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Abstract In addition to their core explanatory and predictive assumptions, scientific models 

include simplifying assumptions, which function as idealizations, approximations, and 

abstractions. There are methods to investigate whether simplifying assumptions bias the results of 

models, such as robustness analyses. However, the equally important issue – the focus of this 

paper – has received less attention, namely, what are the methodological and epistemic strengths 

and limitations associated with different simplifying assumptions. I concentrate on one type of 

simplifying assumption, the use of mega parameters as abstractions in ecological models. First, I 

argue that there are two kinds of mega parameters qua abstractions, sufficient parameters and 

aggregative parameters, which have gone unnoticed in the literature. The two are associated with 

different heuristics, holism and reductionism, which many view as incompatible. Second, I will 

provide a different analysis of abstractions and the associated heuristics than previous authors. 

Reductionism and holism and the accompanying abstractions have different methodological and 

epistemic functions, strengths, and limitations, and the heuristics should be viewed as providing 

complementary research perspectives of cognitively limited beings. This is then, third, used as a 

premise to argue for epistemic and methodological pluralism in theoretical ecology. Finally, the 

presented taxonomy of abstractions is used to comment on the current debate whether mechanistic 

accounts of explanation are compatible with the use of abstractions. This debate has suffered from 

an abstract discussion of abstractions. With a better taxonomy of abstractions the debate can be 

resolved.  

Key words: abstraction, aggregation, holism, mechanism, pluralism, reductionism, 

robustness, sufficient parameters  

 

 

1 Introduction 

 

In addition to their core explanatory or predictive assumptions, models make use 

of simplifying assumptions, which function as idealizations, approximations, and 

abstractions. Simplifying assumptions make false, unrealistic, or inaccurate 

presumptions of target systems and/or core assumptions.1 

The function of simplifying assumptions is to facilitate the modeling and 

understanding of phenomena. However, the risk is that simplifying assumptions 

bias the results of models. Robustness analyses provide a method to investigate 

whether these “dubious details” affect the results of models (Levins 1966; 

Weisberg and Reisman 2008; Kuorikoski et al. 2010; Raerinne 2013b).  

Despite the fact that there are methods to investigate whether simplifying 

assumptions have effects on the results of models and despite extensive discussion 

on these methods, an equally important issue – the focus of this paper – has 

                                                           
1 Dividing modeling assumptions into core and simplifying assumptions is simplistic, but accurate 

enough for the purposes of this paper: I shall be concerned with one type of simplifying 

assumption only, the use of abstractions in models. Moreover, and due to the reason just 

mentioned, I shall not discuss how abstractions differ from other simplifying assumptions. This 

topic is beyond the scope of this paper.  For more fine-grained taxonomies of modeling 

assumptions, see Musgrave (1981), Mäki (2000), Weisberg and Reisman (2008), and Kuorikoski 

et al. (2010). 
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received less attention, namely, what are the methodological and epistemic 

strengths and limitations associated with different simplifying assumptions? Thus, 

rather than investigating whether simplifying assumptions have effects on the 

results of models simpliciter,  as in robustness analyses, I investigate how and 

under what conditions the simplifying assumptions are – or are not – useful.  

I focus on one variety of simplifying assumption, the use of parameters as 

abstractions in models. The parameters I discuss are called by different terms in 

the literature, such as macro, mega, gross-level, or summary parameters or 

variables. To avoid a plurality of terms, I will employ the term mega parameter.2 I 

argue that there are two kinds of mega parameters qua abstractions that are 

covered by the term: sufficient parameters and aggregative parameters. The two 

are associated with different heuristics, holism and reductionism, which many 

view as incompatible, such as being explanatory rivals, contrary, or even 

contradictory (see Levins 1998, 2006 and Winther 2006 below).  

Aggregation is accompanied by reductionistic research strategies (Wimsatt 

1986), whereas sufficient parameters are associated with holistic research 

strategies (Lane et al. 1976).  The two have different functions as abstractions and 

different sources of errors as well.  

In the case of a sufficient parameter, one is investigating whether different 

lower-level or finer-scale causes have similar or robust effects. If they have 

similar effects, then a modeler forms a sufficient parameter, which is used in 

models instead of different specific causes.  Sufficient parameters function as 

abstract, general, or higher-level causal or explanatory surrogates for different 

lower-level or finer-scale causes or mechanisms that have robust or similar effects 

in models of a common phenomenon.  If a result is robust, the job of identifying 

the actual cause or mechanism can be irrelevant for some modeling purposes. The 

examples of sufficient parameters discussed in this paper include resources and 

environmental heterogeneity (see section 2).  

