
.9

1.9

Solving Graph Problems via Potential Maximal Cliques:
An Experimental Evaluation of the Bouchitté–Todinca
Algorithm

TUUKKA KORHONEN, JEREMIAS BERG, and MATTI JÄRVISALO, University of Helsinki,

Finland

The BT algorithm of Bouchitté and Todinca based on enumerating potential maximal cliques, originally

proposed for the treewidth and minimum fill-in problems, yields improved exact exponential-time algorithms

for various graph optimization problems related to optimal triangulations. While the BT algorithm has received

significant attention in terms of theoretical analysis, less attention has been paid on engineering efficient

implementations of the algorithm for different problems and thereby on empirical studies on its effectiveness in

practice. In this work, we provide an experimental evaluation of an implementation of the BT algorithm, based

on our second place winning entry in the 2nd Parameterized Algorithms and Computational Experiments

Challenge (PACE 2017), extended to several related graph problems: treewidth, minimum fill-in, generalized

and fractional hypertreewidth, and the total table size problem. Instead of focusing on problem-specific

optimization of BT for a particular problem, our focus in this work is on studying the applicability of BT more

generally to a range of problems. Based on the results, we conclude that an efficient implementation of the BT

algorithm yields an empirically competitive approach to each of the considered problems when compared to

available implementations of alternative problem-specific algorithmic approaches.

CCS Concepts: • Theory of computation → Algorithm design techniques; Dynamic programming;
Theory and algorithms for application domains; Graph algorithms analysis.

Additional Key Words and Phrases: Potential maximal cliques, Bouchitté-Todinca algorithm, empirical evalua-

tion, treewith, generalized hypertreewidth, fractional hypertreewidth, minimum fill-in, chordal completion,

total table size

ACM Reference Format:
Tuukka Korhonen, Jeremias Berg, and Matti Järvisalo. 2019. Solving Graph Problems via Potential Maximal

Cliques: An Experimental Evaluation of the Bouchitté–Todinca Algorithm. ACM J. Exp. Algor. 24, 1, Article 1.9
(February 2019), 19 pages. https://doi.org/10.1145/3301297

1 INTRODUCTION
Enumeration of potential maximal cliques yields improved exact exponential-time algorithms for

various graph optimization problems where the optimal solutions are related to optimal graph

triangulations with respect to different cost functions. A central algorithm in this setting is the

BT algorithm first proposed by Bouchitté and Todinca for the treewidth and minimum fill-in

problems [16]. The BT algorithm for treewidth and minimum fill-in enumerates potential maximal

cliques in order to solve the problems via dynamic programming. The algorithm runs in polynomial

Authors’ address: Tuukka Korhonen, tuukka.m.korhonen@helsinki.fi; Jeremias Berg, jeremias.berg@helsinki.fi; Matti

Järvisalo, matti.jarvisalo@helsinki.fi, Helsinki Institute for Information Technology HIIT, Department of Computer Science,

University of Helsinki, Finland.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

1084-6654/2019/2-ART1.9 $15.00

https://doi.org/10.1145/3301297

ACM J. Exp. Algor., Vol. 24, No. 1, Article 1.9. Publication date: February 2019.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/286389216?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3301297
https://doi.org/10.1145/3301297

1.9:2 Korhonen, Berg, and Järvisalo

time with respect to the number of potential maximal cliques, or more precisely, with respect to

the number of minimal separators of the input graph. Later on, the BT algorithm has received

significant attention in terms of theoretical analysis. It has been shown to be applicable to a range

of cost functions [11, 24, 27] and to yield new exact algorithms and improved worst-case upper

bounds [23, 25, 34]. However, from a more experimental perspective, less attention has been paid

on engineering efficient implementations of variants of the BT algorithm for different problems

and on empirical studies on the effectiveness of the implementations. As Bodlaender and Fomin put

it in the context of treewidth, “While these algorithms provide the best-known running times, they

are based on computations of potential maximal cliques and may be difficult to implement” [12];

the lack of empirical analysis may be due to the difficulty of engineering efficient implementations

of the approach.

As a recent development, the best-performing top-3 algorithm implementations in the exact

minimum fill-in track of the 2nd Parameterized Algorithms and Computational Experiments

challenge (PACE) [22] were based on adaptations the BT algorithm for the minimum fill-in problem.

In this work, we provide an experimental evaluation of our implementation of the BT algorithm,

based on our second place winning entry in the PACE challenge, extended to several related graph

problems. Instead of focusing on problem-specific optimization of BT for a particular problem, such

as the so-called positive instance driven dynamic programming for treewidth (PIDDT) [52] BT

approach specific to treewidth, our focus in this work is on studying the applicability of BT more

generally to a range of problems. For each of the problems, we report results from an experimental

comparison of the empirical performance of our open-source BT algorithm implementation with

available—to the best of our knowledge state-of-the-art—implementations of other algorithmic

approaches proposed for the particular problem. In particular, we consider the following five

problems.

Treewidth [23, 27, 46], intuitively giving a measure for how close a graph is to a tree, is a

central notion in the analysis of tractable fragments of NP-hard problems [8, 9]. For example,

constraint satisfaction problems and Bayesian inference [18, 20, 26] are exponential only

in the treewidth of the underlying graph representations of instances, yielding tractability

for classes of instances with bounded treewidth. We compare our BT implementation for

treewidth to both the earlier-proposed QuickBB branch-and-bound algorithm [30] and a

declarative approach based on encoding the problem as maximum satisfiability (MaxSAT) [3]

and applying a state-of-the-art MaxSAT solver to solve the resulting MaxSAT instance.

Furthermore, we report results for PIDDT [52], a variant of BT with treewidth-specific

optimizations.

Minimum Fill-In [23, 27, 48] is an alternative definition of optimal triangulations as those

which are obtained by minimizing the number of added edges to a given graph. Interchange-

ably referred to as the chordal completion problem [5, 13], minimum fill-in has applications in

e.g. Gaussian elimination for sparse matrices [49] and phylogenetics [34, 35, 38]. We compare

our BT implementation to a recently-proposed integer programming approach [4] that uses

lazy constraint generation and a heuristic separation method specifically designed for the

minimum fill-in problem.

Generalized and Fractional Hypertreewidth [31, 33, 45] are generalizations of the central

notion of treewidth to hypertrees, with motivations in refined analysis of constraint sat-

isfaction problems [31, 33, 44]. Here we compare our BT implementation to the BB-ghw

algorithm [51], a specialized branch-and-bound approach to generalized hypertreewidth,

as well as to the det-k-decomp backtracking algorithm [32] specific to (non-generalized)

hypertreewidth.

ACM J. Exp. Algor., Vol. 24, No. 1, Article 1.9. Publication date: February 2019.

An Experimental Evaluation of the Bouchitté–Todinca Algorithm 1.9:3

Total Table Size [11, 37, 41, 47], compared to treewidth and minimum fill-in, gives more exact

bounds on the memory and time requirements for inference over Bayesian networks [39, 40].

More specifically, an optimal triangulation in terms of total table size minimizes the sum of

the sizes of the conditional probability tables of a given Bayesian network, providing best

performance guarantees for the junction tree inference algorithm [39, 40]. We compare our

BT implementation to the recently proposed EDFS (extended depth-first search) branch-and-

bound algorithm [41].

Based on the results, we conclude that an efficient implementation of the BT algorithm yields an

empirically competitive approach for each of the considered problems.

The rest of this article is organized as follows. We start with necessary preliminaries on graph-

related concepts and terminology (Section 2). Then, we overview the types of problems and cost

functions to which the BT algorithm can be adapted to (Section 3), and give a description of

the generic BT algorithm (Section 4). Further implementation details and main results from the

experimental evaluation are presented in Section 5.

2 PRELIMINARIES
We recall graph-related concepts to the extent necessary for the remainder of this paper. We assume

graphs to be undirected and simple.

The set of vertices and edges of a graph G are denoted by V (G) and E (G), respectively. A graph

G is complete if it has an edge between every pair of vertices. Given a set of vertices S we denote

the set of edges of a complete graph having S as vertices by S2, i.e., S2 = {{u,v} | u,v ∈ S,u , v}.
Given a subset S ⊂ V (G), the graph G[S] induced by S has V (G[S]) = S and E (G[S]) = E (G) ∩ S2.
To simplify notation, letG \S = G[V (G) \S]. The neighborhood N(v) of a vertexv ∈ V (G) contains
the nodes u for which {u,v} ∈ E (G), i.e., N(v) = {u | {u,v} ∈ E (G)}. This notation is extended to a

set S of vertices by N(S) = ∪v ∈SN(v) \ S .
A graph G is chordal if every cycle of length at least 4 has a chord, i.e., an edge joining two

non-adjacent vertices in the cycle. A triangulation H of G is a chordal graph that contains G, i.e.,
such thatV (H) = V (G) and E (G) ⊂ E (H). A triangulation H ofG is minimal if no proper subgraph

of H is a triangulation ofG . We denote the set of minimal triangulations ofG byMT(G). The edges
in E (H) \ E (G) are fill edges, denoted in set-notation by FEH (G), dropping the subscript when clear

from context.

