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Abstract 11 

Forest harvesting activities can cause soil damage and disturbance through soil compaction, rut formation and 12 

soil mixing. These affect the soil structure and functions and forest productivity. Soil compaction results for 13 

instance in increased bulk density and decreased porosity, affecting soil moisture, water infiltration and aera-14 

tion. The effects of timber forwarding on soil physical properties have gained little attention in boreal forests. 15 

These issues will become more important in the future since harvesting operations on unfrozen soils are getting 16 

more common due to the anticipated climate warming. 17 

In this study, the changes of forest soil physical properties (bulk density, moisture content and porosity) after 18 

1 to 10 forwarder passes on two fine-grained mineral soil sites in southern Finland were analysed. Penetration 19 

resistance and rut formation were also measured. The measurements were performed in three periods with 20 

different soil moisture conditions. The test drives were carried out with a conventional 8-wheeled forwarder 21 

with total mass of 29.8 tons. 22 

Soil bulk density increased and porosity decreased after the machinery passes. However, soil moisture content 23 

increased on one site and mainly decreased on another. The first three passes caused the greatest compaction 24 

and rutting, the first pass having the strongest impact. After the first and third pass 34-55 % and over 70 % of 25 

the total mean rut depth was formed, respectively. Further passes only had slight effects. The compaction and 26 

changes of soil physical properties appeared to be greater in dry conditions. Rut formation and soil mixing 27 
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were greater in moist conditions. The results are, however, site-specific, and more research is needed to 28 

achieve a better understanding of the relationships between different factors affecting impacts of timber for-29 

warding on soil. 30 

Highlights 31 

- Traffic by heavy machinery has significant impacts on soil properties  32 

- First passes cause the strongest impacts 33 

- Impacts depend highly on soil characteristics and actual site conditions  34 

Keywords 35 

timber harvesting, soil damage, soil compaction, soil protection, rut formation  36 

 37 

 38 

1. Introduction 39 

Soil is one of the most important components in ecosystems, providing key services such as production of 40 

biomass and energy. It is also a key component of carbon, nutrient and water cycles and gas exchange. 41 

However, soil is usually not an object of specific protection objectives and targets and is rather brought indi-42 

rectly in connection with activities aimed at the protection of air, water or vegetation (EUA, 2002). In recent 43 

decades, however, soil has gained more importance, social visibility and attention. The European Union pub-44 

lished in 2016 a report on the implementation of the Soil Thematic Strategy, which was adopted already in 45 

2012 (European Commission, 2016). The United Nations declared 2015 as the International Year of Soils with 46 

the aim to raise awareness on the importance of healthy soil (European Commission, 2014). Sustainable soil 47 

management practices, soil protection and preservation are essential for food security, water quality and plant 48 

production. 49 

The concern of tree and soil disturbances through forest operations with bigger, heavier and more powerful 50 

machines has grown in the past decades (e.g. Ala-Ilomäki et al., 2011; Hartanto et al., 2003; Jansson and 51 

Johansson, 1998; Rohand et al., 2004). Forest operations and mechanical stress can result in serious and 52 

prolonged changes in soil, affect soil functions and properties, reduce soil and forest productivity and eventu-53 
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ally cause financial losses (e.g. Elliot et al., 1999; Jansson and Johansson, 1998; Lüscher et al., 2010; Suth-54 

erland, 2003). In recent years there has been an increasing interest in sustainable forest management, and a 55 

detailed review of the available literature on machinery-induced negative effects on forest soils is provided by 56 

Cambi et al. (2015). 57 

Mechanized harvesting and terrain transport have been reported to cause multiple impacts such as soil com-58 

paction, rut formation, changes in soil micro climate, stem damage, reduced tree and root growth, increased 59 

soil erosion, vulnerability to fungus infections and loss of biodiversity, organic matter, value and volume of 60 

trees (e.g. Bygden et al., 2004; Demir et al., 2007; Elliot et al., 1999; Marshall, 2000; Nugent et al., 2003; Sirén 61 

et al., 2013). Soil compaction is of high importance because of its effects on soil functions, processes and 62 

properties. For instance, it increases the soil bulk density and shear strength, modifies the pore system and 63 

soil structure and decreases soil moisture content, porosity, water and air infiltration, respiration and gas ex-64 

change (e.g. Bagheri et al., 2012; Jansson and Johansson, 1998; Marx et al., 2013; Nugent et al., 2003; 65 

Rohand et al., 2004; Susnjar et al., 2006). In addition, the absorption of nutrients and water by trees and other 66 

vegetation are negatively affected in compacted soil (Susnjar et al., 2006; Rohand et al., 2004). 67 

