol, but the efficiency of
the different phytosterols in supporting the growthzooplanktonvaries (Martin-
Creuzburg et al., 2014). Low-threshold sterols (§)/&n support zooplankton (e.g.,
Daphnig somatic growth efficiently in low amounts (3.9981g mg C'), whereas
high-threshold phytosterols (HTSs) are neededgh Bimounts (15-22 pug mggto
obtain sufficient cholesterol concentrations (Ma@reuzburg et al., 2014). Most
prokaryotes (cyanobacteria and other bacteria) db synthesize any sterols
(Volkman, 2003), which explains why prokaryotes o zooplankton growth and
reproduction poorly (Goulden and Henry, 1984; voertet al., 2003; Martin-
Creuzburg et al., 2008; Taipale et al., 2012; Wkatal., 2012). Furthermore, green
algae (excludingChlamydomongsand dinoflagellates are low-quality sources of
sterols compared to other phytoplankton (i.e., wphytes, chrysophytes, and
diatoms), because green algae contain only HTSkpdlEaet al., 2016b; Martin-
Creuzburg and Merkel, 2016).

Although the importance of PUFAs and sterols initiimy zooplankton growth and
reproduction has been widely studied in freshwaeosystems (Muller-Navarra,
1995; Boersma et al., 2001; DeMott and Tessier2206n Elert, 2002; von Elert et
al., 2003; Ravet et al., 2003, 2012; Martin-Creughband Von Elert, 2009), there are
fewer studies on the role of AAs for zooplanktond aurrent knowledge of fish is
based on aquaculture experiments (Kaushik ande3e010). AAs are required for
protein synthesis, and they act as coenzymes gnédlgig molecules for regulation of
MRNA translation (Pardee, 1954; Jefferson and KimB@03). Twenty of the known
AAs are required for protein synthesis, and nin¢hein are called essential (EAAS;
l.e., histidine, isoleucine, leucine, methioninéepylalanine, threonine, tryptophan,
valine, and lysine), because consumers cannot eyiah themde novo The
remaining AAs are considered non-essential (NEAAs, alanine, arginine,
asparagine, aspartate, cysteine, glutamate, gloganglycine, proline, serine, and
tyrosine), because consumers can synthesize themm fEAAs. Freshwater
phytoplankton can synthesize all nine EAAs (Ahlgetnal., 1992; Peltomaa et al.,
2017), and freshwater bacteria, which are also comfmod sources for zooplankton,
can possibly synthesize all AAs (Anderson and Jatk$958; Taipale et al., 2018).
Traditionally, AAs have not been considered to fithie growth or reproduction of
zooplankton or fish. Howeve-3 FA and NEAAs were recently found to increase
the growth rates of zooplanktoBgphnig in experimental settings (Peltomaa et al.,
2017), suggesting that AAs may affect the overatfgrmance of primary consumers
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Furthermore, a previous study showed improved disiwth when the diet included
EAAs and NEAAs (Wu et al., 2014).

Zooplankton, connecting lower (primary productioapd upper trophic levels
(secondary or tertiary consumers), have an impbmale in food web dynamics.
Because zooplankton and fish have limited abilityotoconvert EPA or DHA from
short chainw-3 PUFA (von Elert, 2002; Koussoroplis, 2014; Tépat al., 2011),
they depend directly on the concentrations of ERA BHA synthesized by primary
producers. The highest reproductive output of zaajdon is achieved with
simultaneous high concentrationsf3 PUFA, sterols, and AAs in the zooplankton
diet (Peltomaa et al., 2017). Therefore, zooplanktoneapected to have the highest
reproduction rate in lakes with high availability &PA, sterol, and EAA-rich
phytoplankton. In contrast, low availability of essial biomolecules, e.g., EPA and
sterols (Miller-Navarra et al. 2000; von Elert ét, 2003), may lead to low
zooplankton reproduction and population biomassnducyanobacterial blooms. In
terms of EPA and DHA, cryptophytes, chrysophyteégtains, and dinoflagellates are
optimal food sources for zooplankton. However, fagellates are poor food
sources, because they do not contain low-threskstédols (e.g., brassicasterol,
fucosterol, or stigmasterol; Taipale et al., 2Q@16b).

In general, there are indications that eutrophicatnay increase the abundance of
non-EPA- or non-DHA-synthesizing phytoplankton,veall as algal taxa with HTSs
(Taipale et al., 2016a, 2016b). Therefore, the lalbdity of EPA and DHA may
decrease with total phosphorus in seston (Mulleraxa et al., 2004; Taipale et al.,
2016a). However, the highest EPA and DHA conceptratare usually found in
mesotrophic lakes, which may indicate that theti@tahips are parabolic (Persson et
al., 2007). The presence of phytoplankton taxa uhih ability to synthesize EPA,
DHA, and phytosterols does not necessarily leadhigh concentrations of these
essential biomolecules, because their productioagslated by environmental factors
(temperature, light intensity, and nutrients; Gaahand Harwood, 2009) and the algal
growth stage (Jonasdottir, 1994). The first evigent the decrease in the sestonic
EPA and DHA concentrations by eutrophication wasedaon 13 lakes in North
America (Mduller-Navarra et al.,, 2004; Persson et a007). Two recent papers
(Galloway and Winder, 2015; Taipale et al., 201%Mih similar results were based on
phytoplankton biomass and laboratory cultures, modon direct measurements of
sestonic FA composition. There is strong evideheg hypereutrophication of lakes,
which leads to cyanobacterial blooms, decreaseshgability of EPA, DHA, and
sterols for zooplankton (Muller-Navarra et al., 208artin-Creuzburg et al., 2008).
However, it is not yet fully understood how the centration of phosphorus and other
physico-chemical parameters of lakes actually erite the phytoplankton transient
concentration and the trophic transfer of essemi@nolecules in seston (Guschina
and Harwood, 2009; Piepho et al., 2010, 2012).