A subset ω ⊂ V (G) is a clique if G[ω] is complete. A clique ω is maximal if no other clique ω ′

satisfiesω ⊊ ω ′. We denote the set of maximal cliques ofG byMC(G). A set of vertices Ω ⊂ V (G) is
a potential maximal clique (PMC) if there is a minimal triangulation H ∈ MT(G) with Ω ∈ MC(H).
We denote the set of all potential maximal cliques of G by Π(G).

Example 2.1. Consider the example graphs in Figure 1. Starting with the graph G on the left, the

set {v2,v3,v4} ∈ MC(G) is an example of a maximal clique of G. For this graph N(v5) = {v3,v6}

v1 v2

v3

v4

v5

v6

v1 v2

v3

v4

v5

v6

v1 v2

v5

v6

Fig. 1. Example graph G (left), a triangulation H of G (middle), and an induced subgraph G \ {v3,v4} (right).

ACM J. Exp. Algor., Vol. 24, No. 1, Article 1.9. Publication date: February 2019.

1.9:4 Korhonen, Berg, and Järvisalo

and N({v5,v6}) = {v3,v4}. The graph G is not chordal as witnessed by the cycle (v3,v4,v6,v5).
An example of a minimal triangulation H ∈ MT(G) is the graph in Figure 1 middle. For this

triangulation FEH (G) = {{v4,v5}}, we can also see for example that {v3,v4,v5} ∈ Π(G). Finally, the
graph G \ {v3,v4} is shown in Figure 1 right.

Two vertices u and v of G are connected if there is a path between them. A set C ⊂ V (G) is a
connected component of G if any two vertices u,v ∈ C are connected in G[C] and no nodes in C
are connected to any nodes in V (G) \C in G. We denote the set of connected components of G by

C (G). A set S ⊂ V (G) is a separator ofG if the graphG \ S has at least two connected components.

For a separator S , a component C ∈ C (G \ S) is a full component of S if N(C) = S . A separator S is

minimal if it has at least two full components. We denote the set of minimal separators of G by

∆(G). A tuple (S,C) consisting of a minimal separator S ∈ ∆(G) and a component C ∈ C (G \ S) of
S is a block associated to S . A block (S,C) is full if C is a full component of S . In this work we only

consider full blocks, and will for simplicity use the term block to refer to full blocks. Whenever

clear from context, we also use (S,C) to denote the nodes in S ∪ C . The realization R (S,C) of a
block (S,C) is the graph with V (R (S,C)) = S ∪ C and E (R (S,C)) = E (G[S ∪ C]) ∪ S2. In words,

R (S,C) is obtained from G[S ∪C] by completing S into a clique. A block (S,C) is associated with

a potential maximal clique Ω if C ∈ C (G \ Ω) and N(C) = S . Notice that this also implies S ⊂ Ω.
Given a block and a PMC Ω the set (S,C : Ω) contains all blocks (Si ,Ci) associated with Ω for

which (Si ,Ci) ⊂ (S,C).

Example 2.2. Let S = {v3,v4} and consider the graphs G and G \ S in Figure 1 left and right,

respectively. As G is connected, we have C (G) = {V (G)}. Similarly C (G \ S) = {{v1,v2}, {v5,v6}}.
Hence S is a separator of G. As both (S, {v5,v6}) and (S, {v1,v2}) are blocks associated with S , S is

a minimal separator. The block (S, {v1,v2}) is associated with the PMC {v3,v4,v5}.

3 PROBLEMS COMPUTABLE USING THE BT ALGORITHM
We overview three classes of objective functions which can be addressed with the BT algorithm,

based on the abstract framework of [11, 27]. As instantiations of the framework, we provide

definitions for the five concrete optimization problems considered in this paper.

Given an undirected graph, the BT algorithm can be used for determining the value of f (G) for
different types of graph parameters f . Specifically, the BT algorithm is applicable whenever the

function f is one of the following three types.

Clique-type [27]: f is of clique-type if

f (G) = min

H ∈MT(G)
max

ω ∈MC(H)
дc (ω)

for some clique-function дc : 2
V (G) → R+.

Fill-type [27]: f is of fill-type if

f (G) = min

H ∈MT(G)

∑
e ∈FEH (G)

дe (e)

for some edge-function дe : V (G)2 → R+.

Clique-sum-type [11]: f is of clique-sum-type if

f (G) = min

H ∈MT(G)

∑
ω ∈MC(H)

дs (ω)

ACM J. Exp. Algor., Vol. 24, No. 1, Article 1.9. Publication date: February 2019.

An Experimental Evaluation of the Bouchitté–Todinca Algorithm 1.9:5

for some fast1 clique function дs : 2V (G) → R+.
Given a graph parameter f and a graph G, a triangulation H ∈ MT(G) is optimal if (i) f is of

clique-type with a clique function дc and f (G) = maxω ∈MC(H) дc (ω), (ii) f is of fill-type with an

edge function дe and f (G) =
∑

e ∈FEH (G) дe (e), or (iii) f is of clique-sum-type with a fast clique

function дs and f (G) =
∑

ω ∈MC(H) дs (ω).
Several well-known graph optimization problems are instantiations of one of these three types

of graph parameters. In this work we evaluate the BT algorithm on the following five problems.

Treewidth [23, 27, 48]: The treewidth problem asks to compute

TW(G) = min

H ∈MT(G)
max

ω ∈MC(H)
{|ω | − 1}.

The treewidth problem is of clique-type with дc (ω) = |ω | − 1.

Minimum fill-in [23, 27, 46]: The minimum fill-in problem asks to compute

MF(G) = min

H ∈MT(G)
{|FEH (G) |}.

The minimum fill-in problem is of fill-type with дe (e) = 1.

Generalized & fractional hypertreewidth [31, 33, 45]. Hypergraphs generalize graphs by allowing

arbitrary subsets of vertices as (hyper)edges. For a vertex v ∈ V (G) of a hypergraph G, let

Ev ⊂ E (G) be the set of edges containing v . A function γK : E (G) → {0, 1} (γK : E (G) → [0, 1]) is
an (a fractional) edge cover of a set K ⊂ V (G) if

∑
e ∈Ev γ

K (e) ≥ 1 for each v ∈ K . The size of γK

is

∑
e ∈E (G) γ

K (e). We denote the size of the smallest edge cover of K by COVG (K) and the size of

the smallest fractional edge cover of K by FCOVG (K). The primal graph Prim(G) of a hypergraph
G has V (Prim(G)) = V (G) and E (Prim(G)) = {{u,v} | ∃e ∈ E (G), {u,v} ⊂ e}. Observe that each
edge in Prim(G) contains 2 vertices, i.e., all definitions from Section 2 are applicable.

The generalized hypertreewidth problem (GHTW) asks to compute

GHTW(G) = min

H ∈MT(Prim(G))
max

ω ∈MC(H)
{COVG (ω)}.

The fractional hypertreewidth problem (FHTW) asks to compute

FHTW(G) = min

H ∈MT(Prim(G))
max

ω ∈MC(H)
{FCOVG (ω)}.

Both problems are of clique-type with дc (ω) = COVG (ω) and дc (ω) = FCOVG (ω), respectively.

Total table size [11, 37, 41, 47]: Let G be a moralized Bayesian Network, i.e., an undirected graph,

and ts : V (G) → N a function, mapping each random variable X ∈ V (G) to ts(X), the size of the
probability table associated with X in G. The total table size problem (TTS) asks to compute

TTS(G) = min

H ∈MT(G)

∑
ω ∈MC(H)

*
,

∏
X ∈ω

ts(X)+
-
.

TTS is of clique-sum-type with дs (ω) =
∏

X ∈ω ts(X). To see why дs is fast, assume that ts(X) ≥ 2

for all X and let Ks ⊂ K ⊂ V (G). Then

дs (K) =
∏
X ∈K

ts(X) =
∏

X ∈(K\Ks)

ts(X)
∏
X ∈Ks

ts(X) ≥
∏

X ∈(K\Ks)

2

∏
X ∈Ks

ts(X) ≥ 2
|K\Ks |дs (Ks).

Note that the assumption ts(X) ≥ 2 is not restrictive when considering random variables.

Finally, we note that an alternative way of defining the considered problems is through tree
decompositions (see e.g. [10]). A tree decomposition of a graph G is a tuple (T , χ), where T is a tree

1
A function дs is fast if дs (K) ≥ 2

|K\Ks |дs (Ks) for all Ks ⊂ K . The necessity of дs being fast is discussed in [11].

ACM J. Exp. Algor., Vol. 24, No. 1, Article 1.9. Publication date: February 2019.

