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Abstract
Developing accurate algorithms for learning struc-
tures of probabilistic graphical models is an im-
portant problem within modern AI research. Here
we focus on score-based structure learning for
Bayesian networks as arguably the most central
class of graphical models. A successful generic
approach to optimal Bayesian network structure
learning (BNSL), based on integer programming
(IP), is implemented in the GOBNILP system. De-
spite the recent algorithmic advances, current un-
derstanding of foundational aspects underlying the
IP based approach to BNSL is still somewhat lack-
ing. In this paper, we provide theoretical contri-
butions towards understanding fundamental aspects
of cutting planes and the related separation prob-
lem in this context, ranging from NP-hardness re-
sults to analysis of polytopes and the related facets
in connection to BNSL.

1 Introduction
The study of probabilistic graphical models is a central topic
in modern artificial intelligence research. Bayesian net-
works [Koller and Friedman, 2009] form a central class of
probabilistic graphical models. A central problem related to
Bayesian networks (BNs) is that of learning them from data.
An essential part of this learning problem is aimed at learn-
ing the structure of a Bayesian network—represented as a di-
rected acyclic graph—that accurately represents the (hypo-
thetical) joint probability distribution underlying the data.

There are two principle approaches to Bayesian net-
work learning: constraint-based and score-based. In the
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constraint-based approach [Spirtes et al., 1993; Colombo et
al., 2012] the goal is to learn a network which is consistent
with conditional independence relations which have been in-
ferred from the data. The score-based approach to Bayesian
network structure learning (BNSL)—focused on here—treats
the BNSL problem as a combinatorial optimization problem
of finding a BN structure that optimises a score function for
given data.

Learning an optimal BN structure is a computationally
challenging problem: even the restriction of the BNSL prob-
lem where only BDe scores [Heckerman et al., 1995] are al-
lowed is known to be NP-hard [Chickering, 1996]. Due to
NP-hardness, much work on BNSL has focused on develop-
ing approximate, local search style algorithms [Tsamardinos
et al., 2006] that in general cannot guarantee that optimal
structures in terms of the objective function are found. Re-
cently, despite its complexity, several advances in exact ap-
proaches to BNSL have surfaced [Koivisto and Sood, 2004;
Silander and Myllymäki, 2006; Cussens, 2011; de Campos
and Ji, 2011; Yuan and Malone, 2013; van Beek and Hoff-
mann, 2015], ranging from problem-specific dynamic pro-
gramming branch-and-bound algorithms to approaches based
on A∗-style state-space search, constraint programming, and
integer linear programming (IP), which can, with certain re-
strictions, learn provably-optimal BN structures with tens to
hundreds of nodes.

As shown in a recent study [Malone et al., 2014], perhaps
the most successful exact approach to BNSL is provided by
the GOBNILP system [Cussens, 2011]. GOBNILP implements
a branch-and-cut approach to BNSL, using state-of-the-art IP
solving techniques together with specialised BNSL cutting
planes. The focus of this work is on providing further un-
derstanding of the IP approach to BNSL from the theoretical
perspective.

Viewed as a constrained optimisation problem, a central
source of intractability of BNSL is the acyclicity constraint
imposed on BN structures. In the IP approach to BNSL—as
implemented by GOBNILP—the acyclicity constraint is han-
dled in the branch-and-cut framework via deriving specialised
cutting planes called cluster constraints which were origi-
nally introduced by Jaakkola et al. [2010]. These cutting
planes are found by solving a sequence of so-called sub-
IPs arising from solutions to linear relaxations of the un-
derlying IP formulation of BNSL without the acyclicity con-
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straint. Finding these cutting planes is an example of a sepa-
ration problem for a linear relaxation solution, so called since
the cutting plane will separate that solution from the set of
feasible solutions to the original (unrelaxed) problem. Un-
derstanding fundamental aspects of these cutting planes and
the sub-IPs used to find them is important not only from a
purely theoretical perspective, but also since it holds out the
promise of further improving the efficiency of state-of-the-art
approaches to solving BNSL exactly. This is the focus of and
underlying motivation for this work.