Soil bearing strength is one of the most important characteristics for the quality of ground usability (Susnjar et 68 

al., 2006). It indicates the capacity of the soil to resist external forces and affects the trafficability, production 69 

efficiency and damages caused by timber haulage (Susnjar et al., 2006). Soil strength and vulnerability to 70 

compaction are mainly influenced by its moisture content and particle size distribution (e.g. Lüscher et al., 71 

2010; Marx et al., 2013; Susnjar et al., 2006). Also other factors, such as coarse roots, can increase the bearing 72 

capacity of soil. Thus, soils with high moisture content, fine textured soils and peatlands are sensitive to soil 73 

damage and compaction (e.g. Marx et al., 2013; Nugent et al., 2003; Sirén et al., 2013; Spoor et al., 2003; 74 

Uusitalo and Ala-Ilomäki, 2013; Zeleke et al., 2007). The most fertile spruce stands are located on moist and 75 

fine-grained soils with a low bearing capacity (Eliasson and Wästerlund, 2007). Also, as spruce horizontal 76 

roots are superficial, these stands are especially vulnerable to logging damage (Sirén et al., 2013). 77 

Frozen soil has a better bearing strength, which ensures more efficient harvesting and causes less soil dis-78 

turbance (Susnjar et al., 2006; Sutherland, 2003). In Finland, up to 60 % of logging is carried out between 79 

October and March, when the soil is frozen (Sirén et al., 2013). However, due to the anticipated climate warm-80 

ing and increasingly mild winters a greater proportion of logging needs to be carried out while the soil is not 81 

frozen, which may increase the risk for soil disturbances. Whether dry and warm autumn or mild winter with 82 
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little snow and frost but high soil moisture content would be a more suitable season for Norway spruce thinning 83 

has been brought up by Sirén et al. (2013). 84 

The greatest impact of machinery traffic occurs direct in the extraction trails, after the first passes and in the 85 

uppermost soil (0-10 cm) (e.g. Coder, 2007; Elliot et al., 1999; Froehlich and McNabb, 1983; Jakobsen and 86 

Greacen, 1985; Naghdi et al., 2007; Rab, 2004). However, influences in nearby areas and in deeper soil layers, 87 

at more than 80 cm depth, are also reported (e.g. Ampoorter et al., 2007; Jakobsen and Greacen, 1985; 88 

Lüscher et al., 2010; Naghdi et al., 2007). Furthermore, the forwarder has a greater impact and is a greater 89 

threat to soil than the harvester (Kremer and Schardt, 2007; Surakka and Sirén, 2007).  90 

The level of soil and root damage depends mostly on the mass and load of vehicles as well as on soil and site 91 

characteristics such as soil type, texture, structure, moisture, content of organic matter and slope. Other af-92 

fecting factors include machine equipment (tyres, tracks, chains), speed, number of machinery passes, logging 93 

method, timing and planning of activity and skillness of on-site personnel (e.g. Demir et al., 2007; Jansson and 94 

Johansson, 1998; Kremer et al., 2012; Naghdi et al., 2007; Susnjar et al., 2006).  95 

Soil is a limited, non-renewable resource as it takes up to thousands of years for one centimeter of soil to form 96 

and once the soil is damaged, it can take years to recover (European Commission, 2015; HBS, 2015). Soil 97 

regeneration is a long process, and it is mainly limited to the top 15 cm (Susnjar et al., 2006). Top soil regen-98 

eration time after skidding activities differs from 10 to over 30 years, and even up to irreversibility (e.g. Croke 99 

et al., 2001; Froehlich and McNabb, 1983; Lousier, 1990; Rab, 2004). Especially in the deeper soil layers, 100 

influences of compaction are very long-term (Alakukku et al., 2003; Sakai et al., 2008). Maintaining the soil in 101 

a healthy state is essential for ensuring a stable environment for forest flora and fauna (Sutherland, 2003). 102 

A great deal of research has been conducted on technological and biological issues of timber harvesting in 103 

Finland, but hardly any of the work done so far concentrates directly on the pedological approach, i.e. the 104 

changes in soil physical properties and the effect of machinery traffic on soil. The aim of this study was to 105 

evaluate the effects of heavy machinery traffic on forest soil on two fine textured sites in southern Finland. Soil 106 

bulk density, moisture content, porosity and grain size distribution were analysed at two soil depths before and 107 

after machinery passes. Rut depth and cone penetration resistance were measured after each pass. The 108 

measurements were performed in three periods with different soil moisture conditions in September, Novem-109 

ber and December 2015.  110 

Our hypotheses were that  111 
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- traffic by heavy machinery compacts the soil, which results in increased bulk density and decreased 112 