1.9:6 Korhonen, Berg, and Järvisalo

and χ = {Xt | t ∈ V (T)} is a collection of subsets (bags) of the vertices of G, with the following

properties.

(i) Each vertex of G is in some bag, i.e., ∪t ∈V (T)Xt = V (G).
(ii) For each edge e ∈ E (G), there is a bag X ∈ χ such that e ⊂ X .

(iii) For each vertex v ∈ V (G), the set {t ∈ V (T) | v ∈ Xt } ⊂ V (T) induces a connected subgraph
of T .

Property (iii) is often referred to as the running intersection property and can be defined in several

equivalent ways. One such alternative definition is Xi ∩ X j ⊂ Xk for all nodes i, j,k ∈ V (t) for
which k lies on the (unique) path from i to j inT [9]. A (fractional) generalized hypertree decompo-

sition of a hypergraph G is a tuple ((T G, {X1, . . . ,Xn }), {λ
1, . . . , λn }), where (T G, {X1, . . . ,Xn }) is

a tree decomposition of Prim(G) and λi is a (fractional) edge cover of Xi for all i = 1, . . . ,n. The
alternative definitions of all optimization problems we consider are based on the bags of the tree

decompositions. The equivalence between the definitions follows from the well-known connection

between triangulations and tree decompositions [9, 29]. More precisely, given any triangulation H
of G it is straightforward to obtain a tree decomposition of G with the maximal cliques of H as

bags, and vice versa.

4 BT ALGORITHM
We continue with a description of the BT algorithm which our implementation of the approach is

based on. Further details and formal justifications for BT algorithm can be found in several different

sources [7, 11, 16, 17, 23, 27, 45].

4.1 Decomposing Graph Parameter Computation
Given a graph G and a graph parameter f , the BT algorithm decomposes the computation of f (G)
into the computation of f (R (S,C)) for all blocks (S,C). Recall that (S,C) is a block of G whenever

S ∈ ∆(G) and C is a full component of S , i.e., C ∈ C (G \ S) and N(C) = S . With slight abuse of

notation, we also let G = R (∅,V (G)). The correctness of the BT algorithm is due to the following

theorem.

Theorem 4.1. (Adapted from [27] and [11]) LetG be a graph and f one of the three types of graph
parameters discussed in Section 3.

If f is of clique-type with a clique function дc, then

f (R (S,C)) = min

S⊊Ω⊂(S,C)
max

(
дc (Ω), max

(Si ,Ci)∈(S,C :Ω)
f (R (Si ,Ci))

)
.

If f is of fill-type with an edge function дe, then

f (R (S,C)) = min

S⊊Ω⊂(S,C)

*.
,

∑
e ∈Ω2\(E (G)∪S2)

дe (e) +
∑

(Si ,Ci)∈(S,C :Ω)

f (R (Si ,Ci))
+/
-
.

If f is of clique-sum-type with a fast clique function дs , then

f (R (S,C)) = min

S⊊Ω⊂(S,C)

*.
,
дs (Ω) +

∑
(Si ,Ci)∈(S,C :Ω)

f (R (Si ,Ci))
+/
-
.

In order to unify the three types of graph parameters in our implementation of the BT algorithm,

we use two abstract functions cliqueCost andmerдeCost which are instantiated depending on the

graph parameter f being computed. The function cliqueCost computes the additional cost incurred

by a PMC Ω ⊂ (S,C). To compute fill-type parameters, the function cliqueCost requires both Ω

ACM J. Exp. Algor., Vol. 24, No. 1, Article 1.9. Publication date: February 2019.

An Experimental Evaluation of the Bouchitté–Todinca Algorithm 1.9:7

and S as inputs. More concretely, whenever f is of clique-type or clique-sum-type with a (fast)

clique function дc, then cliqueCost (Ω, S) = дc (Ω). If f is of fill-type with an edge function дe, then
cliqueCost (Ω, S) =

∑
e ∈Ω2\(E (G)∪S2) дe (e). The functionmerдeCost merges the cost of the current

Ω with the costs of the blocks in (S,C : Ω). More concretely, given a set X of numbersmerдeCost
combines them in a manner defined by f . If f is of clique-type, thenmerдeCost (X) = max(X) and
if f is of fill-type or clique-sum-type, thenmerдeCost (X) =

∑
x ∈X x . Using these two functions,

Theorem 4.1 can be restated as follows.

Corollary 1. Let G be a graph and f one of the three types of graph parameters discussed in
Section 3. Then

f (R (S,C)) = min

S⊊Ω⊂(S,C)
merдeCost ({cliqueCost (Ω, S)} ∪ { f (R (Si ,Ci)) | (Si ,Ci) ∈ (S,C : Ω)}) .

For a block (S,C) and a fixed PMC Ω satisfying S ⊊ Ω ⊂ (S,C), the cost of R (S,C) with respect

to Ω is

merдeCost ({cliqueCost (Ω, S)} ∪ { f (R (Si ,Ci)) | (Si ,Ci) ∈ (S,C : Ω)}) .

Informally, the optimal cost of R (S,C) with respect to Ω is computed by only considering triangu-

lations of R (S,C) in which Ω has been completed into a clique.

4.2 Detailed Description
Our implementation of the BT algorithm is presented in pseudocode as Algorithm 1. The imple-

mentation is mainly based on [7, 17, 23]. As mentioned, the BT algorithm works by decomposing

the computation of f (G) = f (R (∅,V (G))) into the computation of f (R (S,C)) of all blocks of G.
Furthermore, following Corollary 1, the value of f (R (S,C)) is computed as the minimum cost of

R (S,C) with respect to Ω over all Ω ∈ Π(G) satisfying S ⊊ Ω ⊂ (S,C).
Algorithm 1 proceeds over triplets of form (Ω, S,C), where (S,C) is a block and Ω ∈ Π(G)

satisfies S ⊊ Ω ⊂ (S,C). The optimal cost of R (S,C) with respect to Ω is computed on Lines 14–18.

Whenever this cost is lower than the best known cost for R (S,C) (Line 20), the value of dp[(S,C)]
is updated (Line 21) and Ω is stored in optChoice[(S,C)] (Line 22). After processing all triplets

(Lines 16–22), the value of each dp[(S,C)] is equal to f (R (S,C)) for all blocks, and optChoice[(S,C)]
contains the PMC Ω ⊂ S ∪C that needs to be completed into a clique when constructing a optimal

triangulation of R (S,C). Specifically, the value of f (G) is stored in dp[(∅,V (G))] (Line 25).
After running Algorithm 1, the optimal triangulationH can be reconstructed using a breadth-first

search like procedure shown in Algorithm 2. Starting from B = (∅,V (G)) (Line 3), the potential
maximal clique ΩB corresponding to f (R (B)) is completed into a clique (Line 7), and all blocks

Bi ∈ (B : ΩB) are added to the queue (Lines 8–10). Notice that ΩB = optChoice[B].
We note that in order to compute the optimal cost of R (S,C) for a PMC Ω, the optimal cost of all

blocks in (S,C : Ω) needs to be computed. In our implementation of Algorithm 1, all triplets (Ω, S,C)
are computed before the actual search (Lines 2–10), and then processed in order of increasing

sizes of S ∪C (Line 12). First all potential maximal cliques are enumerated using the procedure

from [17] (Line 2) which in turn uses the procedure for enumerating all minimal separators from [7].

Then, for each potential maximal clique, all blocks (S,C) for which S ⊊ Ω ⊂ (S,C) are initialized
(Lines 4–10). The addition of the "dummy state" (Ω, ∅,V (G)) on Line 10 is used for retrieving the

optimal value f (G).
We do not present pseudocode for enumerating potential maximal cliques here, as our implemen-

tation is directly based on the pseudocode of [17], using also the optimizations mentioned therein.

Let G be a graph with n nodes, v ∈ V (G) and G ′ = G \ {v}, i.e., G with the node v removed. The

enumeration of potential maximal cliques is based on a characterization of Π(G) in terms of Π(G ′),
∆(G ′) and ∆(G). In other words, the set Π(G) = Π(G[Vn]) is computed by iteratively computing

ACM J. Exp. Algor., Vol. 24, No. 1, Article 1.9. Publication date: February 2019.