In this study, we examined how the production ofeesial biomolecules (the
concentrations of AAs, EPA, DHA, and sterols) artk tnutritional value of
phytoplankton are connected to eutrophication. taltof 107 boreal lakes (TP = 3—
173 pg P ) were sampled for this study during the summesaean 2014 and
2015 (Fig. 1). We fractionated lipid samples ingutmal lipids (sterols), glycol lipids
(none remained), and phospholipids (fatty acidsg.fdcused on fractionated lipids to
look only for lipid compounds of living cells. Bacse we focused on evaluating the
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sestonic biomolecule concentration per phytoplamkize calculated the biomolecule
concentration per phytoplankton carbon biomass (EBRrevious studies have
shown that phospholipids are the major lipid growp phytoplankton reliably
reflecting the phytoplankton composition in lak&réandberg et al., 2015). Because
phosphorus is the primary reason for freshwaterophication, we used the TP
concentration as an indicator of eutrophicationwieer, total nitrogen (TN) also
increased along with TP (Fig. 2B). When we beganstindy, we hypothesized that 1)
eutrophication would decrease the relative abureglanf high-quality (HQ)
phytoplankton (cryptophytes, chrysophytes, diatoarsg dinoflagellates), but not
their absolute biomass, 2) eutrophication would idish »-3 HUFA and sterol
production and their concentrations in phytoplanktbut does not affect the AA
production and concentration in phytoplankton, &dhe concentrations of EPA,
DHA, and sterols depend on the abundance of theph@oplankton, whereas AAs
are related to the overall phytoplankton biomass.

Sampling sites
Year

A 2014

® 2015

0 50 100 200 km
I I I Y S|

River

B Lake
. Al B R s = Index map © EuroGeographics
[ Batiic Sea coast S E Lakes, Rivers, Coastline @ SYKE, MML

Fig. 1. Distribution of the sampled lakes in southernticzdnand eastern Finland.

2. Materials and methods
2.1. Field sampling

From June to August 2014 and 2015, we collectecpkesrirom the epilimnion (0-2
m) of 107 lakes (or lake basins) in southern, ekntind eastern Finland (Fig. 1,
Supplemental Table 1). Each lake was sampled dndecontained two replicates.
Many Finnish lakes are small and shallow, charasdrby a high organic carbon
concentration and high water color (Kortelainen,93)9 and anthropogenic
eutrophication is common. Therefore, the samplnaluided lakes of different trophic
status and water color. Sampling was performedaimdom order, but for the final
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data analysis, the lakes were divided into sevephic categories based on their TP
concentration and OECD criteria for different caegs (OECD, 1982; Bengtson et
al., 2012). The seven categories were ultra-olagitic (< 5 TP pg T / 0.17 pmol
TP L% n = 3), oligotrophic (610 TP ugl/ 0.18-0.34 pmol TP E£; n = 36), lower-
mesotrophic (11-15 TP pg'l/ 0.34-0.50 pmol TPE; n = 24), mesotrophic (16—20
TP pg L/ 0.51-0.66 umol TPt n = 21), upper-mesotrophic (21-34 TP pg/L
0.67—1.11 pmol TP E; n = 14), lower-eutrophic (35-50 TP pg L 1.12-1.63 pmol
TP L™ n = 4), and eutrophic (> 50 mg'l/ 1.63 umol TP *; n = 5). Subcategories
for mesotrophic and eutrophic lakes were addeddrease the resolution of the study
for defining the trophic stage in which the nutnital value of phytoplankton starts to
decrease.

A water sampler (volume 2.6 or 3.5 L, Limnos.plJdna) and a bucket (20 L) were
used to integrate the water column from the surtaca maximum depth of 2 m.
Temperature was measured with a thermometer attdohithe sampler. In the field,
water for the seston samples was pre-sieved thraB@hum mesh and then filtered in
the laboratory through pre-combusted glass miceofititers (Whatman GF/C, United
Kingdom, nominal pore size 1.2 um) for the lipigvdt replicates) and amino acid
(one sample) analysis. Phytoplankton samples walected from the same sampling
depth, pre-sieved through 250 um mesh preservéddaeit Lugol’s solution (0.5 mL
Lugol per 100 mL). Phytoplankton abundance was wmalrunder an inverted
microscope (Leitz Labovert FS, Germany) using tatagnifications of 1000X,
250X, and 125X according to the Utermohl (1958) hodt Three different
magnifications were used because phytoplankton wasyze from less than im to
larger than 1 mm. All possible dimensions (widthight, length, diameter, etc.) were
measured. The phytoplankton abundance was convertbobvolumes according to
the appropriate geometric shape and formula (latewnal Organization for
Standardization (ISO), 2015). Biovolumes were coteekinto fresh weight biomass
by assuming that the phytoplankton density equétedwater density (1 g ™).
Biovolumes were further converted to carbon bionasrding to the equations in
Menden-Deuer and Lessard (2000).

Samples for the chlorophyd (Chl a), total nitrogen (TN), TP, and DOC analyses
were taken from the same integrated and pre-si€2&d um) water sample. Chl
was filtered onto a class microfiber filter (Whatm@F/C, nominal pore size 1.2 um),
extracted with 90% ethanol at 75 °C for 5 min, amdalyzed using a
spectrophotometer (UV-1800, Shimadzu, Japan) basetbO (2012). The TP and
TN concentrations were analyzed with a Gallery™sPAutomated Photometric
Analyser (Thermo Fisher Scientific, USA) accordingstandard methodsISO (2005)
and ISO (1998). The DOC samples were filtratedugh polyethersulfone syringe
filters (nominal pore size 0.20 um, VWR Internatibhtd, UK) and analyzed using a
TOC analyser (TOC-LCPH, Shimadzu, Japan). The tetetimit and the percent of
precision for the chlorophy# analysis was 1.0 ugtand 5%, for TP 6 and 12%nd
for TN 100 pg C' and 12%, respectively. The detection limit for DDOC was 0.05
mg C L* and a percent of precision of 5%.