porosity and soil moisture content,  113 

- soil damage, rutting and compaction are greater in moister soil,  114 

- the impacts increase with the number of machine passages,  115 

- the greatest impact to the soil occur after the first passes. 116 

 117 

2. Materials and methods 118 

2.1 Study sites 119 

The study sites were located in Vihti in southern Finland and can be classified as the Oxalis-Myrtillus forest 120 

type (Cajander, 1949). These herb-rich heath forests are relatively fertile sites and comprise approx. 29 % of 121 

mineral soils in southern Finland (Hotanen et al., 2008). The mean annual temperature is 4.6°C and the mean 122 

monthly temperatures vary between -6°C in January and February and 17°C in July. The mean annual precip-123 

itation is 650 mm with clearly more precipitation during the second half of the year (Pirinen et al., 2012). 124 

Site A (Rintelä) (60°24.6 N, 24°23.2 E, around 60 m above sea level) was an even-aged Norway spruce (Picea 125 

abies (L.) Karst) stand on a silty-clayey soil with a shallow (1-5 cm) humus horizon. The relief was an even 126 

slope with minor inclination to northwest. The soil was prepared by ploughing before planting approx. 30 years 127 

ago and the ploughing furrows are still visible.  128 

Site B (Pervonmäki) (60°24.4 N, 24°22.4 E, around 70 m above sea level) was a forest of natural origin with 129 

different tree species and age classes. The stand was mostly Norway spruce dominated with a mixture of birch 130 

(Betula pendula Roth) and aspen (Populus tremula L.). It was located in a dell and characterised by a silty-131 

sandy soil with a variable thickness (5-20 cm) of organic layer with a shallow peat layer in moist patches. The 132 

humus form was moder in both sites. 133 

Five plots of 15 x 20 m were established: three on site A and two on site B. The plots were divided in three 134 

test trails (5 x 20 m), one for each study period (Sep., Nov., Dec.) (Fig. 1). Each test trail was further divided 135 

into four study sections (5 x 5 m). The lines were carefully marked on the ground in order to keep the meas-136 

urement points constant. The maximal amount of machinery passes was 10, which was always reached except 137 

on site B in November as the bearing capacity collapsed due to high soil moisture content after the third pass. 138 
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In December the tests were performed only on site A. Detailed description of the number of the measurements 139 

and soil samples is shown in Table 1 and explained in further chapters. 140 

  141 

Figure 1. Schematic maps of a study plot with the three test trails (left) and a test trail with the measurement 142 

points: (o) cone penetration resistance and rut depth measurement points, (x) soil sample points. 143 

 144 

Table 1. Description of the measurements and soil sample collection. *Due to the wet sandy soil on site B, all 145 

samples of soil depth 10-20 cm could not be collected: 7 samples in September and 3 in November. 146 

 147 

Both sites were clear-cut before the first measurements in September. The harvesting and processing of the 148 

trees were carried out from outside the plots to keep them intact. Harvesting residues were collected and the 149 

test trails were placed in order to avoid travelling over stumps, as this inevitably causes uneven weight distri-150 

bution and soil loading. This succeeded well on site A as the trees were planted in rows. However, on site B 151 

the forwarder had to travel over several stumps because of the natural origin of the forest. 152 

Sep. Nov. Dec. Sep. Nov. Dec. Sep. Nov. Dec. Sep. Nov. Dec. Sep. Nov. Dec. Sep. Nov. Dec.

Measurements on 
one test trail

24 24 24 24 24 - 24 24 24 24 24 - 8 8 8 8 8 -

Number of plots 3 3 3 2 2 - 3 3 3 2 2 - 3 3 3 2 2 -

Number of 
passages

10 10 10 10 3 -

Number of 
measurements 

(before and after 
all passes)

2 2 2 2
1 

(only 
before)

- 2 2 2 2
1 

(only 
before)

-

Number of soil 
depths

2 2 2 2* 2* -

Total number of 
values (n)

720 720 720 480 144 - 144 144 144 96 48 - 96 96 96 57 29 -

Cone penetration resistance Soil samples
Site A Site BSite A Site BSite A Site BDescription

Rut depth
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The machinery passes were carried out with an 8-wheeled Ponsse Elk forwarder equipped with Nokia Forest 153 

King F2 710/45-26.5 tires, universal Olofsfors EVO tracks on the rear bogie and Superhokki 160 TS chains on 154 

the rear wheels of the front bogies. The forwarder was further loaded with 9 800 kg of pulpwood. The total 155 

mass was 29 800 kg. 156 

 157 

2.2 Measurement of soil properties 158 

To determine the effects of machinery passes on soil properties, dry soil bulk density (BD), moisture content 159 