1.9:8 Korhonen, Berg, and Järvisalo

ALGORITHM 1: BT algorithm

1 BT algorithm(G, cliqueCost ,merдeCost)

2 Π ← EnumeratePMCs (G) [7, 17];

3 T ← {};

4 foreach Ω ∈ Π do
5 foreach D ∈ C (G \ Ω) do
6 S ← N(D);

7 C ← The component of G \ S such that Ω ⊂ S ∪C;

8 T ← T ∪ {(Ω, S,C)};

9 end
10 T ← T ∪ {(Ω, ∅,V (G))};

11 end
12 sort T in increasing order of |S ∪C | ;
13 dp[(S,C)]← ∞ for all (S,C);

14 foreach (Ω, S,C) ∈ T do
15 cost ← cliqueCost (Ω, S);

16 foreach C ′ ∈ C (G[C \ Ω]) do
17 S ′ ← N(C ′);

18 cost ←merдeCost (cost ,dp[(S ′,C ′)]);

19 end
20 if cost < dp[(S,C)] then
21 dp[(S,C)]← cost ;

22 optChoice[(S,C)]← Ω;

23 end
24 end
25 return dp[(∅,V (G))]

ALGORITHM 2: Reconstructing the optimal triangulation

1 Reconstruct(G,optChoice)

2 H ← G;

3 Q ← {({},V (G))};

4 while Q not empty do
5 (S,C) ← pop (Q);

6 Ω ← optChoice[(S,C)];

7 E (H) ← E (H) ∪ Ω2
;

8 foreach C ′ ∈ C (G[C \ Ω]) do
9 S ′ ← N(C ′);

10 Q ← Q ∪ {(S ′,C ′)};

11 end
12 end
13 return H

Π(G[Vi]) for i = 0, . . . ,n with V0 = ∅ and Vi+1 = Vi ∪ {vi+1} for some vi+1 ∈ V (G) \ Vi . In our

implementation the vertices are added to Vi in reverse order of the elimination order produced

by maximum cardinality search [54]. The potential maximal clique enumeration algorithm uses

the algorithm for minimal separator enumeration proposed in [7]. The set ∆(G) is computed by

ACM J. Exp. Algor., Vol. 24, No. 1, Article 1.9. Publication date: February 2019.

An Experimental Evaluation of the Bouchitté–Todinca Algorithm 1.9:9

extending the set of minimal separators included in the neighborhood N(v) of each v ∈ V (G) by a

simple generation rule [7].

In order to analyze the total running time of Algorithm 1, we discuss the running time of the

potential maximal clique enumeration (Line 2) and the DP search (Lines 4–22) separately. LetG be a

graph withn vertices andm edges. The procedure for enumerating potential maximal cliques runs in

polynomial time w.r.t the number of minimal separators, or more precisely, in O (n2m |∆(G) |2) [17].
As |Π(G) | ≥ |∆(G) |/n [23], this is also polynomial time w.r.t the number of potential maximal

cliques. The minimal separator enumeration algorithm used as a subroutine during potential

maximal clique enumeration runs in O (n3 |∆(G) |) time [7]. Since |∆(G) | = O (1.6181n) [25], the
total running time of potential maximal clique enumeration is O (2.6183n).
The total running time of the of the DP search (Lines 4–22) depends on the graph parameter

being computed, i.e., on the time complexities of the functions cliqueCost and merдeCost . For
all of the problems we consider, each invocation ofmerдeCost is computable in constant time as

merдeCost (c1, c2) is either c1 + c2 or max(c1, c2). As the number of triplets (Ω, S,C) considered is

O (|Π(G) |n), the total time complexity of the DP search isO (дt (n) |Π(G) |n + |Π(G) |nm) where дt (n)
is the time complexity of cliqueCost . For clique-type and clique-sum-type graph parameters, the

value of cliqueCost (Ω, S) depends only on Ω. Hence the values can be precomputed, decreasing

the total time complexity of the DP search to O (дt (n) |Π(G) | + |Π(G) |nm). For fill-type parameters

we assume that the values дe (e) of the edge function can be computed in constant time for each

edge e . The assumption is reasonable as the values can be precomputed for allO (n2) possible edges.
This results inO (|Π(G) |n3) time complexity for the DP search on fill-type parameters. As |Π(G) | =
O (1.7549n) [25], the total running time of the DP search with respect to n is O (1.7549nдt (n)). For
an alternative view, if cliqueCost (Ω, S) is computable in polynomial time in n for each Ω and S the

total running time of the DP search is O (poly (n) · |Π(G) |). For such problems, the time complexity

of Algorithm 1 is dominated by the enumeration of potential maximal cliques, an observation that

is supported by our experimental evaluation.

5 EXPERIMENTAL EVALUATION
We report on an evaluation of the empirical performance of Triangulator, our implementation of

Algorithms 1 and 2, on the treewidth, minimum fill-in, generalized and fractional hypertreewidth,

and total table size problems. For each problem, we compare the performance of Triangulator to

available implementations of other previously-proposed algorithms for the individual problems.

All experiments were run on computing nodes with dual 2.53-GHz Intel Xeon E5540 processors

and 32 GB of main memory under Ubuntu Linux 14.04. Triangulator is available in open source

under the MIT license at

https://github.com/Laakeri/Triangulator.

The benchmarks used in the evaluation reported on in this section are also available at this location.

Before presenting detailed results for the individual problems, we provide further practical details

on Triangulator.

5.1 Implementation Details
Triangulator is written in C++, with around 800 lines in the generic BT algorithm implementation

and 4000 lines in total. We make use of the data structures in the C++ standard library (vector,

set and map) to the extent possible and use recursive depth-first searches for standard graph

traversal/modifying procedures. All additional data structures and algorithms were implemented

from scratch. We note that careful low-level optimizations could further reduce the running time

ACM J. Exp. Algor., Vol. 24, No. 1, Article 1.9. Publication date: February 2019.

https://github.com/Laakeri/Triangulator

1.9:10 Korhonen, Berg, and Järvisalo

of Triangulator by at least a reasonable constant factor. For further implementation-level details,

the source code is available for inspection.

Before invoking Algorithm 1, Triangulator applies a number of preprocessing rules to the input

graph G. First G is decomposed on its clique separators [53]. The value of f (G[Ci]) is computed

separately for each component Ci in the decomposition and the value of f (G) is obtained by

merging the values of f (G[Ci]) for each component using themerдeCost function. Furthermore,

the optimal triangulations of each component are merged to form the optimal triangulation of G.
Computation of the clique separator decomposition of G is done by first computing a minimal

triangulation H ∈ MT(G) [6, 50, 53]. The triangulation H is also used to obtain an upper bound

U of f (G). The bound allows instance-specific pruning of the set of potential maximal cliques

that need to be considered during Algorithm 1. More specifically, any Ω ∈ Π(G) which is shown

to not be a maximal clique in any optimal triangulation of G is ignored. For a simple example,

if f (G) = TW(G), then all potential maximal cliques Ω for which |Ω | − 1 > U are ignored. We

emphasize that these optimizations often do not significantly affect the overall running time of

Triangulator. As discussed in the previous section, the overall running time of Triangulator is for

most problems dominated by the enumeration of the PMCs. Since pruning is only done after a

PMC has been computed, it does not decrease the total number of PMCs that are enumerated.

For treewidth and minimum fill-in, an additional preprocessing technique based on safe separa-

tors [14, 15] is applied. In more detail, letv ∈ V (G) be a vertex ofG such that the neighborhoodN(v)
requires one edge in order to be completed into a clique, i.e., such that N(v)2 \E (G[N(v)]) = {{u, t }}
for two verticesu, t ∈ N(v). During this phase of preprocessing, the edge {u, t } is added toG [14, 15].

A special case of this rule in graphs containing no clique separators is the elimination of all degree-

two vertices. Finally, for minimum fill-in, we also use a known kernelization algorithm [46]. Note

that the kernelization algorithm also gives lower and upper bounds for minimum fill-in.

Instantiating cliqueCost is straightforward for most of the problems considered in this work.

However, instantiating COVG (ω) for the generalized hypertreewidth problem and FCOVG (ω) for
the fractional hypertreewidth problem is non-trivial. For computing COVG (ω), we implemented

a branch-and-bound set cover algorithm which branches on vertices that are still uncovered by

the set of selected edges. When choosing which edge to cover a vertex with, the algorithm tries

edges that cover a maximal number of uncovered vertices first. For computing FCOVG (ω), we use
the GLPK linear programming solver [42] and a straightforward linear programming model of

fractional set cover.

5.2 Treewidth
Considering the treewidth problem, we compare the performance of Triangulator to those of the

QuickBB branch-and-bound algorithm [30] and a declarative approach based on encoding treewidth

as maximum satisfiability (MaxSAT) and applying a state-of-the-art MaxSAT solver to determine

treewidth [3]. Furthermore, we give results for PIDDT [52], a so-called positive instance driven

variant of BT algorithm which, employing problem-specific optimizations, took second place in the

exact competition of the treewidth track of the 2017 PACE challenge.

Both QuickBB and the MaxSAT encoding make use of elimination orderings for computing the

treewidth of a graph G = (V ,E). An elimination ordering of G is any linear ordering ≺ of V . A
vertexvi ∈ V is a predecessor (in ≺) of another vertexvj ifvi ≺ vj and {vi ,vj } ∈ E. The completion

ofG under ≺ is a directed graph, obtained by first adding edges between any two vertices vi and vj
of G that have a common predecessor until fix-point, and then ordering all edges according to ≺.