2.2. Lipid extraction and fractionation

Lipids were extracted from the Whatman GF/C glagsrafiber filters using a
chloroform:methanol 2:1 mixture and then sonicdtedlO min, after which 0.75 mL
of distilled water was added. Samples were mixethénvortex and centrifuged (2000
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rpm) in Kimax glass tubes, and the lower phasetveassferred to a new Kimax tube.
The solvent was evaporated to dryness. Lipids ra&tionated into neutral lipids
(NLs; including sterols), glycolipids, and phosppals (PLs) using a Bond Elut (0.5
mg) silica cartridge. First, the resin of the ddges was conditioned using 5 mL of
chloroform. Subsequently, the total lipids (1 mLere applied to the resin, rinsed
using chloroform, and then the NLs (including sk&€ravere collected under vacuum
using 10 mL of chloroform. Glycolipids were washeyl adding 10 mL of acetone.
PLs were collected after the final resin washesiqudi0 mL of methanol. The NL
fraction and the PL fraction were kept and evamatato dryness. Sterols were
analyzed from the NL fraction and fatty acids frtma PL fraction.

2.3.Fatty acid analysis

Toluene and sulfuric acid were used for the tratiesiisation of fatty acid methyl
esters (FAMEs) at 90 °C for 1 h. The FAMEs were lgedd with a gas
chromatograph (Shimadzu Ultra, Japan) equipped avittass detector (GC-MS), and
using helium as a carrier gas and an Agflgftalifornia, USA) DB-23 column (30 m
x 0.25 mm x 0.15 um). The temperature program,tifigation, and quantification
followed the previously published method (Taipaleale, 2016b) with the exception
that 1,2-dilauroyl-sn-glycero-3-phosphatidylcholiflearodan, Malmd, Sweden) and
1,2-dinonadecanoyl-sn-glycero-3-phosphatidylcholiféarodan) were used as
internal standards and were used in the calculatsnlts. The detection limit for
fatty acid methyl esters was 0.06 ngfiland the percent of precision was 5%.

2.4. Sterol analysis

Sterols were silylated withN,O-bigtrimethylsilyltrifluoro-acetamide] (BSTFA),
trimethylchlorosilane (TMCS), and pyridine at 70 f& 1 h. Trimethylsilyl (TMS)
derivatives of sterols were analyzed with GC-MS iif&uzu) equipped with a
Phenomenex (USA) ZB-5 Guardian column (30 m x G2 x 0.25um). Sterols
were identified using characteristic ions (Taipateal., 2016b) and quantified using
authentic standard solutions of plant sterol mxtirom Larodan (including 53%-
sitosterol, 7% stigmasterol, 26% campesterol, ar8% lbrassicasterol), and
cholesterol, desmosterol, ergosterol, and fucolstenm Sigma-Aldrich. The recovery
percentage of the sterol samples was calculatew) &si-cholestane (Sigma-Aldrich)
as an internal standard.

We categorized the sterols into two groups: LTSt whreshold values lower than
cholesterol (9.9 pg STE mg ¥ and HTSs with threshold values higher than
cholesterol. Brassicasterol, corpisterol, and stisgerol were the only LTSs found in
seston, and the thresholds used for them were&STE mg C, 6.4 pg STE mg T
! and 8.3 pg STE mg€ respectively. We found also six HTSs: campestrslo
ng STE mg CY, desmosterol (16.3 pg STE mg' ¢ chondrillasterol (21.7 pg STE
mg C?), b-sitosterol (22.0 pg STE mg; 4a, 24-dimethyl-&-cholestan-B-ol (25.0
ng STE mg CY, and dinosterol (25.0 pg STE mg ' Sterols (corpisterol,
campesterol, chondrillasterol, and trimethylstralsthout commercial standards
were categorized based on double bonds and caHhzon kength. The detection limit
for sterol trimethyl silyl ethers was 0.05 ngTind the percent of precision of 5%.

2.5. Amino acid analysis



325 Seston proteins were hydrolyzed from filter papeith 2 mL of 6 M HCl at 110 °C
326 for 20 h. After the hydrolysis, the samples welatdd with 5 mL of deionized water
327 and purified with Bio-Rad Poly-Prep Prefilled Chratography Columns (cat # 731-
328 6213). Salts and organic compounds were removexting 10 mL deionized water
329 (ion-free) to the cartridge which after AAs wereted from the column with 6 mL of
330 2 M of NH,OH. Samples were then dried under nitrogen flowadmeat block at 60
331 °C. AAs were run as their propyl chloroformateshgsihe EZ:faast kit for preparation
332 (Phenomenex). Samples were run with a GC-MS usB¢AZA column (9.5 m x
333 0.25 pm x 0.25 mm; Phenomenex) and injected udnegsplit-less mode. The
334 following temperature program was used to sepdrmeAAs: a rise from the initial
335 temperature of 110 °C to 320 °C at a rate of 3enig€™ after holding for 7 min at 320
336 °C. The injection temperature was 300 °C and therfiace 290 °C. The total column
337 flow was 2.35 mL mif* and the linear velocity 71.2 cm s&cThe AAs were
338 identified based on specific ions included in th&f&ast library. For quantification,
339 we used the Sigma-Aldrich AA-18 standard mix of ethiwe made a four-point
340 calibration curve (0.005 pg fit. 0.05 pg pC: 0.1 pg pCY 0.2 pg pCY which was
341 derived using the EZ:faast kit. Additionally, thecovery percentage of the AA
342 samples was calculated using norvaline (Sigma-£lidras an internal standard. Due
343 to the properties of the EZ:faast kit, we were aoleanalyze eight EAAs (valine,
344 leucine, isoleucine, threonine, methionine, phdayiae, lysine, and histidine) but
345 not arginine or tryptophan. In addition to EAAs, were able to quantify two
346 conditionally essential AAs (glycine and prolinejhdaseven non-essential AAs
347 (alanine, serine, asparagine, glutamic acid, amethglycine-proline, and tyrosine).
348 The detection limit for amino acid propyl chlorofostes were 0.01 ng fiLand a
349 percent of precision of 5%.