(VWC - volumetric water content), total porosity and soil particle size distribution were analysed in laboratory.  160 

Soil samples were taken with a core sampler, 500 mm in height and 25 mm in diameter, before and after all 161 

passes and from every predefined measurement point along the test trail (see Fig. 1). In December a round 162 

sampling tube with a diameter of 46 mm was used. Two mineral soil samples were taken at depths of 0-10 cm 163 

and 10-20 cm, in total of 96 samples from site A in each study period (see also Table 1). Sample collection on 164 

site B was more difficult due to the wet sandy soil. During the first period 57 samples were taken and during 165 

the second period 29 samples were taken before the machine traffic. The thickness of the organic layer was 166 

measured in the field. 167 

The VWC was calculated from the difference between the wet and oven-dry soil mass (60°C, 3-6 days). Soil 168 

BD was calculated by dividing the oven-dry soil mass by the wet volume of the sample. Porosity (φ) was 169 

calculated from BD and density of soil solids (DS) using the formula φ = ((DS-BD)//DS)*100, where a DS value 170 

of 2.65 g/cm-3 for mineral matter and a mean value of 1.4 g/cm-3 for organic matter were used (Hillel, 1982). 171 

To estimate the soil particle size distribution, common methods sieving and sedimentation were used 172 

(Heiskanen and Tamminen, 1992).  173 

Additionally, three soil profiles were characterized for estimating the soil type and site conditions. Soil samples 174 

were taken from A-, B- and C-horizons and the parameters soil particle size distribution, organic matter content, 175 

colour and pH were analysed.  176 

Soil particle size distributions of the test samples can be regarded as silty clay on site A (plots 1-3), whereas 177 

it varies between sandy and clay loam on site B (plots 4-5). The distribution for each plot is the mean result 178 

from both test depths, which were very similar. The grain size was coarser on site B and there was more 179 

variation in grain size and thickness of the soil horizons and the humus layer (Fig. 2). Considering the soil 180 



8 
 

physical properties, fine (< 0,06 mm) and coarse (> 0,06 mm) particle sizes are often distinguished, as many 181 

of the properties change at this particle size (Heiskanen, 2003). The mean soil particle size shows that the 182 

soils on site A and in plot 5 can be defined as fine grained and in plot 4 as coarse grained mineral soils. 183 

According to the World Reference Base for Soils (2006) the soils can be categorized as a haplic Gleysol dystric 184 

(site A) and a histic Gleysol dystric (site B).  185 

 186 

Figure 2. Soil particle size distribution on each plot (site A: plot1-3, site B: plot 4-5). 187 

 188 

2.3 Monitoring of penetration resistance and rut formation 189 

Cone penetration resistance (CPR) was measured with the Eijkelkamp Penetrologger 0615SA penetrometer 190 

consisting of an 80 cm long rod and a 60-degree cone with a diameter of 11.28 mm (1 cm2). Depth readings 191 

were captured every 1 cm by an ultrasonic depth sensor. The results were further analysed and means calcu-192 

lated to describe the strength and compaction of the soil. Penetration resistance was measured on both wheel 193 

ruts before and after all passes (see also Table 1), but also after every pass in two study sections on each site 194 

to define the impact of single passes. As in soil sample collection, measurements were made only before the 195 

passes on site B in November as no further measurements were possible and reasonable due to the deep rut 196 

formation and soil disturbance. 197 

To measure rut formation a self-levelling construction laser device, a levelling rod and a laser beam detector 198 

were used. Before the test drives, a reference height was marked on a tree and a reference height level of the 199 

ground was measured for every measurement point to be located on wheel ruts. After each pass the height of 200 
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the rut bottom was determined using the laser beam detector and the levelling rod (see also Table 1). After-201 

wards the rut depth was calculated by comparing the rut bottom height to the reference height of each meas-202 

urement point. Furthermore, means of rut depth for each section, plot and site were calculated. 203 

 204 

2.4 Statistical analyses 205 

A general linear model (GLM) was used to study the relationship of soil bulk density, moisture content and 206 

porosity to the treatment (machine passes) and other fixed factors and their interactions. Treatment, site, 207 

month (September, November and December) and soil depth (humus, 0-10 cm and 10-20 cm mineral soil) 208 

and their interactions were defined as fixed factors in the model. The differences in soil bulk density, moisture 209 

content and porosity before and after all machinery passes in each measurement point were tested with paired-210 

samples t-tests. Differences were considered statistically significant when P was < 0.05. A linear regression 211 

analysis was used to examine the relationship between rut depth, soil bulk density, cone penetration resistance 212 

and soil moisture content. Statistical tests were performed using IBM SPSS version 23 (IBM Corp, Armonk, 213 