The width of ≺ is the maximum out-degree of any vertex in the completion of G under ≺ and the

treewidth of G is the minimum width over all elimination orderings of G [10, 20].

ACM J. Exp. Algor., Vol. 24, No. 1, Article 1.9. Publication date: February 2019.

An Experimental Evaluation of the Bouchitté–Todinca Algorithm 1.9:11

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 100 200 300 400 500

T
im

e
 (

s)

Instances solved

BT
QuickBB
MaxSAT

PIDDT
BT noPre

Fig. 2. Comparison of the empirical performance of Triangulator (BT), PIDDT, QuickBB, and MaxSAT on
treewidth.

QuickBB searches over elimination orderings of the vertices of G = (V ,E). Each node in the

search tree is a linear ordering ≺S of some subset S ⊂ V . The main observation underlying QuickBB

is that the width of ≺S is a lower bound of the width of any elimination ordering ≺ obtained by

completing ≺S to an elimination ordering of G. Thus a branch of the search tree can be pruned

whenever the width of the ordering of that node is higher than the current known upper bound of

the treewidth. QuickBB also uses a number of additional heuristics to prune the search space and

limit the number of generated branches [30].

The MaxSAT encoding is based on encoding elimination orders via propositional constraints.

Given a graph G = (V ,E), the encoding produces an unweighted MaxSAT instance F (G) with
|V | − 1 unit-weighted soft propositional clauses {C1, . . . ,C |V |−1} such that TW(G) ≤ k if and

only if there is a truth assignment that satisfies all hard clauses in F (G) and the soft clauses

Ck , . . . ,C |V |−1. The hard clauses of F (G) encode elimination orderings and, further, implement the

completion procedure. We report results for the MaxSAT approach using the Maxino [1] MaxSAT

solver. We note that Maxino performed the best on these instances out of the three best-performing

solvers (namely Maxino, MaxHS [19] and Open-WBO [43]) in the unweighted track of the MaxSAT

Evaluation 2017 [2].

PIDDT implements a variant of BT algorithm and is highly optimized for the decision version of

the treewidth problem. More specifically, given a graphG and an integer k , PIDDT uses a dynamic

programming scheme similar to Triangulator to decide if TW(G) ≤ k . In contrast to Triangulator,

PIDDT uses treewidth-specific heuristics in order to enumerate only the PMCs required to decide

if TW(G) ≤ k during the dynamic programming search. Notice that computing the treewidth of G
often requires iterating the algorithm for several different values of k . Following [52] we used a

linear search strategy starting with k equal to the minimum degree of the graph and incrementing

by 1 for each negative answer.

As benchmark instances for treewidth, we used instances from the PACE 2016 and 2017 treewidth

and minimum fill-in challenges [21, 22], the DIMACS graphs available at http://mat.gsia.cmu.edu/

ACM J. Exp. Algor., Vol. 24, No. 1, Article 1.9. Publication date: February 2019.

http://mat.gsia.cmu.edu/COLOR/instances.html
http://mat.gsia.cmu.edu/COLOR/instances.html

1.9:12 Korhonen, Berg, and Järvisalo

COLOR/instances.html, and Bayesian networks from the bnlearn Bayesian Network Repository

(http://www.bnlearn.com/bnrepository/). Out of a total of 589 benchmarks obtained, 469 were

solved by at least one of the three approaches within a per-instance timeout of 1 hour.

A comparison of the performance of Triangulator, QuickBB, MaxSAT, and PIDDT is presented in

Figure 2 which shows the number of instances solved by each approach (x-axis) in terms of the

per-instance time limit enforced on the algorithms (y-axis). Overall, within a per-instance time

limit of 1 hour, Triangulator solved a total of 309 instances, whereas QuickBB solved 290 instances

and Maxino on the MaxSAT encoding 225. We note that the MaxSAT approach specifically suffered

from weak performance on the larger benchmarks, as the size of the declarative encoding increases.

These results suggest that a generic implementation of the BT algorithm, such as Triangulator

designed to be applicable to a range of problems, can exhibit better performance on the treewidth

problem when compared to other specialized algorithms for the same problem. As for the impact

of the preprocessing techniques applicable on treewidth, the “BT noPre” plot in Figure 2 shows

the performance of Triangulator without applying preprocessing; we observed that preprocessing

had a noticeable positive effect on runtime performance of some—but not on a majority of the—

instances, and did not appear to significantly hurt performance on any of the instances. Furthermore,

the even better performance of PIDDT, solving a total of 459 instances, shows the potential of

applying problem-specific implementations within BT algorithm when aiming at solving a specific

problem. However, rather than focusing on studying problem-specific optimizations, we continue

by evaluating the generic approach of Triangulator on a variety of other problems.
2

5.3 Minimum Fill-In
Considering the minimum fill-in problem, we compare the performance of Triangulator to that of a

recent integer programming approach [4] which we will refer here to as IP. The IP approach is based

on formulating the minimum fill-in problem as an integer program and applying problem-specific

lazy constraint generation and a heuristic separation approach for obtaining cuts. The IP approach

builds on earlier work by the same authors on a Benders decomposition approach [5] for minimum

fill-in. We obtained the implementation of the IP approach directly from the authors, and, following

the authors, used the IBM ILOG CPLEX integer programming solver [36] (version 12.7) as the

underlying IP/LP solver.

An overview of the results for minimum fill-in is presented in Figure 3, using the same set of

benchmarks as in our treewidth experiments. We note that there is a significant overlap between

this benchmark set and the one used by the authors of the IP approach in their experiments [4].

Overall, Triangulator solved 299 instances, while the IP approach solved 228. Triangulator solved

10 more treewidth instances than minimum fill-in instances, even though the instances consists

of exactly the same graphs. We hypothesize that this may be due to preprocessing being more

effective on the treewidth objective function than on the minimum fill-in objective.

More detailed results, using the set of benchmarks used in evaluating the IP approach [4], are

shown in Table 1. The faster running time for each instances given in boldface. Here we observe

that Triangulator consistently outperforms the IP approach especially on the grid and queens

families of benchmarks.

5.4 Generalized and Fractional Hypertreewidth
Turning to generalized and fractional hypertreewidth, we note that—to the best of our understanding—

the only exact algorithm implementation for generalized hypertreewidth is BB-ghw [51]. For

fractional hypertreewidth we are not aware of any available exact algorithm implementations.

2
The optimizations of PIDDT are not directly applicable to the range of problems considered here.

ACM J. Exp. Algor., Vol. 24, No. 1, Article 1.9. Publication date: February 2019.

http://mat.gsia.cmu.edu/COLOR/instances.html
http://mat.gsia.cmu.edu/COLOR/instances.html
http://www.bnlearn.com/bnrepository/

An Experimental Evaluation of the Bouchitté–Todinca Algorithm 1.9:13

Table 1. Running times of Triangulator (BT) and the IP approach to minimum fill-in for the instances used
in [4]. Here |V | and |E | are the numbers of vertices and edges of the graph, respectively. The column Min-fill
gives the cost of the optimal minimum fill-in as determined by the algorithms.