  In aggregation, one is integrating different lower-level or finer-scale causal 

components with different or similar effects to extrapolate what their combined 

effect would be. A modeler forms a parameter, which combines the effects of 

different causal components into a single monadic coarse scale component, the 

aggregative parameter, which involves abstracting away the details of the 

organization of the system. The aggregative parameter is then used in a model as a 

causal or explanatory surrogate for the different causal components and their 

organization abstracted away in the parameter.  The example of an aggregative 

parameter discussed in this paper is the total predation response (see section 3). 

Levins (1998, 2006) and Winther (2006) view different research heuristics 

as contradictory and their synthesis as the true or correct perspective. I will 

provide a different analysis of abstractions and the associated heuristics. My 

argument for the complementarity of different abstractions and heuristics is 

epistemic and methodological. Another difference between my paper and previous 

authors is that the authors have failed to distinguish between sufficient and 

aggregate parameters, which are different as abstractions.  

                                                           
2 Many examples of mega parameters are variables (e.g. the total predation response in section 3). 

It is the difference between different simplifying assumptions qua abstractions, rather than the 

difference between parameters and variables, that is important in this context. However, the 

discussion of abstractions is historically connected to parameters by Levins and later authors, so I 

use this term even in the case of variables to avoid unnecessary terminological complications. 
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I use reductionism to refer to the call for mechanistic models and 

explanations for ecological phenomena rather than the call for Nagelian theory 

reduction of ecology to more basic sciences. This is how ecologists understand the 

difference between holism and reductionism as modeling heuristics.3  Note that 

the two have different goals. Nagelian theory reduction amounts to explaining the 

higher-level laws and phenomena in terms of lower-level laws, but not to 

epistemic or methodological elimination of higher-level laws, theories, or 

phenomena. However, mechanistic reductionism in its extreme form (e.g. 

“ecological systems are nothing but mere aggregates”) would amount to epistemic 

and methodological elimination in and of ecology. That is, it would amount to the 

replacement, not reduction, of ecological theories. I am not aware of an author 

who has explicitly defended an extreme version of mechanistic reductionism in 

ecology.  Schoener (1986) comes close to it, even though he erroneously thinks of 

himself as defending Nagelian theory reduction in ecology (see section 3). 

I shall be concerned with models that are used to generate explanations and 

predictions (see Odenbaugh 2005 for other functions of ecological models). There 

is a current debate whether – and/or to what extent – mechanistic accounts of 

explanation are compatible with the use of abstraction, that is, whether 

mechanistic accounts are committed to the thesis that de-abstracting or adding 

more details to an explanation always or typically makes the explanation better 

(see Machamer et al. 2000, 15-18; Kaplan 2011, 347-348; Levy and Bechtel 2013; 

Boone and Piccini 2016, 1517-1519; and Miłkowski 2016). This debate has 

suffered from an abstract discussion of abstractions. As I will show, there are 

different kinds of abstractions, which are utilized by both holists and 

reductionists. With a functional taxonomy of abstractions, the debate can thus be 

resolved. Both adding certain kinds of details (i.e. de-abstracting) and omitting 

certain other kinds of details (i.e. abstracting) can improve mechanistic 

explanations. 

In sections 2 and 3, I discuss methodological functions, strengths, and 

limitations associated with sufficient and aggregative parameters. In section 4, I 

argue for epistemic and methodological pluralism in theoretical ecology. 

Mechanistic and holistic models can both be true of a common phenomenon and 

be complementary, but have different epistemic strengths and limitations. 

Moreover, even if they applied to different phenomena, reductionism and holism 

can nevertheless be viewed as complementary. The two have different 

methodological strengths and limitations; and we often need another modeling 

heuristic to see the limitations of our own heuristic. Previous accounts viewing 

different heuristics as incompatible perspectives, such as Levins’ (1998, 2006) 

and Winther’s (2006), seem to lack resources to argue for the above kind of 

pluralisms, despite what the authors suggest.  