NY, USA). 214 

 215 

3. Results 216 

3.1 Soil properties 217 

Site, month and soil depth significantly affected  the soil moisture content (Table 2). It increased from Septem-218 

ber to November about 10 % on each site, but only slightly from November to December (Fig. 3). On site A 219 

the VWC was 21-31 % in September, 33-45 % in November and 40-48 % in December. Site B was moister 220 

having 30-40 % VWC in September and 42-49 % in November. The deeper soil sample depth (10-20 cm) was 221 

about 5 % moister on site A. Site B had an organic layer up to 20 cm with higher VWC (up to 58 % in Nov.) 222 

and therefore, the VWC was more variable. Soil BD and porosity were significantly affected by  treatment, site, 223 

month and soil depth (Table 2). The dry soil bulk density was higher and consequently porosity lower in De-224 

cember and at 10-20 cm depth. Before the test drives, BD ranged overall between 0.8-1.3 g/cm3 on site A and 225 

1.1-1.6 g/cm3 on site B and porosities between 50-70 % and 40-55 % respectively.  226 
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There was a  significant interaction between treatment and month and between treatment and depth (Table 227 

2), indicating that the machinery passes had different effect on soil BD, porosity and moisture content in dif-228 

ferent months and at different depths. Greater effects and changes occurred in dry September and at the 0-229 

10 cm depth than in moister November and December and at the 10-20 cm depth. Notable changes in humus 230 

layer properties were found on site B. As expected, BD increased and porosity generally decreased through 231 

machinery passes. However, contrasting results can be observed for the VWC: increases on site A and de-232 

creases on site B.  233 

There was a significant interaction between site and treatment (Table 2) and the changes in soil properties 234 

were statistically significant on site A (Fig. 3). After the machinery passes, BD increased by 45 % at 0-10 cm 235 

depth and by 34 % at 10-20 cm depth in September. The VWC increased around 28 % and porosity decreased 236 

22 % at both depths. In November BD increased by 32 % at 0-10 cm depth and by 7 % at 10-20 cm depth. 237 

The corresponding values in December were 17 % and 4 %, respectively. The VWC increased almost 20 % 238 

at 0-10 cm depth, but remained rather unchanged at 10-20 cm depth during both last periods. Porosity was 16 239 

% and 6 % lower in November and 11 % and 4 % lower in December after the test driving. 240 

The results between the plots on site A were similar, but the results for the two plots on site B were mostly 241 

opposite and will therefore not be discussed further as mean values. There were significant changes only for 242 

the humus measurements and VWC in plot 5. These significant results have the same trend as for site A with 243 

the exception of VWC in plot 5. In plot 4, BD increased by 31 % at the upper depth and by 13 % at the lower 244 

depth, whereas in plot 5 it decreased 18 % and 11 %, respectively. Consequently, porosity decreased around 245 

20 % in plot 4 and increased about 17 % in plot 5 at both depths. The VWC decreased at the upper depth 246 

around 20 % in both plots, but at the lower depth after all passes it was 7 % lower in plot 4 and 15 % higher in 247 

plot 5. 248 

Table 2. The relationship of soil moisture content, bulk density and porosity to the machinery passes (treat-249 

ment) and other fixed factors and their interactions in a general linear model (GLM). 250 
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 251 

 252 

 253 

Figure 3. Soil bulk density, moisture content and porosity measurements before and after all machinery 254 

passes on site A (all test periods) and site B (September). *P < 0.05. 255 

 256 

3.2 Penetration resistance and rut formation 257 

The CPR measurements had higher values and greater compaction in dry September than in moister Novem-258 

ber and December (Fig. 4). Penetration resistance and soil compaction were thus clearly lower in moist con-259 

ditions. The greatest changes occurred in the top 60 cm soil depth. In September, CPR was 0.5-1.5 MPa 260 

higher in the first 40-50 cm soil depth on site A and between 30-50 cm soil depth on site B after the machinery 261 

passes. In contrast, the results for November and December showed decreased values after passing. The 262 

overall level of CPR was, however, clearly lower than in September. The first three passes had the greatest 263 

Intercept 1 14294.07 < 0.001 1 13006.12 < 0.001 1 17888.35 < 0.001
Site 1 11.17 0.001 1 72.91 < 0.001 1 59.02 < 0.001

Treatment 1 1.36 0.244 1 97.55 < 0.001 1 141.84 < 0.001
Month 2 238.59 < 0.001 2 13.66 < 0.001 2 11.06 < 0.001
Depth 2 27.56 < 0.001 2 317.88 < 0.001 2 95.19 < 0.001