Time (seconds)
Instance |V | |E | Min-fill BT IP
grid3_3 9 12 5 0.01 0.01

grid3_4 12 17 9 0.07 0.02
grid3_5 15 22 13 0.08 0.04
grid3_6 18 27 17 0.01 0.28

grid3_7 21 32 21 0.01 0.31

grid3_8 24 37 25 0.03 1.27

grid3_9 27 42 29 0.03 2.31

grid3_10 30 47 33 0.16 12.23

grid4_4 16 24 18 0.01 0.63

grid4_5 20 31 25 0.04 8.50

grid4_6 24 38 34 0.16 162.65

grid4_7 28 45 41 0.59 122.38

grid4_8 32 52 50 2.33 TO

grid4_9 36 59 57 9.53 3171.78

grid4_10 40 66 66 37.28 TO

grid5_5 25 40 37 0.26 59.08

grid5_6 30 49 50 1.67 TO

grid5_7 35 58 62 10.61 TO

grid5_8 40 67 75 67.43 TO

grid5_9 45 76 87 416.76 TO

grid6_6 36 60 69 14.48 TO

grid6_7 42 71 86 149.75 TO

grid7_7 49 84 111 2760.10 TO

queen3_3 9 28 5 0.01 0.01

queen3_4 12 46 12 0.01 0.01

queen3_5 15 67 22 0.01 0.02

queen3_6 18 91 36 0.02 0.09

queen3_7 21 118 53 0.05 0.61

queen3_8 24 148 74 0.13 2.05

queen3_9 27 181 98 0.37 6.11

queen3_10 30 217 126 1.28 29.25

queen4_4 16 76 26 0.01 0.02

queen4_5 20 110 51 0.05 0.65

queen4_6 24 148 83 0.19 7.21

queen4_7 28 190 119 0.97 44.00

queen4_8 32 236 164 5.39 353.85

queen4_9 36 286 217 28.77 TO

queen4_10 40 340 277 152.82 TO

queen5_5 25 160 93 0.28 16.14

queen5_6 30 215 144 2.37 134.12

queen5_7 35 275 214 18.28 TO

queen5_8 40 340 293 158.52 TO

queen5_9 45 410 386 1367.10 TO

queen5_10 50 485 - TO TO

queen6_6 36 290 231 35.44 TO

queen6_7 42 371 334 509.27 TO

queen6_8 48 458 - TO TO

queen6_9 54 551 - TO TO

queen6_10 60 650 - TO TO

queen7_7 49 476 - TO TO

queen7_8 56 588 - TO TO

queen7_9 63 707 - TO TO

queen7_10 70 833 - TO TO

queen8_8 64 728 - TO TO

Time (seconds)
Instance |V | |E | Min-fill BT IP
anna 138 493 47 0.15 1.51

david 87 406 64 1.39 2.48

games120 120 638 - TO TO

huck 74 301 5 0.01 0.05

jean 77 254 16 0.01 0.08

miles250 125 387 53 0.08 2.63

miles500 128 1170 360 2918.89 TO

miles750 128 2113 471 2452.14 459.00
myciel3 11 20 10 0.01 0.01

myciel4 23 71 46 0.13 0.02
myciel5 47 236 196 119.06 30.36
1-FullIns_3 30 100 80 5.96 5.06
1-FullIns_4 93 593 - TO TO

1-Insertions_4 67 232 - TO TO

2-FullIns_3 52 201 - TO TO

2-Insertions_3 37 72 - TO TO

2-Insertions_4 149 541 - TO TO

3-FullIns_3 80 346 - TO TO

3-Insertions_3 56 110 - TO TO

4-FullIns_3 114 541 - TO TO

4-Insertions_3 79 156 - TO TO

DSJC125.1 125 736 - TO TO

DSJC125.5 125 3891 - TO TO

DSJC125.9 125 6961 726 53.00 TO

miles1000 128 3216 535 366.58 282.09
miles1500 128 5198 218 8.03 3.21
mug100_1 100 166 64 0.02 0.54

mug100_25 100 166 64 0.02 0.62

mug88_1 88 146 56 0.01 0.27

mug88_25 88 146 56 0.01 0.82

myciel6 95 755 - TO TO

r125.1 122 209 11 0.01 1.49

r125.1c 125 7501 207 4.12 48.22

r125.5 125 3838 1086 537.45 TO

ACM J. Exp. Algor., Vol. 24, No. 1, Article 1.9. Publication date: February 2019.

1.9:14 Korhonen, Berg, and Järvisalo

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 50 100 150 200 250 300

T
im

e
 (

s)

Instances solved

BT
IP

Fig. 3. Comparison of the empirical performance of different methods for minimum fill-in.

However, we will also report on the running times of the det-k-decomp [32] algorithm for decid-

ing if a hypergraph has a (non-generalized, standard) hypertree decomposition of width at most

k , thus solving a more restricted variants of the actual problems of generalized and fractional

hypertreewidth.
3

BB-ghw is an algorithm for computing the generalized hypertreewidth of a hypergraph G by

branch-and-bound search over elimination orderings of the primal graph Prim(G) of G. Each node

in the search tree corresponds to a partial elimination ordering of Prim(G). The tree is pruned
by computing a lower bound on GHTW(G) using the lower bound on TW(Prim(G)) and exactly

solving an integer program.

A hypertree decomposition is a generalized hypertree decomposition ((T G, {X1, . . . ,Xn }), {λ
1, . . . , λn })

in which each edge cover λi satisfies λi (e) = 0 for all edges e for which e \ Xi , ∅. The algorithm
det-k-decomp decides whether a hypergraph has a (non-generalized) hypertree decomposition of

width at most k by recursively branching on a separator of the graph. The hypertree decomposition

is constructed recursively by branching on a separator of the graph. We use det-k-decomp to

compute the hypertreewidth of a hypergraph G by linearly searching for the smallest k for which G

has a hypertree decomposition of width at most k . For a fixed k , det-k-decomp runs in polynomial

time, with the polynomial depending on k .
As benchmarks, we used the 265 hypertreewidth instances available at https://www.dbai.tuwien.

ac.at/proj/hypertree/downloads.html [28]. A per-instance time limit of 1 h was enforced on all

approaches.

An overview of the results is presented in Figure 4, here using log scale for better readability.

For generalized hypertreewidth, Triangulator solved 38 instances, while the directly comparable

BB-ghw solved 27. Solving the fractional hypertreewidth problem appears more time-consuming

than solving generalized hypertreewidth for Triangulator, with 33 instances solved for fractional

treewidth. The det-k-decomp algorithm for (non-generalized) hypertreewidth solves 34 instances,

less that Triangulator for generalized hypertreewidth.

3
In general, FHTW(G) ≤ GHTW(G) ≤ HTW(G).

ACM J. Exp. Algor., Vol. 24, No. 1, Article 1.9. Publication date: February 2019.

https://www.dbai.tuwien.ac.at/proj/hypertree/downloads.html
https://www.dbai.tuwien.ac.at/proj/hypertree/downloads.html

An Experimental Evaluation of the Bouchitté–Todinca Algorithm 1.9:15

Table 2. Running times of Triangulator (BT) and BB-ghw for generalized hypertreewidth (GHTW), the BT
algorithm for fractional hypertreewidth (FHTW), and det-k-decomp for (non-generalized) hypertreewidth
(HTW). Here |V | and |E | are the numbers of vertices and edges of the hypergraph, respectively, and |E ′ | is
the number of edges in the primal graph. The columns GHTW, FHTW, and HTW give the actual widths for
the individual instances as determined by the algorithms.

Time (seconds)
GHTW FHTW HTW

Instance |V | |E | |E′ | GHTW FHTW HTW BT BB-ghw BT det-k-decomp
adder_15 106 75 195 2 2.00 2 0.01 0.07 0.01 0.02

adder_25 176 125 325 2 2.00 2 0.01 0.09 0.02 0.03

adder_50 351 250 650 2 2.00 2 0.01 0.73 0.19 0.08

adder_75 526 375 975 2 2.00 2 0.02 1.41 0.11 0.17

adder_99 694 495 1287 2 2.00 2 0.02 TO 0.15 0.29

atv_partial_system 125 88 256 3 - 3 21.57 0.07 TO 1.97

b01 47 45 134 5 4.67 - 3.58 TO 36.76 TO

b02 27 26 72 3 3.00 3 0.06 0.02 0.69 0.03

b06 50 48 143 4 4.00 4 1.39 TO 12.18 38.35

bridge_15 137 135 285 2 - 2 20.27 TO TO 0.03

bridge_25 227 225 475 2 - 2 193.62 TO TO 0.06

bridge_50 452 450 950 - - 2 TO TO TO 0.21

bridge_75 677 675 1425 - - 2 TO TO TO 0.46

bridge_99 893 891 1881 - - 2 TO TO TO 0.81

clique_10 45 10 360 5 5.00 5 1.89 TO 10.82 0.05

clique_15 105 15 1365 - - 8 TO TO TO 52.25

dubois20 60 160 118 2 2.00 2 0.73 0.07 4.32 0.04

dubois21 63 168 124 2 2.00 2 0.54 0.07 2.90 0.04

dubois22 66 176 130 2 2.00 2 1.00 0.09 4.99 0.04

dubois23 69 184 136 2 2.00 2 1.06 0.08 5.68 0.04

dubois24 72 192 142 2 2.00 2 1.27 0.11 7.45 0.05

dubois25 75 200 148 2 2.00 2 1.50 0.12 7.78 0.05

dubois26 78 208 154 2 2.00 2 1.33 0.12 6.53 0.05

dubois27 81 216 160 2 2.00 2 1.53 0.09 7.80 0.06

dubois28 84 224 166 2 2.00 2 2.84 0.19 15.28 0.06

dubois29 87 232 172 2 2.00 2 3.31 0.12 19.95 0.06

dubois30 90 240 178 2 2.00 2 3.26 0.19 15.81 0.07

dubois50 150 400 298 2 2.00 2 23.79 0.44 87.55 0.16

dubois100 300 800 598 2 - 2 767.99 0.74 TO 0.58

grid2d_10 50 50 161 4 - 4 413.40 TO TO 41.51

grid3d_4 32 32 156 5 4.50 5 6.22 TO 123.42 424.74

grid4d_3 41 40 272 6 - - 1276.95 TO TO TO

grid5 25 40 40 3 3.00 3 0.38 242.31 3.03 0.08

hole6 42 133 231 7 - - 48.27 0.20 TO TO

hole7 56 204 364 8 - - 1695.22 0.55 TO TO

hole8 72 297 540 9 - - TO 1.19 TO TO

ii8a1 66 186 447 7 - - 1156.25 TO TO TO

jnh1 100 850 4391 - 11.14 - TO TO 596.94 TO

jnh201 100 800 4323 - 11.16 - TO TO 795.68 TO

jnh301 100 900 4450 - 11.16 - TO TO 467.89 TO

jnh305 100 900 4374 - 11.36 - TO TO 670.09 TO

jnh310 100 900 4358 - 11.46 - TO TO 737.49 TO

NewSystem1 142 83 329 3 3.00 3 3.51 TO 18.50 2.07

NewSystem2 345 198 799 3 - 3 155.15 TO TO 58.54

s27 17 13 29 2 2.00 2 0.01 0.01 0.01 0.01

uf20-01 20 91 147 6 5.33 - 0.55 1.44 0.09 TO

uf20-050 20 91 158 6 5.67 - 0.25 0.38 0.06 TO

uf20-099 20 91 147 6 5.33 - 0.25 2.08 0.08 TO

ACM J. Exp. Algor., Vol. 24, No. 1, Article 1.9. Publication date: February 2019.