A case study of this paper is concerned with predation and the case is 

connected to two mega parameters discussed in the paper, namely, resources and 

total predation response. Other cases concerning mega parameters include 

competition theory and its mega parameters, such as competition coefficients, 

Tilman’s R*, and environmental heterogeneity; selection, drift, speciation, and 

dispersal (Vellend 2010); the selection coefficient in population genetics and 

fitness (Cohen 1985); and body size in allometries and scaling laws. I have 

                                                           
3 Some notable defenders of holistic models in ecology include MacArthur, Lotka, Volterra, May, 

and Levins. Some notable defenders of reductionistic models in ecology include Schoener, Tilman, 

and Grimm.  
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examined some of the latter cases of mega parameters elsewhere (Raerinne 2013a; 

Raerinne and Baedke 2015).  

 

 

2 Holism and Sufficient Parameters 

 

Robustness analysis is a search for similar or convergent results of different 

models of a common phenomenon (Levins 1966; Weisberg and Reisman 2008; 

Kuorikoski et al. 2010; Raerinne 2013b).  In robustness analysis, the results of a 

model are compared with the results of different models of the same phenomenon. 

If the model and its contrasts produce similar or convergent results, then we have 

a robust result. 

One problem in ecology is that there are different causes or mechanisms 

(C1, C2, and C3) at lower levels or finer scales that have similar or convergent 

results (Es) and we do not know which of them is the actual cause or mechanism 

of a phenomenon. An advantage of having robust results of models that model 

different causes with similar effects is that their robustness counts as a warrant to 

use unifying, abstract, and simple models of complex phenomena. In lieu of 

building a model for every case where different causes or mechanisms could be at 

work, a modeler builds a model that is simple and abstract but robust in capturing 

the common effects of models. One way to build such models is by constructing a 

sufficient parameter into a model (Levins 1966; Lane et al. 1976). 

Levins (1966, 429) clarified sufficient parameters as follows:  

 

The sufficient parameters may arise from the combination of results of more 

limited studies. In our robust theorem on niche breadth [i.e. “in an uncertain 

environment species will evolve broad niches and tend toward 

polymorphism but a certain and diverse environment leads to 

specializations”] we found that temporal variation, patchiness of the 

environment, productivity of the habitat, and mode of hunting could all have 

similar effects, and they did this by way of their contribution to the 

uncertainty of the environment. Thus uncertainty emerges as a sufficient 

parameter. 

The sufficient parameter is a many-to-one transformation of lower-

level phenomena. Therein lies its power and utility, but also a new source of 

imprecision. The many-to-one nature of “uncertainty” prevents us from 

going backward. If either temporal variation or patchiness or low 

productivity leads to uncertainty, the consequences of uncertainty alone 

cannot tell us whether the environment is variable or patchy or 

unproductive. Therefore we have lost information. [Emphasis added.] 

 

 

Wimsatt (1980, 304-305) developed the idea from a similar angle:  

 

A sufficient parameter is thus an index which, either for most purposes, or 

merely for the purposes at hand, captures the effect of variations in the 

lower level variables (usually only for certain ranges of the values of these 

variables) and can thus be substituted for them in the attempt to build 

simpler models of the upper level phenomena. It is related to the notion of a 

supervenient property widely discussed in the recent philosophical 
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literature… except that whereas the latter involves a deductive and therefore 

exact relation between lower and upper level properties, the notion of a 

sufficient parameter is broader, involving a relation which is inexact, 

approximate and usually conditional. A sufficient parameter is a heuristic 

tool for dealing with complexity... The notion of supervenience … may be 

regarded as a kind of limiting case of a sufficient parameter, but it is I would 

argue, a relation which is seldom is ever found in the models of the science. 

Sufficient parameters, however, are frequent tools of scientists. 4 

 

 

In the case of a holistic sufficient parameter one is thus investigating whether 

different lower-level or finer-scale causes (C1, C2, or C3), have similar effects (Es). 

If they have similar effects, then a modeler builds a causal or explanatory proxy 

(Cabs) that abstracts away the differences between alternative or back-up causes 

(C1, C2, or C3) with similar effects (Es). This abstract sufficient parameter (Cabs) 

with similar effects (Es) is then used in models and equations instead of different 

specific causes (C1, C2, or C3). In other words, lower-level or finer-scale causes 

(C1→Es), (C2→Es), and (C3→Es) are replaced with an abstract causal proxy 

(Cabs→Es) in a holistic model.  Sufficient parameters function as abstract or 

higher-level causal or explanatory surrogates for different lower-level or finer-

scale causes or mechanisms that have similar effects in models of a phenomenon.   