350 2.6. Calculation for biomolecules

351 In addition to the concentrations of the biomolesulwe calculated their content per
352 phytoplankton carbon biomass. The amino acid, fatig, or sterol concentration (ug
353 in mg C) was calculated based on the following équa

QAA/FA/STE* Vyi
354 J/FA/STE™ Vvial ’ (l)
Vritterea*TCBM*Ryp

355 whereQaarassTeiS the concentration of the amino acid, fatty aoidsterol (ug pT_l),

356 Viia denotes the running volume of the samples (Whjereq IS the total volume of
357 filtered lake water (L)TCBM denotes the total phytoplankton carbon biomagsQ
358 L™ of the corresponding lake sample, &mwldenotes the recovery percentage based
359 oninternal standards.

360 2.7. Data analysis

361 We compared mean values of physico-chemical antbgeal parameters among
362 seven TP concentration categories using the nasmpetric Welch ANOVA test and
363 the Games-Howell post-hoc test. Additionally, wedipolynomial contrast testing of
364 the means to test whether the relationship betwleetiomolecules (essential amino
365 acids, non-essential amino acids, EPA, DHA, higleghold sterols, and low-
366 threshold sterols) and the TP concentration caiegdollowed linear or quadratic
367 curves. The contrast coefficients were 5, 3, 3)-5 for the linear contrasts and -5,
368 -3, -1, 0, -1, -3, -5 for the quadratic contrdstxases where this relationship was
369 statistically significant, we counted the polynomiggression. The interactions
370 between environmental factors, biochemical commsitand phytoplankton biomass
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were analyzed with Spearman correlation analyses.udéd non-metric MDS (Primer
7) to separate the phytoplankton community of #hees TP concentration categories.
The differences in variances (the mean distan¢beaentroid) of the phytoplankton
community were examined with analysis of multiveegidnhomogeneity of group
dispersions (PERMIDISP, Primer7).

3. Results

3.1. The influence of nutrients on the phytoplankimmass and community structure

When variation was observed in the lake water sasAlP was positively correlated
with TN, Chl a, and total and HQ phytoplankton biomass (ug® r > 0.7, p <
0.001). However, no statistically significant diéaces were found among the seven
TP concentration categories in the @honcentration or total phytoplankton biomass
(as mg C [ (Table 1), due to the small number of samplethase groups and the
extremely high variation in the parameters withia eutrophic lakes (Fig. 2A). Cal
(Fig. 2D) and phytoplankton biomass (Fig. 2E) d#fk only between the TP
categories of 5-10 and 21-34, and TN separatedatiegories of <5 and 5-10 from
the category of TP > 16 (ug ). The biomass of the HQ phytoplankton was highest
in the two highest TP categories (35-50 and > %f); Z), while the TP category of
5-10 had a lower biomass of HQ phytoplankton tlmenTtP categories of 16—-20 and
21-34. When the phytoplankton community structuas examined at the genus level
using non-metric multidimensional scaling (NMDSkés with low TP clustered on
the left side and lakes with high TP on the rigbesf the MDS1 axis (Fig. 3A). A
total of 37 of the detected 73 taxa correlatedtpeady with the MDS 1 axis, but none
of the phytoplankton genera correlated negativelyth wthe primary axis
(Supplemental Table 1). The highest positive catrehs were found with
Katablepharis Ceratium Aphanizomengnand Staurastrum The MDS 2 axis was
related positively with 7 (e.gAphanizomenorand Gymnodinium and negatively
with 10 genera (e.g. Gonyostomum Pseudopedinella Monomastix and
StaurodesmysBased on th€ ERMDISP analysis (Fig. 3B), within-group dispersio
were not homogenous o= 9.0774; p < 0.009), as especially the two low 3t
concentration categories had statistically sigatiity lower dispersion than the higher
TP categories. The TP concentration did not haatsstally significant effect on the
contribution of HQ phytoplankton biomasses (Fig.),36ut the contribution of
chrysophytes decreased with increasing TP (Fig. 3D)

Table 1

Statistical results (F-value, degree of freedoni,(dff2), and p value (Sig.)) of the
Welch ANOVA test for the seven lake trophic categer

10



408
409

410
411
412
413
414
415

Factor F dfl df2 Sig.
Temperature 3.57¢ 6 17.16: 0.01¢
Chlorophyll a 7.83¢ 6 15.93¢  0.00(
Total phosphorus 208.46( 6 13.71¢  0.00(
Total nitrogen 16.29: 6 14.82(  0.00C
Dissolved organic carbon 12.41: 6 15.37¢  0.00C
Phytoplankton carbon biomass 7.91¢ 6 12.99: 0.001
Biomass of high quality 5916 6  13.034 0.004
phytoplankton
% of high quality phytoplankton 3.5 6 14.91 0.0z
EPA content of phytoplankton 8.18: 6 18.40¢  0.00cC
DHA content of phytoplankton 6.047 6 19.21 0.001
EAA content of phytoplankton 19.98¢ 6 11.34(  0.00C
NEAA content of phytoplankton 19.59¢ 6 11.98: 0.00C
LTS content of phytoplankton 6.7805 6 21.0148 0.00042
HTS content of phytoplankton 7.60326 6 21.9245 0.00017
EPA concentration 2.05¢ 6 14.12¢ 0.12f
DHA concentration 1.39¢ 6 13.70¢  0.28¢
LTS concentration 6.37482 6 17.3038 0.00111
HTS concentration 13.5213 6 18.3235 7.3E-06
EAA concentration 5.531 6 8.20¢  0.01¢
NEAA concentration 2.96¢ 6 8.26(  0.07¢
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Fig. 2. The concentration of A) total phosphorus, B) toiiogen, C) dissolved
organic carbon, D) Secchi depth, E) the conceptnaif chlorophylla, and F) the
biomass of phytoplankton (all species) and highligugdQ) phytoplankton per
biomass carbon in samples divided into TP categoHE) phytoplankton include
diatoms, cryptophytes, chrysophytes, and dinoflated. Small case letters indicate a
statistically significant difference f > a, p < 8.0
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3.2. The influence of eutrophication on the nuintl value of phytoplankton