In this extended abstract we summarise the main results
presented in [Cussens et al., 2017]. First, we study the com-
putational complexity of the separation problem solved via
sub-IPs. We establish that the sub-IPs are themselves NP-
hard to solve. From the practical perspective, this both gives
a theoretical justification for applying an exact IP solver to
solve the sub-IPs within GOBNILP, and motivates further
work on improving the efficiency of the sub-IP solving via
either improved exact techniques and/or further approximate
algorithms.

Second, we study the facets of the convex hull of acyclic
digraphs. As a key theoretical result, we show that cluster
constraints are in fact facet-defining inequalities of this con-
vex hull. From the more practical perspective, achieved via
exhaustive computation, we provide a complete enumeration
of facets for low-dimensional convex hulls. Mapping to prac-
tice, explicit knowledge of such facets has the potential to
further speed up state-of-the-art BNSL solving by integrating
(some of) these facets explicitly into the search.

2 BN Structure Learning
We focus on the Integer Programming (IP) approach to ex-
act score-based Bayesian network structure learning. The
essence of this technique is to encode the BNSL problem as
an equivalent IP formulation. IP solving techniques can then
be used to find an optimal solution to the problem and hence
an optimal BN.

We restrict attention to decomposable score functions,
where the score is defined locally by the parent set choices for
each random variable, i, in the vertex set V . Specifically, for
i ∈ V and J ⊆ V \ {i}, let i ← J denote the the pair (i, J),
called a family. In our framework, we assume that the score
function gives a local score ci←J for each family i ← J . A
global score c(B) for each candidate structure (V,B) is then
defined as

c(B) =
∑
i∈V

ci←Pa(i,B), (1)

and the task is to find an acyclic digraph (V,B) maximising
c(B) over all acyclic digraphs over V .

We allow for the possibility that not all J ⊆ V \ {i} are
allowed as candidate parent sets for i, writing P(i) to denote
the set of parent sets which are allowed. For example, we
may only wish to consider parent sets of small cardinality
either to reflect prior knowledge or to make solving easier. In
fact, restricting parent set cardinality does not make BNSL
easier in this sense: any BNSL problem can be converted into
one where no parent set contains more than two parents, at the

MAXIMISE∑
i∈V,J∈P(i) ci←Jxi←J (2)

SUBJECT TO∑
J∈P(i) xi←J = 1 ∀i ∈ V (3)∑

i∈C
∑
J∈P(i):J∩C=∅ xi←J ≥ 1 ∀C ⊆ V, |C| > 1 (4)

xi←J ∈ {0, 1} ∀i ∈ V, J ∈ P(i) (5)

Figure 1: The IP formulation of the BNSL problem.

expense of creating a polynomial number of auxiliary vertices
[Cussens et al., 2017].

3 The GOBNILP System
GOBNILP [Cussens, 2011] is a program that has been devel-
oped to find optimal Bayesian networks by solving an IP
formulation of the BNSL problem using the SCIP IP sys-
tem [Achterberg, 2007]. The search is implemented as a
branch-and-cut approach, the essentials of which are outlined
next.

The IP formulation [Bartlett and Cussens, 2017] with
which we work is shown in Figure 1. The binary IP variables
used, xi←J , correspond to node i having the set of nodes J
as parents in the network. If set to 1, it means that J is the
parent set of i in the network; if set to 0, J is not the parent
set of i.

The objective function follows from the global score. For
any particular valid assignment of values to variables, the ob-
jective function sums the local scores for the chosen families
(i.e. those where xi←J = 1) and ignores the others. This cor-
responds directly to the definition of the global score for that
network, as given in Equation 1.

Equation 3 enforces the constraint that each node has ex-
actly one parent set, while inequalities (4) prevent any solu-
tion in which there would exist a cycle in the resulting graph.