1.9:16 Korhonen, Berg, and Järvisalo

 0.01

 0.1

 1

 10

 100

 1000

 0 5 10 15 20 25 30 35 40

T
im

e
 (

s)

Instances solved

BT / GHTW
BB / GHTW
BT / FHTW

det-k-decomp / HTW

Fig. 4. Comparison of approaches for hypergraph measures.

Amore detailed listing of the results for each instance solved by at least one of the approaches (as

the respective problem variant) is presented in Table 2, with the faster running time of Triangulator

and BB-ghw reported in boldface for each instance for the generalized hypertreewidth problem.

We observe that Triangulator is consistently competitive with BB-ghw; BB-ghw is faster mainly on

instances on which Triangulator also takes only a few seconds at most.

5.5 Total Table Size
Finally, considering total table size, we compare the performance of Triangulator with that of the

recently proposed extended depth-first search (EDFS) algorithm [41]. EDFS is an extension of a

depth-first search algorithm [47] based on a branch-and-bound search over vertex elimination

orderings while efficiently maintaining the set of maximal cliques of a partially triangulated graph.

The set of maximal cliques is maintained for computing the total table size of the partial solution,

which is then used for pruning the search space. The EDFS algorithm improves the basic depth-first

search algorithm by introducing a new maximal clique maintenance algorithm and a new rule for

pruning elimination orderings that lead to identical triangulations.

As total table size benchmarks, we used Bayesian networks from the standard bnlearn Bayesian

Network Repository, following [41]. Version 8 of the Java Virtual Machine was used for running

the EDFS algorithm. A per-instances time limit of 2 hours was enforced on the algorithms.

Detailed results are presented in Table 3. We observe that Triangulator is clearly competitive,

exhibiting faster running times for each instance solved by the approaches.

6 CONCLUSIONS
The BT algorithm originally proposed by Bouchitté and Todinca for the treewidth and minimum

fill-in problems yields good exponential-time algorithms for various graph optimization problems

where the underlying goal is to find an optimal graph triangulation (under different notions of

optimality).While there has been noticeable interest in extensions and variations of the BT algorithm

in terms of theoretical analysis, there are few reported works on the implementation and empirical

ACM J. Exp. Algor., Vol. 24, No. 1, Article 1.9. Publication date: February 2019.

An Experimental Evaluation of the Bouchitté–Todinca Algorithm 1.9:17

Table 3. Running times of Triangulator (BT) and EDFS for the total table size problem. Here |V | and |E | are
the number of vertices and edges, respectively, of the moralized Bayesian network. The column TTS gives the
total table size as determined by the algorithms.

Time (seconds)
Instance |V | |E | TTS BT EDFS
alarm 37 65 996 0.01 0.35

andes 223 626 - TO TO

barley 48 126 17140796 2.25 4458.14

child 20 30 642 0.01 0.31

diabetes 413 819 - TO TO

hailfinder 56 99 9406 0.08 3.28

hepar2 70 158 2617 0.01 0.42

insurance 27 70 23880 0.03 0.83

mildew 35 80 3400464 0.51 2.95

munin1 186 354 - TO TO

pathfinder 109 208 182641 0.08 3.04

pigs 441 806 - TO TO

water 32 123 3028305 0.15 2.80

win95pts 76 225 2684 0.22 10.88

evaluation of this class of algorithms. To bridge this gap, in this paper we empirically evaluated

our implementation of the BT algorithm for five well-known problems the algorithm can be

extended to. For each of the problems, we provided an empirical comparison of our open source BT

implementation called Triangulator with other algorithmic approaches proposed and implemented

for the distinct problem. The empirical results suggest that implementing and extending the

BT algorithm yields an empirically competitive approach to each of the considered problems.

Improvements to the procedure for enumerating potential maximal cliques as a current performance

bottleneck can be expected to yield further improvements in terms of empirical running times, and

is thereby an interesting direction for further work. The empirical results on the five problems

considered in this work also suggest that the BT algorithm could provide a practical solution

method for futher problems, for example by studying ways of making use of further extensions of

the approach [24] in practice.

ACKNOWLEDGMENTS
This work has been financially supported by Academy of Finland (grants 251170 COIN, 276412,

284591, and 312662) and the DoCS Doctoral Programme in Computer Science and the Research

Funds of the University of Helsinki.

REFERENCES
[1] Mario Alviano, Carmine Dodaro, and Francesco Ricca. 2015. A MaxSAT algorithm using cardinality constraints of

bounded size. In Proc. AAAI. AAAI Press, 2677–2683.
[2] Carlos Ansótegui, Fahiem Bacchus, Matti Järvisalo, and Ruben Martins. 2017. MaxSAT Evaluation 2017. http:

//mse17.cs.helsinki.fi/.

[3] Jeremias Berg and Matti Järvisalo. 2014. SAT-based approaches to treewidth computation: an evaluation. In Proc. ICTAI.
IEEE Computer Society, 328–335.

[4] David Bergman, Carlos H. Cardonha, André Augusto Ciré, and Arvind U. Raghunathan. 2016. On the minimum chordal

completion polytope. CoRR abs/1612.01966 (2016). http://arxiv.org/abs/1612.01966

[5] David Bergman and Arvind U. Raghunathan. 2015. A Benders approach to the minimum chordal completion problem.

In Proc. CPAIOR (Lecture Notes in Computer Science), Vol. 9075. Springer, 47–64.
[6] Anne Berry, Jean R. S. Blair, Pinar Heggernes, and Barry W. Peyton. 2004. Maximum Cardinality Search for Computing

Minimal Triangulations of Graphs. Algorithmica 39, 4 (2004), 287–298.

ACM J. Exp. Algor., Vol. 24, No. 1, Article 1.9. Publication date: February 2019.

http://mse17.cs.helsinki.fi/
http://mse17.cs.helsinki.fi/
http://arxiv.org/abs/1612.01966

1.9:18 Korhonen, Berg, and Järvisalo

[7] Anne Berry, Jean-Paul Bordat, and Olivier Cogis. 1999. Generating all the minimal separators of a graph. In Proc. WG
(Lecture Notes in Computer Science), Vol. 1665. Springer, 167–172.

[8] Umberto Bertele and Francesco Brioschi. 1972. Nonserial Dynamic Programming. Academic Press, Inc., Orlando, FL,

USA.

[9] Hans L Bodlaender. 1998. A partial k-arboretum of graphs with bounded treewidth. Theoretical Computer Science 209,
1 (1998), 1–45.

[10] Hans L. Bodlaender. 2005. Discovering treewidth. In Proc. SOFSEM (Lecture Notes in Computer Science), Vol. 3381.
Springer, 1–16.

[11] Hans L. Bodlaender and Fedor V. Fomin. 2005. Tree decompositions with small cost. Discrete Applied Mathematics 145,
2 (2005), 143–154.

[12] Hans L. Bodlaender, Fedor V. Fomin, Arie M. C. A. Koster, Dieter Kratsch, and Dimitrios M. Thilikos. 2012. On exact

algorithms for treewidth. ACM Transactions on Algorithms 9, 1, Article 12 (2012).
[13] Hans L Bodlaender, John R Gilbert, Hjálmtyr Hafsteinsson, and Ton Kloks. 1995. Approximating treewidth, pathwidth,

frontsize, and shortest elimination tree. Journal of Algorithms 18, 2 (1995), 238–255.
[14] Hans L. Bodlaender, Pinar Heggernes, and Yngve Villanger. [n. d.]. Faster Parameterized Algorithms for Minimum

Fill-in. Algorithmica 61, 4 ([n. d.]), 817–838.
[15] Hans L. Bodlaender and Arie M.C.A. Koster. 2006. Safe separators for treewidth. Discrete Mathematics 306, 3 (2006),

337–350.