Site * Treatment 1 39.55 < 0.001 1 33.82 < 0.001 1 27.37 < 0.001
Site * Depth 1 8.46 0.004 1 2.07 0.151 1 1.68 0.196

Treatment * Month 2 4.23 0.015 2 14.95 < 0.001 2 12.1 < 0.001
Treatment * Depth 2 7.46 0.001 2 12.3 < 0.001 2 34.81 < 0.001

Month * Depth 2 0.22 0.8 2 0.71 0.493 2 0.57 0.564
Site * Treatment * Depth 1 5.5 0.02 1 0.02 0.903 1 0.01 0.913

Site * Month * Depth 2 3.26 0.04 2 2.02 0.134 2 1.64 0.196

Degrees of 
freedom

F-value
Significance, 

p-value
Significance, 

p-value

Moisture content Bulk density Porosity

Degrees of 
freedom

F-value
Significance, 

p-value
Degrees of 

freedom
F-value
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impact on the top soil of about 30 cm, whereas the further passes caused compaction at greater depths, 264 

especially in moist conditions (not shown).  265 

 266 

Figure 4. Mean penetration resistance before and after the test drive on site A and B. Measurements after 267 

the test drives are represented with a correction of 10 cm according to the approx. mean rut depth. 268 

 269 

In contrast to CPR, rut formation followed a clear pattern in moist conditions (Fig. 5, Table 3). In the silty clay 270 

soil on site A there were minor differences between the study periods, while in the sandy clay loam soil on site 271 

B deep ruts were formed in November. The mean rut depth after all passes on site A was 9 cm in September 272 

and approx. 13 cm in November and December, rutting being only less than 1 cm greater in December. On 273 

the other hand, VWC had a strong influence on rutting on site B. In September, the mean rut depth was 12 274 

cm, but in November the bearing capacity of the soil collapsed after the initial passes, the mean rut depth 275 

being nearly 25 cm after only three passes. 276 

Rut depth increased almost linearly after each test drive. The greatest rutting and strongest effect occurred 277 

after the first machinery passes, whereas the further passes had a minor impact. On site A the rut depth of 278 

approx. 4.5 cm (all periods) and on site B 6.5 cm (September) and 9 cm (November) was measured after the 279 

first pass. The following passes increased the rut depth by 1-2 cm, but after the fourth pass in September and 280 

the sixth pass in November and December the increase was less than 1 cm. However, in moist conditions the 281 

further passes caused more rutting. The mean final rut depth in September on site A was exceeded after 5-7 282 

passes in November and December. On site B in November each pass caused rutting of 7-9 cm. Except for 283 

the test on site B in November, 34-55 % of the total mean rut depth was formed after the first pass, 47-66 % 284 

after the second and 72-86 % after the fifth pass (Table 3).  285 
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 286 

Figure 5. Rut depths after each test drive on both sites. 287 

 288 

Table 3. Rut depth values. 289 

 290 

 291 

3.3 Statistical analysis 292 

Linear regression analyses were estimated between the variables BD, VWC and CPR measured before the 293 

passing in September and November. The mean rut depth after passes was also analysed against VWC before 294 

the passes. All measurements were calculated and compared with the corresponding soil sample depths of 0-295 

10 cm and 10-20 cm.  296 

Correlations among the parameters were stronger on site A than on site B (Fig. 6). VWC had a strong positive 297 

correlation with BD (53 %), whereas with CPR the correlation was negative and rather moderate (33 %). On 298 

Sep Nov Dec Sep Nov
1 49 35 34 55 36
2 61 48 47 66 70
3 74 57 56 73 100
4 86 73 72 86
5 96 86 84 92

Mean final rut depth (cm) 9.2 13.1 13.4 11.9 24.7
Range of rut depth (cm)  4-14  3-18  8-18  0-21  0-38

Mean rut depth [%]
Number of passages Site A Site B
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site B, VWC did not correlate with BD (3 %) and only moderately with CPR (24 %). The relationship between 299 

BD and CPR was 53 % on site A and 14 % on site B (not shown). 300 

However, VWC explained 48 % on site A and 43 % on site B of the variation in rut depth. Thus, increased soil 301 

moisture content caused deeper and increased rutting. This could also be well observed on site B, where deep 302 

ruts formed and a lot of soil mixing occurred in November (Fig. 7). 303 

 304 

Figure 6. Relationships between bulk density, penetration resistance, rut depth and moisture content on site 305 

A and B (September). 306 

 307 

 308 

Figure 7. Test trails after the machinery passes in September and November on both sites. 309 

 310 

4. Discussion 311 

We found that BD generally increased after trafficking, which is consistent with previous observations (e.g. 312 