One problem in using sufficient parameters is that causes have similar, but 

not identical, effects, and this information is lost when using the causal proxy 

(Cabs→Es).  At the same time, the abstract and higher-level relationship (Cabs→ Es) 

is stable and unifying in the sense that it does not matter which of the individual 

causes is present (C1, C2, or C3), since a similar effect (Es) will follow in different 

background conditions (back-up causes), with regard to different systems 

(different operative causes), and so on.  

An example of a sufficient parameter is environmental uncertainty in 

Levins’ (1966) robust theorem concerning niche breadth. There are different 

instances of environmental uncertainty, such as temporal variation of the 

environment (C1) and patchiness of the environment (C2), which have similar 

effects on species, namely, species tend to evolve broad niches and tend toward 

polymorphism (Es). The robustness of the results of different instances of 

uncertainty of environment in different models allows the use of environmental 

uncertainty (Cabs) as a sufficient parameter in an abstract model of this 

phenomenon.  Levins (1966) establishes this  with three models, which make 

                                                           
4 It is an interesting research topic what the connection between sufficient parameters and different 

concepts of supervience is, e.g. what is the minimum concept of supervenience (or emergency) 

that is presumed by sufficient parameters? This topic needs to be investigated elsewhere,  since it 

is beyond the scope of this paper. At the same time, this topic is less relevant to the topics of the 

paper than might at first appear. First, it is not constitutive determination relations, such as 

supervenience or emergence (for the difference and connection between the two, see Kim 2006), 

which are typically conceived of as synchronic relations that are important in the given context, 

but causal and mechanistic relations, which involve synchronic, diachronic, and intensional 

relations. Second, and related to the first point, sufficient parameters are not introduced or used as 

a metaphysical determination relation by scientists, but sufficient parameters are explanatory and 

predictive tools of scientists to deal with complex systems, which is Wimsatt’s point in the passage 

quoted above (see also my discussion in section 4). Third, reference to supervenience in this 

context might not be helpful, since this relation is used in diverse ways in the literature and, more 

importantly, there are qualms about the usefulness of supervenience as a metaphysical 

determination relation (see Horgan 1993).     
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different assumptions concerning species, their fitness, genetics, and so on. Since 

the three models have the common result referred to, this justifies using 

environmental uncertainty as a sufficient parameter in a holistic or general model 

of this phenomenon.  

A model with a sufficient parameter shows how different modeled causes or 

mechanisms that have similar results can be presented in a unifying theoretical 

framework (Cabs→Es) which abstracts away the differences between causes or 

mechanisms. If a result is robust, the job of identifying the actual cause or 

mechanism (C1, C2, or C3) can be irrelevant for some modeling purposes.  

Unification by means of sufficient parameters is a beneficial feature of 

model-based explanations and predictions. Unification provides us with 

conceptual and cognitive economy, coherence, and systematization of knowledge. 

However, nothing in the above presupposes that for explanations the identification 

of the actual cause or mechanism has become redundant, owing to the robustness 

of the results of models. It is here where “lies its power and utility, but also a new 

source of imprecision,” as Levins expressed the dual nature of sufficient 

parameters in the passage quoted above.  

The above imprecision concerning the actual causes and mechanisms of a 

phenomenon in using sufficient parameters is one of the main motivations behind 

mechanistic or reductionist models in the literature (Tilman 1977, 1980, 1990; 

Schoener 1986). The defenders of mechanistic models want to expose the actual 

causes and mechanisms behind phenomena. Another reason is that mechanistic 

models can sometimes be used to provide more accurate predictions and 

explanations than holistic models of the same phenomenon with sufficient 

parameters.  