[16] Vincent Bouchitté and Ioan Todinca. 2001. Treewidth and minimum fill-in: Grouping the minimal separators. SIAM J.
Comput. 31, 1 (2001), 212–232.

[17] Vincent Bouchitté and Ioan Todinca. 2002. Listing all potential maximal cliques of a graph. Theoretical Computer
Science 276, 1 (2002), 17–32.

[18] Gregory F. Cooper. 1990. The computational complexity of probabilistic inference using Bayesian belief networks.

Artificial Intelligence 42, 2-3 (1990), 393 – 405.

[19] Jessica Davies and Fahiem Bacchus. 2013. Exploiting the power of MIP solvers in MaxSAT. In Proc. SAT (Lecture Notes
in Computer Science), Vol. 7962. Springer, 166–181.

[20] Rina Dechter. 1999. Bucket elimination: A unifying framework for reasoning. Artificial Intelligence 113, 1-2 (1999),
41–85.

[21] Holger Dell, Thore Husfeldt, Bart M. P. Jansen, Petteri Kaski, Christian Komusiewicz, and Frances A. Rosamond. 2016.

The First Parameterized Algorithms and Computational Experiments Challenge. In Proc. IPEC (LIPIcs), Vol. 63. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 30:1–30:9.

[22] Holger Dell, Christian Komusiewicz, Nimrod Talmon, and Mathias Weller. 2018. The PACE 2017 Parameterized

Algorithms and Computational Experiments Challenge: The second iteration. In Proc. IPEC 2017 (LIPIcs). Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 30:1–30:12.

[23] Fedor V. Fomin, Dieter Kratsch, Ioan Todinca, and Yngve Villanger. 2008. Exact algorithms for treewidth and minimum

fill-in. SIAM J. Comput. 38, 3 (2008), 1058–1079.
[24] Fedor V. Fomin, Ioan Todinca, and Yngve Villanger. 2015. Large Induced Subgraphs via Triangulations and CMSO.

SIAM J. Comput. 44, 1 (2015), 54–87. https://doi.org/10.1137/140964801

[25] Fedor V. Fomin and Yngve Villanger. 2008. Treewidth computation and extremal combinatorics. In Proc. ICALP (Lecture
Notes in Computer Science), Vol. 5125. Springer, 210–221.

[26] Eugene C. Freuder. 1990. Complexity of K-tree structured constraint satisfaction problems. In Proc. AAAI. AAAI Press,
4–9.

[27] Masanobu Furuse and Koichi Yamazaki. 2014. A revisit of the scheme for computing treewidth and minimum fill-in.

Theoretical Computer Science 531 (2014), 66–76.
[28] Tobias Ganzow, Georg Gottlob, Nysret Musliu, and Marko Samer. 2005. A CSP hypergraph library. Technical Report

DBAI-TR-2005-50. Vienna University of Technology Institute of Information Systems (DBAI).

[29] Fǎnicǎ Gavril. 1974. The intersection graphs of subtrees in trees are exactly the chordal graphs. Journal of Combinatorial
Theory, Series B 16, 1 (1974), 47–56.

[30] Vibhav Gogate and Rina Dechter. 2004. A complete anytime algorithm for treewidth. In Proc. UAI. AUAI Press, 201–208.
[31] Georg Gottlob, Nicola Leone, and Francesco Scarcello. 2002. Hypertree decompositions and tractable queries. J.

Comput. System Sci. 64, 3 (2002), 579–627.
[32] Georg Gottlob and Marko Samer. 2009. A backtracking-based algorithm for hypertree decomposition. Journal of

Experimental Algorithmics 13, Article 1 (2009).
[33] Martin Grohe and Dániel Marx. 2014. Constraint solving via fractional edge covers. ACM Transactions on Algorithms

11, 1, Article 4 (2014).

[34] Rob Gysel. 2014. Minimal triangulation algorithms for perfect phylogeny problems. In Proc. LATA (Lecture Notes in
Computer Science), Vol. 8370. Springer, 421–432.

ACM J. Exp. Algor., Vol. 24, No. 1, Article 1.9. Publication date: February 2019.

https://doi.org/10.1137/140964801

An Experimental Evaluation of the Bouchitté–Todinca Algorithm 1.9:19

[35] Rob Gysel, Kristian Stevens, and Dan Gusfield. 2012. Reducing problems in unrooted tree compatibility to restricted

triangulations of intersection graphs. In Proc. WABI (Lecture Notes in Computer Science), Vol. 7534. Springer, 93–105.
[36] IBM ILOG. 2017. CPLEX optimizer 12.7.0. https://www.ibm.com/analytics/data-science/prescriptive-analytics/

cplex-optimizer

[37] Finn V. Jensen and Frank Jensen. 1994. Optimal junction trees. In Proc. UAI. Morgan Kaufmann Publishers Inc., 360–366.

[38] Sampath K. Kannan and Tandy J. Warnow. 1994. Inferring evolutionary history from DNA sequences. SIAM J. Comput.
23, 4 (1994), 713–737.

[39] Uffe Kjaerulff. 1990. Triangulation of graphs — algorithms giving small total state space. Research Report R-90-09.

Department of Mathematics and Computer Science, Aalborg University, Denmark.

[40] Steffen L. Lauritzen and David J. Spiegelhalter. 1988. Local computations with probabilities on graphical structures

and their application to expert systems. Journal of the Royal Statistical Society. Series B (Methodological) 50, 2 (1988),
157–194.

[41] Chao Li and Maomi Ueno. 2017. An extended depth-first search algorithm for optimal triangulation of Bayesian

networks. International Journal of Approximate Reasoning 80 (2017), 294–312.

[42] A Makhorin. 2001. GLPK-the GNU linear programming toolkit. https://www.gnu.org/software/glpk/

[43] Ruben Martins, Vasco M. Manquinho, and Inês Lynce. 2014. Open-WBO: A modular MaxSAT solver. In Proc. SAT
(Lecture Notes in Computer Science), Vol. 8561. Springer, 438–445.

[44] Dániel Marx. 2010. Approximating fractional hypertree width. ACM Transactions on Algorithms 6, 2, Article 29 (2010),
17 pages.

[45] Lukas Moll, Siamak Tazari, and Marc Thurley. 2012. Computing hypergraph width measures exactly. Inform. Process.
Lett. 112, 6 (2012), 238–242.

[46] Assaf Natanzon, Ron Shamir, and Roded Sharan. 2000. A polynomial approximation algorithm for the minimum fill-in

problem. SIAM J. Comput. 30, 4 (2000), 1067–1079.
[47] Thorsten J. Ottosen and Jirí Vomlel. 2012. All roads lead to Rome—New search methods for the optimal triangulation

problem. International Journal of Approximate Reasoning 53, 9 (2012), 1350–1366.

[48] Neil Robertson and Paul D. Seymour. 1986. Graph minors. II. Algorithmic aspects of tree-width. Journal of Algorithms
7, 3 (1986), 309–322.

[49] Donald J. Rose. 1970. Triangulated graphs and the elimination process. J. Math. Anal. Appl. 32, 3 (1970), 597–609.
[50] Donald J. Rose, R. Endre Tarjan, and George S. Lueker. 1976. Algorithmic Aspects of Vertex Elimination on Graphs.

SIAM J. Comput. 5, 2 (1976), 266–283.
[51] Werner Schafhauser. 2006. New heuristic methods for tree decompositions and generalized hypertree decompositions.

Master’s thesis. Vienna University of Technology.

[52] Hisao Tamaki. 2017. Positive-instance driven dynamic programming for treewidth. In Proc. ESA (Leibniz International
Proceedings in Informatics (LIPIcs)), Vol. 87. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 68:1–68:13.

[53] Robert E. Tarjan. 1985. Decomposition by clique separators. Discrete Mathematics 55, 2 (1985), 221–232.
[54] Robert E. Tarjan and Mihalis Yannakakis. 1984. Simple linear-time algorithms to test chordality of graphs, test acyclicity

of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM J. Comput. 13, 3 (1984), 566–579.

Received March 2018; revised October 2018; accepted December 2018

ACM J. Exp. Algor., Vol. 24, No. 1, Article 1.9. Publication date: February 2019.

https://www.ibm.com/analytics/data-science/prescriptive-analytics/cplex-optimizer
https://www.ibm.com/analytics/data-science/prescriptive-analytics/cplex-optimizer
https://www.gnu.org/software/glpk/

	Abstract
	1 Introduction
	2 Preliminaries
	3 Problems Computable using the BT algorithm
	4 BT algorithm
	4.1 Decomposing Graph Parameter Computation
	4.2 Detailed Description

	5 Experimental Evaluation
	5.1 Implementation Details
	5.2 Treewidth
	5.3 Minimum Fill-In
	5.4 Generalized and Fractional Hypertreewidth
	5.5 Total Table Size

	6 Conclusions
	Acknowledgments
	References