Froehlich and McNabb, 1984; Klaes et al., 2016; Naghdi et al., 2016). However, the traffic-induced increase in 313 

BD was lower in moist conditions. Similar results were observed for the CPR measurements: the CPR values 314 
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increased in dry conditions, whereas also decreased values were measured in moist conditions. Some re-315 

searchers, e.g. Braunack (1986), Lenhard (1986) and Jakobsen and Greacen (1985) also reported on de-316 

creased CPR and BD values after trafficking. This phenomenon might be due to the higher organic material 317 

content of samples from trafficked soil as the organic matter mixes into the mineral soil through trafficking 318 

(Jansson and Johansson, 1998; Lenhard, 1986). An alternative explanation can be the loss of thixotropic 319 

strength in soil or the increase in soil moisture content to near saturation, which would have rendered the soil 320 

non-compactable (Jakobsen and Greacen, 1985). However, the decreases are presumed to be temporary. 321 

Jansson and Johansson (1998) found that repeated measurements 14 months after trafficking showed a sta-322 

tistically significant increase in CPR in trafficked plots compared with untrafficked control areas. Furthermore, 323 

the measured correlation between BD and CPR on site A corresponds to the 50-60 % correlation as stated for 324 

all soils by Coder (2007).   325 

The porosity measurement was calculated from the BD and therefore the results are related. Porosity generally 326 

decreased due to the trafficking, with the same exceptions as in BD. Decrease of soil porosity is a common 327 

effect following machinery passing as found in many studies, e.g. Bagheri et al. (2012), Demir et al. (2007), 328 

Jakobsen and Greacen (1985), Jansson and Johansson (1998), Susnjar et al. (2006). 329 

The effect of machinery passes on hydrological soil properties are dependent on site characteristics. In this 330 

study the VWC showed increased (site A) and decreased (site B) values after trafficking. A decrease of VWC 331 

has been commonly reported (e.g. Demir et al., 2007; Susnjar et al., 2006), but also increased values have 332 

been measured as the result of passing (e.g. Klaes et al., 2016; Eliasson and Wästerlund, 2007). Huang et al. 333 

(1996) found both effects on hydraulic properties. Wronski and Murphy (1994) reported that an increase in the 334 

water content could be possible due to trafficking on some sub-plastic clay soils. However, machinery passing 335 

causes structural changes in the soil, which leads to a decrease in soil water potential and reduction in air 336 

permeability (Wronski and Murphy, 1994). 337 

According to the common recommendations for forestry practice, a rut depth of 10 cm is permitted (Lüscher 338 

et al., 2010; MMM, 2014; Äijälä et al., 2014). In Finland it has been further specified with the maximum pro-339 

portion of deep ruts (>10 cm) being 4 % of the total length of strip roads (MMM, 2014; Äijälä et al., 2014). The 340 

limit of 10 cm rut depth was reached at the latest after five passes on each site and period, except on site A in 341 

September. As in many other reported studies, the initial (1-3) passes caused the greatest rutting (e.g. Jakob-342 

sen and Greacen, 1985; Klaes et al., 2016; Naghdi et al., 2016; Susnjar et al., 2006).  343 
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Lüscher et al. (2010) classified strip roads in three categories according to the soil damage after trafficking. 344 

Type 1 shows a slight, elastic impact on soil and ruts of under 10 cm, but largely undamaged soil. Type 2 has 345 

a greater impact with plastic deformation, low rut side formations and deeper ruts, which are however mostly 346 

under 10 cm. In this case the soil damage is not yet severe. In type 3 trafficking causes the formation of deep 347 

ruts (> 10 cm) and high rut side formations as well as compaction and serious damage into the top and sub 348 

soil. Therefore, the soil suffers from long-term damage and is also ecologically negatively affected (Meyer et 349 

al., 2011). From a soil protection perspective, this demonstrates a loss and alteration of soil functions, proper-350 

ties and structures, which is a clear evidence on soil damage and a violation of the principles of sustainability 351 

(Kremer et al., 2012).  352 

The test tracks in the present study can be categorised in various manners, depending on the site and the 353 

trafficking month. September tracks on site A can be classified into type 1 and November and December into 354 

type 2. On site B trafficking caused a greater impact (see Fig. 7). In September, it was classified into type 2, 355 

while in November the damage corresponded clearly type 3. Even though VWC on site A in December was 356 

close to VWC values of site B in November, soil bearing capacity was not exceeded. Based on this, we con-357 

clude that it is very relevant and important to evaluate different factors and site characteristics while estimating 358 

effects of harvesting operations. 359 

It has been well established that a thawed fine-grained soil with high VWC results in low bearing capacity, 360 

while similar soil in frozen condition has a high bearing capacity (Shoop, 1993; Susnjar et al., 2006). This is 361 

also one reason why harvesting operations are traditionally carried out in the winter time on frozen soils with 362 

a snow cover protecting the ground from direct contact. Trafficking on wet soils should be avoided as soil 363 

disturbance and rut formation are greater than in dry conditions. When all soil pores are filled with water, the 364 

soil is saturated. Near the saturation point, the cohesive forces break and the soil loses its bearing capacity. 365 