The concentrations (ug 1) of EPA and DHA, AAs, and sterols varied subsehti

in the study lakes (Figs. 4—6). The difference leetwlakes was 25- to 74-fold for
EAAs and NEAAs, and 490- to 530-fold for sterolst Bs high as about 2400-fold for
EPA and about 5700-fold for DHA. Similar differeiscéetween lakes were also
found in the sestonic AA and sterol content (ugy/whytoplankton carbon biomass),
and the differences were up to about 5000-foldskstonic DHA and about 60000-
fold for EPA. The four main sterols in all sampiesre p-sitosterol (28.0 £ 10.4% of
all sterol), stigmasterol (22 + 7.4%), campest€tél + 8.1%) and brassicasterol (11 +
7.2%), but their contributions varied substantiallysine (40 = 14% of all AASs),
glutamic acid (15 + 6.0%), and proline (12 + 7.9%gre the main AAs in seston.
Although the contributions of differené-3 PUFA species (ALA, SDA, EPA, and
DHA) varied in seston, the contribution of shorathwm-3 PUFAs (57 + 14% of all
-3 FA) exceeded that of long-chain3 PUFA (31 + 11% of alb-3 FAS) in most of
the lakes investigated. The mai6 PUFA species was LIN, contributing 57 £ 14%
of all -6 PUFAs in seston in the 107 lakes.

The TP concentration had a strong positive relahgmwith the concentration (ug L
1) of AAs (EAA, NEAA; r>0.76, p=0.001) and a mild gitive relationship with DHA
(r>0.21, p = 0.036), but a negative relationshithwhe concentration of HTSs (r > —
0.21, p = 0.028). DHA and LTS were not related Bx The phytoplankton EPA and
DHA content (ug per phytoplankton CBM) did not &ate with any physico-
chemical parameters, whereas the EAA and NEAA caritad negative relationships
with TP (r <-0.31, p < 0.01) and Calr < —0.34, p < 0.01). In addition, EAAs had a
negative relationship with TN (r = —0.36, p < 0.Rp0The phytoplankton sterol
contents (LTSs and HTSs) had positive relationshiipls temperature (r > 0.23, p <
0.01) and DOC (r > 0.25, p < 0.01), and HTSs haégative relationship with Clal

(r = -0.19, p < 0.05) and TN (r = -0.19, p = 0.08Je found a positive linear
relationship between the concentrations of HUFAd &As, and phytoplankton
genera (CBM, Table 2).
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Table 2

Pearson correlation between phytoplankton genugssehtial biomolecules.

Class Genus EPA DHA LTS HTS EAA NEAA
Cryptophytes Cryptomonas 0.239*  0.220* -0.1 -0.1 0.616** 0.502**
Rhodomonas 0.232*  0.199* -0.1 -0.2 0.2 0.1
Cyanobacteria  Anabaena 0.2 0.208* -0.1 -0.1 0.414*  0.565**
Aphanizomenon 0.286**  0.202* -0.2 -0.2 0.509**  0.646**

Chroococcus 0.0 0.0 -0.1 -0.1 0.405**  0.282*

Planktothrix 0.0 0.0 -0.1 -0.1 0.565** 0.765**

Snowella 0.0 0.0 -0.1 -0.1 0.599**  0.526**

Woronichinia 0.285** 0.2 -0.1 -0.1 0.381**  0.336*

Diatoms Asterionella 0.273** 0.295* -0.1 -0.1 0.1 0.0
Aulacoseira 0.198*  0.211* -0.1 -0.1 0.2 0.1

Cyclotella 0.474** 0.559** -0.1 0.0 0.335*  0.298*

Nitzschia 0.2 0.207* -0.1 -0.1 0.546** 0.669**

Urosolenia 0.2 0.196* -0.1 -0.1 0.1 0.0

Dinoflagellates  Ceratium 0.496** 0.587** -0.1 -0.1 0.540**  0.740**
Peridinium 0.435** 0.502** -0.1 -0.1 0.2 0.1

Euglenoids Euglena 0.2 0.209* -0.1 -0.1 0.544**  0.494**
Golden algae Dinobryon 0.201*  0.219* -0.1 -0.1 -0.2 -0.2
Mallomonas 0.225*  0.240* -0.1 -0.1 0.537** 0.484**
Pseudopedinella 0.1 0.1 -0.1 0.0 0.507** 0.468**

Synura 0.743** 0.900** -0.1 -0.1 0.1 0.0

Green algae Ankyra 0.0 0.0 -0.208* -0.245* 0.326* 0.277*
Closterium 0.754** 0.910** -0.1 -0.1 0.525**  0.409**

Coelastrum 0.727** 0.886** -0.1 -0.1 0.447*  0.317*

Crucigenia 0.548** 0.643** -0.1 -0.1 0.0 0.0

Monomastix 0.494** 0.438** 0.0 0.0 0.1 0.0
Monoraphidium  0.536** 0.704** -0.218* -0.210* 0.2 0.304*
Chlamydomonas 0.486** 0.524** -0.1 -0.1 0.2 0.1
Desmodesmus  0.270** 0.320** -0.1 -0.1 0.659** 0.603**
Dictyosphaerium 0.1 0.1 -0.1 -0.1 0.317*  0.284*

Didymocystis 0.392**  0.446** -0.1 -0.1 0.536** 0.405**

Oocystis 0.620** 0.762** -0.1 -0.1 0.2 0.1

Pediastrum 0.2 0.222* -0.1 -0.1 0.669** 0.583**

Sphaerocystis 0.680** 0.840** -0.2 -0.1 -0.1 -0.1

Staurastrum 0.667** 0.750** -0.2 -0.2 0.565** 0.425**
Staurodesmus 0.0 0.0 -0.1 -0.1 0.591** 0.463**
KatablepharideaeKatablepharis 0.2 0.2 -0.1 -0.195* 0.606** 0.577**
Raphidophyte ~ Gonyostomum 0.232* 0.1 -0.1 0.0 0.1 0.0

* indicates statistical significance at the 0.0&eleand ** at the 0.01 level.