Inequalities (4) are just one way that cycles can be pre-
vented [Cussens, 2010; Peharz and Pernkopf, 2012; Cussens
et al., 2013]. These particular constraints are known as clus-
ter constraints [Jaakkola et al., 2010] as each corresponds
to the constraint that any cluster (set) of nodes must have at
least one node with no parents in that cluster. An illustration
of how acyclic graphs satisfy all cluster constraints but cyclic
graphs do not is given in Figure 2.

GOBNILP begins with a relaxed version of the IP problem
in which (i) the integrality constraints on all variables are re-
moved, and (ii) all cluster constraints are removed. This re-
laxed problem is first solved, giving an optimal relaxed solu-
tion. In almost all cases, this relaxed solution is not a valid
solution to the original IP problem due to violating cluster
constraints

One or more cluster constraints that are violated by the re-
laxed solution are identified and added to the relaxed prob-
lem, and this modified relaxed problem is solved again.

The process of solving the relaxed problem and then
adding violated cluster constraints repeats until the relaxed
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Figure 2: An acyclic and a cyclic graph for vertex set
{a, b, c, d}. For each cluster of vertices C where |C| > 1
let f(C) be the number of vertices in C who have no parents
in C. Abbreviating e.g. {a, b} to ab, for the left-hand graph
we have: f(ab) = 1, f(ac) = 1, f(ad) = 2, f(bc) = 1,
f(bd) = 2, f(cd) = 1, f(abc) = 1, f(abd) = 2, f(acd) = 1,
f(bcd) = 1 and f(abcd) = 1. For the right-hand graph
we have: f(ab) = 1, f(ac) = 1, f(ad) = 2, f(bc) = 2,
f(bd) = 1, f(cd) = 1, f(abc) = 1, f(abd) = 1, f(acd) = 1,
f(bcd) = 1 and f(abcd) = 0. The cluster constraint for clus-
ter {a, b, c, d} is violated by the right-hand graph since these
vertices form a cycle.

solution no longer breaks any cluster constraints. If the so-
lution thus obtained assigns integer values (i.e. 0 or 1) to all
variables, then an optimal solution to the problem has been
found. Alternatively (and more commonly), if the relaxed so-
lution contains one or more variables with fractional values
then the solver branches on one of the variables with a frac-
tional value, forming one subproblem in which this variable is
fixed to 0 and one in which it is fixed to 1. The algorithm con-
tinues in this manner (cutting and then branching) for each of
these problem instances.

4 Complexity of the GOBNILP Sub-IPs
As GOBNILP adds cluster constraints as cutting planes, it is
necessary to detect which of these constraints are violated by
the solution to the relaxed problem, or alternatively to de-
termine that the solution respects all cluster constraints. In
GOBNILP one of the techniques used to do this is through a
sub-IP — a second IP that yields a solution that corresponds
to a violated cluster constraint if one exists or is infeasible if
the current solution obeys all cluster constraints.

Suppose that the solution to the current relaxed problem
is x∗. For each variable x∗i←J > 0, the sub-IP will contain an
associated binary variable yi←J . If the solution to the sub-IP
sets one of these variables to 1, it indicates that the corre-
sponding variable in the original IP is included in the cluster
constraint found. Additionally, for each i ∈ V , a binary vari-
able yi is created. Variables of this type which are set to 1 in
the solution indicate that the associated node is a member of
the cluster which defines the cut.

As shown in [Cussens, 2011; Bartlett and Cussens, 2017],
the sub-IP in Figure 3 either detects a cluster constraint to add
as a cut if this is possible, or is infeasible if no such cut exists.

GOBNILP spends a considerable proportion of its run time
solving this problem. It is therefore an important issue to
understand the complexity of this problem. In particular, is
there an algorithm with polynomial time complexity that can
either detect a cluster constraint to add as a cutting plane or
determine with certainty that none exists? A polynomial-time
algorithm could potentially be used to significantly speed up

MAXIMISE∑
i,J:x∗i←J>0 x

∗
i←J · yi←J −

∑
i∈V yi (6)

SUBJECT TO

yi←J ⇒ yi ∀yi←J (7)
yi←J ⇒

∨
j∈J yj ∀yi←J (8)∑

i,J:x∗i←J>0 x
∗
i←J · yi←J −

∑
i∈V yi > −1 (9)

yi←J , yi ∈ {0, 1} (10)

Figure 3: The GOBNILP Sub-IP.