This point was reached on site B in November, when VWC was near 50 %. Consequently, the bearing capacity 366 

was very low, and deep ruts were formed. According to Miller and Sirois (1986) all moderately deep soils with 367 

finer than a sandy loam with clay subsoil (as on site B) have a very high potential for rutting und compaction 368 

and are generally the most severely disturbed in logging in wet conditions. However, only slight differences 369 

between the test periods were found on site A (see also Fig. 7). Even though VWC was high, the bearing 370 

capacity was not exceeded as on site B. This might be due to soil type and site characteristics. It can thus be 371 

concluded that the effects of trafficking are highly site-specific and depend on actual site and weather condi-372 

tions. 373 
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Through optimised prevention, economical, biological and pedological losses, high costs of aftercare as well 374 

as soil and tree damages and disturbances can be avoided. Depending on site characteristics and timing, 375 

different methods can be applied. Recommendations for best practices to limit soil damage have been well 376 

summarized by Cambi et al. (2015). For example, protective harvesting methods e.g. slash cover and rein-377 

forcements have been widely recommended to reduce the direct impact of machinery passes (e.g. Eliasson 378 

and Wästerlund, 2007; McDonald and Seixas, 1997; Sirén et al., 2013). Furthermore, careful planning, timing, 379 

professionality, high level of expertise and care taken by the on-site personnel are very important (e.g. Edlund, 380 

2012; Kremer et al., 2012; Sutherland, 2003). Additionally, models and prediction methods are being devel-381 

oped to predict and lower the risk for soil and tree damages, and to help the planning of forest activities. For 382 

example, Zeleke et al. (2007) have established a Pressure-Sinkage-model for prediction of potential site dam-383 

age by timber harvesting and extraction machinery traffic. In the Natural Resources Institute Finland, a model 384 

is being developed, which aims to forecast the soil bearing capacity and rutting risk based on various environ-385 

mental factors and actual weather conditions. The increasing digitalisation and development of remote sensing 386 

methods also bring many alternatives and benefits, especially for the planning of forest activities.  387 

Finally, we conclude that soil damage and rut formation were greater in moister soil as expected, whereas 388 

CPR results showed greater compaction in dry conditions. The impacts also increased with the number of 389 

machine passages, though the greatest impact to the soil occurred after the first passes as hypothesized. The 390 

results for increased bulk densities and decreased porosities were significant. However, the results for the 391 

changes in moisture content do not completely confirm our hypothesis as decreased and increased values 392 

were measured. 393 

 394 

5. Conclusions 395 

Harvesting and heavy machinery operations are connected with negative influences on soil. These should be 396 

considered in a wider context, since the damages from harvesting operations cannot be completely avoided. 397 

Nevertheless, these should be minimized where possible.  398 

The results of this study show clear impacts and changes in the measured parameters due to the forest ma-399 

chinery passing. However, the effects vary depending on the site conditions and the soil properties such as 400 

soil type and moisture content. The soil damage can be described mainly as not severe on site A, whereas 401 
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severe damage occurred on site B with VWC near saturation. According to the laboratory analysis, the ma-402 

chinery passing caused a minor impact on BD, VWC and porosity in moist conditions. The CPR measurements 403 

showed greater soil compaction in dry soil conditions, whereas deeper ruts formed in moist conditions. The 404 

impact of machinery passing was greater on top soil and after the first three passes. 405 

Based on our results, we suggest that research for defining critical limits on the pedological and biological 406 

aspects of harvesting is needed for a better understanding of the environmental interactions and relationships. 407 

As concluded by Schoenholtz et al. (2000), for the assessment of sustainability in forestry activities, knowledge 408 

of forest soil properties has to be extended in order to predict the dynamic behaviour of soil processes and the 409 

effects of management practices on these processes. Through increasing information of machinery-induced 410 

effects on forest soils, more detailed management strategies, practical guidelines and vulnerability classifica-411 

tion could be provided as there are for arable lands (e.g. Alakukku et al., 2003; Chamen et al., 2003; Spoor et 412 

al., 2003). More comprehensive studies in different locations and conditions need to be carried out. Further 413 

development of research methods and soil and tree protective harvesting are also necessary.  414 
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