Abbreviations: LTS = low-threshold sterol, HTS =ghithreshold sterol, EAA =
essential amino acid, NEAA = non-essential amind.ac

3.3. Trends in the phytoplankton nutritional value different TP concentration

categories
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The concentrations of EPA and DHA were highesthia water samples of the TP
category 35-50 (Fig. 4A, B), although statisticatignificant confidence was not
found due to the extremely high variation. Moregwamtrast analysis did not result
in statistically significant trends (Table 3). Howee, the EPA and DHA content per
phytoplankton CBM differed between the TP categoriehe two highest categories
had lower EPA and DHA content than the other TRgates, but the difference was
statistically significant only between the TP categs of 5-10 and 16-20. Planned
contrasts showed statistically significant linead ajuadratic trends of the EPA and
DHA content by TP category, whereas the quadratidrasts explained more of the
variation than the linear contrasts. The regresamalysis specified that the EPA and
DHA content followed the third-order polynomial it the highest values being
found for the TP categories of 11-15 and 16-20. (#@& D). The concentrations of
EAAs and NEAAs increased with the TP concentratibowever, the planned
contrasts demonstrated statistically significant (.05, Table 3) linear and quadratic
trends only with EAAs. Quadratic contrast explaimadre of variation than linear
contrast. Moreover, regression analysis resultedoib fit of the polynomial model
(Fig. 5A, B). The EAA and NEAA content per phytopkion CBM were equal
between the lowest four categories, after which ¢batent dropped statisticaly
significantly. The TP concentration category of 38-had a statistically significantly
lower EAA content when compared to the lower TP cemrration categories.
According to the planned contrasts for the EAA &1EAA contents, the linear and
quadratic contrasts were statistically significafihe polynomial model fit best for
EAAs and NEAAs. In contrast to the AA concentraiprsterol concentrations
decreased along TP categories, the lowest avecagel firom lakes with TP of 35—
50. Planned contrasts demonstrated statisticajiyifssant (p < 0.05, Table 3) linear
and quadratic increases in the concentration obIst¢HTSs and LTSs) across the TP
concentration categories. The content of LTSs ai&dHper phytoplankton CBM
were highest in the TP category of 5-10, after Wwhitey continuously decreased
toward the highest TP category. The linear and kpild contrasts for the
phytoplankton sterol content were statisticallyngigant; however, the effect size
was low (Table 3). All biomolecules showed a polyral trend, except for the HTSs,
which were explained best by an exponential tréngss( 3-5).
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511 Fig. 4.The concentration of A) DHA and B) EPA in sestorthia seven lake trophic
512 categories, and the sestonic concentrations of A Bnd D) EPA. Small case letters
513 indicate statistically significant differences metEPA and DHA concentrations: ¢ >
514 a, p<0.05.
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528

529 Table 3

530 Results (t-value, degree of freedom (df), and piedBig.)) of polynomial (linear and
531 quadratic) contrast tests. The effect size is #megntage of total variation explained
532 by the models.

Factor Model t df  Sig. (2-tailed) Effect size (%)
EPA L Linear -1.792 4.412 0.141 9.8
Quadratic -2.459  4.412 0.064 0.0
DHA L Linear -1.606 3.794 0.187 8.7
Quadratic -2.039 3.794 0.115 0.6
LTS L Linear 3.033 7.338 0.018 6.5
Quadratic -8.350 7.338 0.000 1.3
HTS L Linear 5.457  9.905 0.000 9.1
Quadratic -10.188 9.905 0.000 0.6
EAA L Linear -2.845 4.163 0.044 41.7
Quadratic -4.689 4.163 0.009 5.2
NEAA_L Linear -1.917 2.665 0.163 33.9
Quadratic -2.675 2.665 0.086 8.2
EPA C Linear 2.836  8.398 0.021 0.9
Quadratic -7.727  8.398 0.000 6.0
DHA C Linear 3.714 12.685 0.003 21
Quadratic -8.406 12.685 0.000 3.9
EAA C Linear 6.738  3.890 0.003 17.7
Quadratic -12.969 3.890 0.000 5.4
NEAA_C Linear 9.797 21.139 0.000 9.4
Quadratic -20.654 21.139 0.000 4.5
LTS C Linear 0.261  8.458 0.800 1.0
Quadratic -5.940 8.458 0.000 1.1
HTS_C Linear 2.159 28.075 0.040 24
533 Quadratic -8.639  28.075 0.000 1.3

534 4. Discussion

535 We studied the impact of increasing nutrient (T&)aentration on the phytoplankton
536 composition, the concentration of essential biomulkes, and the nutritional value of
537 phytoplankton in more than 100 boreal lakes. Bezausytoplankton are the main
538 primary producers synthesizing essential biomoksuh lakes, it is crucial to
539 understand the factors regulating phytoplanktorwgrcand nutritional value. In this
540 study, we focused on eutrophication, defined astireehment of phosphorus, which
541 causes accelerated growth of phytoplankton (Beagtss al., 2012), often limited by
542 phosphorus in boreal freshwaters (Maileht et @13} Similar to previous studies
543 (Vollwenweider et al., 1974; Taipale et al.,, 2016a&he positive impact of
544  eutrophication on the phytoplankton total biomass found in this study. However,
545 eutrophication was not restricted to increased bgsnof cyanobacteria and green
546 algae (non-EPA- and non-DHA-synthesizing taxa), dsb increased the biomass of
547 diatoms, cryptophytes, synurophytes, and dinoflaged, which are considered
548 nutritionally high-quality algae. Interestingly,teaphication decreased the biomass of
549 chrysophytes. The phytoplankton community at thaugelevel was found to be
550 specific and the most variable in the high TP lakesaddition to the year-to-year
551 variation in physico-chemical parameters (Soinieeral., 2005), the high variation
552 may derive from the effects of abundant macrophyteshallow eutrophic lakes
553 (Sgndergaard and Moss 1998). Cyanobacterial bloorag depend on certain
554 environmental parameter thresholds (e.g., TP, temype, and pH), after which the
555 probability of their occurrence increases subsadigti (Zhao et al.,, 2019).
556 Cyanobacteria are present in all kinds of lakeg, Hmnefit from higher nutrient
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concentrations and climate warming (Rasconi et 2017). Moderately eutrophic
lakes (TP 35-50 pg P may also have seasons with high abundance ofdnighity
phytoplankton taxa (e.g.Ceratium Cryptomonas Mallomonas and Synurg,
resulting in instant high production of essentieniolecules. However, the size of
Ceratium Mallomonas andSynuramay exceed 50 um, and thus, they are too large
for zooplankton to ingesEurthermore, most of the high-quality phytoplanktara
(chrysophytes, cryptophytes, and dinoflagellateswgslowly and rarely reach the
stationary phase in lakes (Kilham and Heck988). Instead, bloom-forming non-
EPA and non-DHA phytoplankton (e.g., cyanobacteté&smids, and green algae) can
suppress the production of EPA and DHA, thus redudhe nutritional value of
seston.