GOBNILP. While certain polynomial-time solvable cases can
be identified — specifically, when x∗ is integer-valued and so
represents a (possibly cyclic) directed graph — the complex-
ity of solving the sub-IPs in the general case has been an open
question.

We show that the task solved by the sub-IPs, which we call
the weak separation problem for BNSL, is in fact NP-hard.
Formally, we define the weak separation problem for BNSL
as follows: given a solution x∗ to a relaxed problem, find a
separating cluster C ⊆ V , |C| > 1, for which∑

i∈C

∑
J∈P(i):J∩C 6=∅

x∗i←J > |C| − 1, (11)

or establish that no such C exists.
Theorem 1. The weak separation problem for BNSL is NP-
hard, even when restricted to instances where each parent set
has size at most 2, that is, J ∈ P(i) for all i ∈ V only if
|J | ≤ 2.

Theorem 1 is proven by a reduction from vertex cover. In-
formally, the main idea of the proof is to represent each edge
{u, v} ∈ E in the original vertex cover instance G = (V,E)
by assigning weight x∗s←{u,v} = 1/ |E| in the new instance,
where s is a node not appearing in V , as illustrated in Fig-
ure 4. Clearly, U ⊆ V is a vertex cover in G if and only

i

j

k l

s

i j

s

i k

s

j k

s

k l

1/4 1/4 1/4 1/4

Figure 4: The basic gadget of the reduction in Theorem 1.
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if the total weight of terms x∗s←{u,v} such that U intersects
the parent set is 1. In other words, the summation constraint
J ∩ C 6= ∅ in inequality (11) is used to model the fact that
a vertex cover is a hitting set for edges. Finally, we dupli-
cate this construction for multiple new nodes s, and use terms
x∗v←{s} to control the size of the vertex cover; for full details,
see [Cussens et al., 2017].

5 BNSL Facets
Let G be the set of (family-variable encoded) acyclic digraphs
for some vertex set V . PF(V,PV ) denotes the convex hull of
G: the set of all convex combinations of elements of G, or
equivalently the smallest convex set containing G. We call
PF(V,PV ) the family-variable polytope1. It is a polytope
with G as its vertices.

There is a set of linear inequalities which provide a mini-
mal representation of the family-variable polytope. Such in-
equalities are known as facet-defining. To get an intuition of
what a facet is, consider the cube with vertices

(x = 0, y = 0, z = 0) ,

(x = 0, y = 0, z = 1) ,

. . . ,

(x = 1, y = 1, z = 1) .

This is a 3-d polytope with 6 vertices and 6 facets defined by
the 6 facet-defining inequalities

x ≥ 0 , x ≤ 1 , y ≥ 0 ,

y ≤ 1 , z ≥ 0 , z ≤ 1 .

As we discuss in Section 6, when |V | ≤ 4 it is possible
to compute the set of all facet-defining inequalities of the
family-variable polytope. For bigger vertex sets this is infea-
sible, however it remains important to identify facet-defining
inequalities since they make the best cuts. In [Cussens et al.,
2017], we show that cluster constraints are facet-defining. In
fact, the stronger result that all k-cluster constraints, as de-
fined in [Cussens, 2011], are facet-defining is given.

Theorem 2. For any C ⊆ V and any positive integer κ <
|C|, the valid inequality∑

i∈C

∑
J⊆V \{i}:|J∩C|≥κ

xi←J ≤ |C| − κ (12)

is facet-defining for the family variable polytope PF(V,PV ).