We found 61 phytoplankton genera were dominantndom at least 30 lakes) in the
lakes in this study. Of these taxa, 48% belongia tkknown to be able to synthesize
EPA and DHA, and 87% are able to synthesize stefbégpale et al., 2016b).
Variation in the biomolecule content of the phyakton was largest in-3 PUFAS,
EPA, and DHA, which followed the biomass percentaigehytoplankton taxa able to
synthesize these biomolecules. Biomolecule contanation decreased in the order
EPA/DHA > sterols > AAs. Practically, this meanmalst zero production of EPA,
DHA, and sterols in some lakes, whereas AAs wereerpless available in all lakes.
High seasonal variation in EPA, DHA, and sterols een previously found in
eutrophic lakes and reservoirs (Gladyshev et @072 Taipale et al., 2019), where
cyanobacteria blooms restrict EPA, DHA, and stakailability. Additionally, amino
acid concentrations may vary over time within aelakut not to the same extent
(Kalachova et al., 2004). In this study, the comedions of essential biomolecules
(AAs, EPA, DHA, and sterols) showed different pattein relation to the TP
concentration categories, which may be explained differentiation in the
synthesizing taxa. However, it can also be expthibg the major determinants of
algal growth (i.e., temperature, light, and nutis¢n which affect biomolecule
synthesis in general, and specifically certain pplinkton taxa (Reitan et al., 1994;
Watson et al., 1997; Renaud et al., 2002; Fabregas, 2004; Piepho et al., 2010,
2012).

Altogether, it was not surprising that the concatdn of AAs in the surface water
was increased by TP, because all phytoplankton faeshwater bacteria can
synthesize AAs. In contrast, the concentration tefats decreased across the TP
concentration categories, indicating that steroltisgsis is restrictedly synthesized by
certain phytoplankton taxa or groups. The concéotraof EPA and DHA was
highest in the TP category of 35-50, due to thd lhigmass of dinoflagellates and
cryptophytes in some eutrophic lakes. Cryptophytbesysophytes, and dinoflagellates
were found to be the key phytoplankton taxa expigirthe higher concentrations of
EPA, DHA, and AAs in the epilimnion, which is in@rdance with our previous
finding from 900 Finnish lakes (Taipale et al., 881 In laboratory conditions,
Cryptomonass known to have high amino acid content (Peltoetaal., 2017), and in
this study, we found a strong correlation betw&agptomonasbiomassand the
concentration of AAs, EPA, and DHA in lak&Syclotellg Nitzschia Ceratium and
Mallomonasall had positive relationships with AAs, EPA, abHA, whereasSynura
had a very strong relationship with EPA and DHAeWous laboratory experiments
showed a positive relationship with epilimnion steconcentration and favorable
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growth conditions (temperature and light), indiogti that physico-chemical
parameters may affect sterol production (Pieplad.e2012).

Biomolecule concentrations are usually reported gabon unit for describing the
transfer efficiency from seston to the upper troghavels. In this study, we calculated
the biomolecule content per phytoplankton carbamiass, as phytoplankton is the
primary source of these essential biomoleculesqgunabc food webs (Ruess and
Muller-Navarra, 2019). The transfer of biomolecutesthe upper trophic level is
defined as the seasonal average for the whole wpégr season, and thus, the short
last blooming of cyanobacteria may not decrease ttii@ transfer of essential
biomolecules considerablfPrevious studies (Muller-Navarra et al., 2004; Gady
and Winder, 2015; Taipale et al., 2016a) showedl ¢b&ophication and browning
statistically significantly alter the compositiof the phytoplankton community with
subsequent negative effects on the transfer of BRADHA from phytoplankton to
higher trophic levels. Surprisingly, in the presemuidy, the nutritional value of
phytoplankton did not follow the share of high-qtyaphytoplankton biomass. This
may result from the taxonomic differences in thatkgsis of essential biomolecules
(Peltomaa et al., 2017), but also from the possiltihat high biomass could reduce
the nutritional value of single phytoplankton cedisspecies. Blindow et al. (2006)
reported that high nutrient loading predicts lowsyductivity, and in a previous study
(Taipale et al., 2016a), we showed that a high phasis concentration drives the
phytoplankton community toward high abundance ofew species or groups,
especially cyanobacteria, which decreases the piopaf HQ species. However, in
this study, the contribution of HQ phytoplanktord diot decrease, but the overall
nutritional quality of the phytoplankton was reddc®bservations that the production
(Blindow et al., 2006), the number of species (jegal., 2013), and the nutritional
quality of phytoplankton (this study) decreasesstically as the nutrient level rises
over a certain point support the paradox of enrihmimhypothesis (Rosenzweig,
1971). Previous studies with juvenile trout (Tagat al., 2018) and aerial insectivore
(Twining et al., 2016) showed that a high-qualitgtdrich in DHA) supports animal
performance more than the food quantity. Therefibre,decrease in food quality can
have severe impacts on the consumers. This isrftesfudy that measured the amino
acid, sterol, EPA and DHA concentrations of phyaojton simultaneously to assess
their overall nutritional value for zooplankton arfdgher trophic levels. The
variations in the nutritional value of phytoplanktavere high in each TP category;
however, heavy eutrophication had a statisticatipiicant negative relation with the
nutritional value of phytoplankton. Therefore, stpossible that any of these studied
biomolecules can become limiting for herbivorous@ankton, such adaphnia In a
previous study (Taipale et al.,, 2018), we showeat flavenile trout can better
compensate for the low concentrations of AAs theanBEPA or DHA in their diet
(Daphnig, but the limiting factors may vary depending dre tspecies and the
severity of the deficiency.

The results also showed that the EPA, DHA, amind, and sterol concentrations in
phytoplankton have different responses to the as®en TP. EPA and DHA showed
a polynomial trend, with the highest values in thesotrophic lakes (TP = 11-20),
agreeing with Persson et al. (2007). The steroteotnation was equally low in the
ultraoligotrophic (TP < 5 pgt) and eutrophic lakes (TP > 35 ug'). but highest in

the oligotrophic lakes. The EAA and NEAA concentmas were equally high in the
oligo- and mesotrophic lakes, but statisticallyngigantly lower in the eutrophic
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lakes, revealing a negative impact of the phosght@uel on the AA concentration.
Altogether, the results indicate that the phytoktan nutritional value is highest in
lakes with TP of 11-20 (ug P, whereas above this TP concentration, the
nutritional value of phytoplankton starts to deseeaThis also means that even a
small increase in TP, due to changes in land usdimmate change, may reduce the
production of essential biomolecules in mesotroplakes. However, intense
temporary cyanobacterial blooms, induced by climdtange, have been found in
mesotrophic lakes (Patynen et al., 2014; Deng.eR@all6), which suggests that the
safe TP range could be even more narrow when pirglizvarmer seasonal water
temperatures.

5. Conclusions

This study revealed that eutrophication increades liomass of total and HQ
phytoplankton in boreal lakes. The impact of eutiogtion on the production (as pg
L™ of the essential biomolecules investigated is gtudy was not unequivocal, but
the nutritional value of the phytoplankton was fduim be highest in mesotrophic
lakes. This practically means that herbivorous fdgon must consume more
phytoplankton biomass in oligo- and eutrophic lakesn in mesotrophic lakes to
obtain equal amounts of essential biomolecules. Témults also showed that
advanced eutrophication may reduce the transfésf and sterols in the food webs
of boreal lakes, in addition ®-3 HUFA. Therefore, it seems that eutrophicatioh no
only reduces the EPA and DHA content of freshwatganisms but also reduces the
AA and sterol content. More studies are needednderstand whether eutrophic
freshwater ecosystems can maintain the high prodiyctof consumers (e.qg.,
zooplankton and fish) in the circumstances of ledemutritional quality by
increasing the consumption (quantity) of phytoptank
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986 Supplemental data
987 Supplemental Table 1

988 Pearson correlation values for between MDS1 and B/Hd&n non-metric
989 multidimensional scaling (NMDS) of phytoplanktomamunities, and different
990 phytoplankton genera.

Class Genus NMS1 NMS2
Cryptophytes  Cryptomonas +0.401** -0.096
Rhodomonas +0.232* -0.178
Cyanobacteria Anabaena +0.479* -0.020
Aphanizomenon+0.580* +0.301**

Chroococcus  +0.214* -0.378**

Planktothrix ~ +0.387* +0.258**

Snowella +0.231* -0.017
Woronichinia -0.142 +0.199*
Diatoms Acanthoceras +0.378** -0.082

Asterionella +0.446** -0.123
Aulacoseira +0.414** -0.106
Cyclotella +0.352* +0.275**

Fragilaria +0.191* -0.186
Nitzschia +0.402* -0.087
Urosolenia +0.395* -0.106
Dinoflagellates Ceratium +0.625* 0.000

Gymnodinium  -0.127 +0.305*

Euglenoids Peridinium +0.513* -0.154
Golden algae Euglena +0.423* -0.092
Bitrichia -0.013 +0.352**
Chrysidiastrum 0.000 -0.19*
Chrysochromuli 0.000 +0.241*

Dinobryon +0.421* -0.182

Mallomonas  +0.451* -0.128

Monochrysis -0.013 -0.222*
Pseudopedinella0.319* -0.379**

Synura +0.357** -0.042

Greenalgae  Ankyra +0.290* -0.166
Closterium +0.375** -0.041

Coelastrum +0.366* -0.012

Crucigenia +0.263* -0.161

Monomastix  +0.407* -0.367**
Monoraphidium+0.370** -0.036

Quadrigula -0.001 -0.308*
Botryococcus  -0.130 -0.325*
Chlamydomonas-0.269** -0.025
Desmodesmus +0.392* -0.280**
Dictyosphaeriur +0.196* -0.341**

Didymocystis  +0.527** -0.174

Oocystis +0.356** -0.035

Pediastrum +0.427* -0.154
Sphaerocystis +0.363* -0.069

Staurastrum  +0.586** -0.132
Staurodesmus -0.150 -0.316**
Katablepharide Katablepharis +0.666** -0.170
991 Raphidophyte Gonyostomum +0.350* -0.582**




Highlights

e We sampled 107 boreal lakes to identify how eutrophication affects the nutritional
value of phytoplankton.

e Increase of phosphorus correlated with the total phytoplankton biomass, as well as
with the biomass of high quality algae.

e High spatial and seasonal variation was observed in the planktonic production and
content of amino acids, sterols and long chain -3 polyunsaturated fatty acids.

e Our results showed that the nutritional value of phytoplankton reduces with
eutrophication, even though the contribution of high quality algae would not decrease.
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