We also show in [Cussens et al., 2017] that any facet-
defining inequality for a vertex set V can be ‘lifted’ to gener-
ate a facet-defining inequality for a bigger vertex set V ′:

Theorem 3. Let PV (i) := 2V \{i} for all i ∈ V . Let∑
i∈V

∑
J∈PV (i),J 6=∅

αi←Jxi←J ≤ β (13)

1In the full length article [Cussens et al., 2017] we also consider
two other related polytopes: the digraph and the cluster polytopes.

be a facet-defining inequality of the family variable polytope
PF(V,PV ) which is not a lower bound on a variable. Let V ′
be a node set such that V ⊆ V ′. Then∑
i∈V

∑
J∈PV (i),J 6=∅

αi←J

 ∑
J′:J⊆J′⊆V ′\{i}

xi←J′

 ≤ β (14)

is facet-defining for PF(V ′,PV ′) and is not a lower bound on
a variable.

Theorems 2 and 3 concern family-variable polytopes when
all parent sets are allowed for each vertex. Since in practical
BNSL it is often necessary (or desirable) to limit the choice of
parent sets in some way, it is important to be able to determine
when a facet-defining inequality remains facet-defining when
some parent sets are disallowed. The following theorem of
[Cussens et al., 2017] helps us do this.
Theorem 4. Let πx ≤ π0 define a facet for the family-
variable polytope PF(V,P). Suppose that πi←J = πi←J′
for some i ∈ V , J, J ′ ∈ P(i) with J ( J ′, J 6= ∅. Let π̆ be π
with the component πi←J′ removed. Let P̆ be identical to P
except that J ′ is removed from P(i). Then π̆x ≤ π0 defines a
facet for the polytope PF(V, P̆).

Given a facet-defining inequality of an all-parent-sets-
allowed polytope PF(V,PV ) and a parent set cardinality limit
κ, Theorem 4 establishes that if the coefficients for all family
variables xi←J′ with |J ′| > κ are not strictly larger than the
coefficient for some family variable xi←J with J ( J ′ so
that |J | ≤ κ, then the inequality also defines a facet for the
polytope with family variables restricted by κ. In [Cussens
et al., 2017] this is confirmed computationally for the case
where |V | = 4 and κ = 2. It follows that a normal (k = 1)
cluster constraint is facet-defining for any limit κ on the size
of parent sets.

6 Enumeration of Low-Dimensional Facets
Complementing the theoretical results, we provide a com-
plete enumeration of facets for low-dimensional family-
variable polytopes. Mapping to practice, explicit knowledge
of such facets has the potential to further speed up state-of-
the-art BNSL solving by integrating (some of) these facets
explicitly into the search.

We provide a complete enumeration (see [Cussens et al.,
2017, Appendix A] for details) of the facet-defining inequali-
ties over 2–4 nodes and confirm the enumeration is consistent
with the theoretical results. The enumeration was done using
the cdd polyhedral computation software [Fukuda, 2016].
• For node set of size 2, i.e., V = {a, b}, there are 3

acyclic digraphs and three facet-defining inequalities:
the two lower bounds xa←b ≥ 0 and xa←b ≥ o and
the 1-cluster constraint xa←b + xb←a ≤ 1.
• For |V | = 3, there are 25 acyclic digraphs and and the

convex hull of these 25 acyclic digraphs (i.e. the family-
variable polytope) has 17 facet-defining inequalities
• For |V | = 4, there are 543 acyclic digraphs, and 135

facet-defining inequalities of the family variable poly-
tope.
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Predicting the hardness of learning Bayesian networks. In
Carla E. Brodley and Peter Stone, editors, Proceedings of
the 28th AAAI Conference on Artificial Intelligence (AAAI
2014), pages 2460–2466. AAAI Press, 2014.

[Peharz and Pernkopf, 2012] Robert Peharz and Franz
Pernkopf. Exact maximum margin structure learning of
Bayesian networks. In Proceedings of the 29th Interna-
tional Conference on Machine Learning (ICML 2012).
icml.cc / Omnipress, 2012.
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