For a holist, a resource is valid as a sufficient parameter (Cabs), because 

resources have similar effects on population growth rates (Es): “[a] resource is a 

factor which, through some range of availabilities, leads to higher population 

growth rates as its availability is increased and which is consumed, in the broad 

sense, by the population” (Tilman 1977, 363).5 However, Tilman (1980, 1986) has 

shown that the abstraction can be unpacked into distinct and more detailed causal 

factors (C1, C2, ...). Different resources have the similar general effect (Es) 

mentioned in that they have a positive effect on the population growth rates when 

there is a certain amount of a resource to be consumed. At the same time, different 

                                                           
5 As noted by an anonymous referee, the above definition of resources – which was meant to apply 

to ecology only – was taken from Tilman. I do not see any contradiction in the fact that Tilman is 

not a holist, but a reductionist, and that his definition can be used as a sufficient parameter of 

resources by holists. In fact, Tilman needs a working definition of abstract resources if he wants to 

de-abstract this definition with his mechanistic taxonomy of resources (see below). Furthermore, 

this mechanistic taxonomy of resources, as I argue later on, can be used by holists as well to see 

when their abstract definition of resources as a sufficient parameter is not valid. The main thesis of 

this paper is that holism and reductionism are not contradictory but complementary as heuristics. If 

the reader is dissatisfied with this abrupt discussion of resources, as the anonymous referee was, let 

me motivate the discussion. First, there probably are not many other concepts in ecology that are 

theoretically more important than resources. Even most definitions of niche presume a definition 

of resources, especially the Hutchinsonian concept; and consequently, resources are a central 

concept in the context of competition theory as well. Second, other definitions of resources do 

exist in the literature, but Tilman’s mechanistic taxonomy of resources is currently among the best 

and most workable of definitions, even though it includes missing items and perhaps even 

inconsistencies. Finally, I utilize Tilman’s mechanistic taxonomy of resources – his de-abstraction 

of a sufficient parameter – in section 3 to show how an abstraction by reductionists can also 

founder (see the total predation response in section 3).  
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resources (C1, C2, ...) have different kinds of specific effects on population growth 

rates as well, which, in turn, have different effects on the outcome of interspecific 

competition (see below) and consumer-resource interactions (see total predation 

response in section 3).  

Tilman (1980, 1986) has provided us with a mechanistic taxonomy of 

resources, which de-abstracts the abstract sufficient parameter used by holists. 

What follows is my paraphrasing of Tilman’s mechanistic taxonomy of resources. 

Readers interested in original definitions should consult Tilman’s papers.  Let (C1) 

and (C2) stand for two different resources. There are three main types of 

resources: essential, substitutable, and hemi-essential resources.  Resources are 

essential when both (C1) and (C2) are required for the growth of a population, that 

is, (C1) and (C2) are necessary, but neither (C1) nor (C2) alone is sufficient for 

growth. In the case of substitutable resources, (C1) and (C2) are sufficient, but 

neither (C1) nor (C2) is necessary for growth; that is, either (C1) or (C2) is needed 

for growth. Finally, in the case of hemi-essential resources, (C1) alone can be both 

necessary and sufficient for growth, but (C2) can at least partly substitute for (C1).   

For the purposes of this paper, the more interesting cases are the different 

kinds of resources falling under the rubric of substitutable resources, namely, 

perfectly substitutable, complementary, antagonist, and switching resources (see 

below and  discussion in sections 3 and 4). (C1) and (C2) are perfectly 

substitutable resources if (C1) can be substituted for (C2) and vice versa. (C1) and 

(C2) are complementary resources in the case of positive emergence: when (C1) 

and (C2) are consumed together, their combined effect on growth is greater than 

what the additive sum of (C1) and (C2) would suggest when (C1) and (C2) are not 

consumed together. (C1) and (C2) are antagonist resources in the case of negative 

emergence: when (C1) and (C2) are consumed together, their combined effect on 

growth is smaller than what the additive sum of (C1) and (C2) would suggest when 

(C1) and (C2) are not consumed together. (C1) and (C2) are switching resources 

when organisms can switch between (C1) and (C2) when (C1) or (C2) has a more 

positive effect on the growth. When providing more accurate and specific 

predictions, the differences between the mentioned resources matter, for instance, 

in the context of competition between species for limited resources.  

In a homogeneous environment, a necessary condition for the stable co-

existence of two species with similar niches competing for two essential limiting 

resources is that each species consumes relatively more of the resource that is 

most limiting to its own growth, i.e. species should be competitively dominant 

vis-à-vis the resource that is the most limiting to the species.  However, this is not 

a necessary condition for the coexistence of competitor species for other types of 

resources, such as substitutable or hemi-essential resources (Tilman 1980). In a 

spatially heterogeneous environment, there is no simple limit to the number of 

coexisting species competing for two (hemi-)essential resources, whereas the 

number of coexisting species competing for switching or antagonist resources 

cannot exceed the number of their limiting resources (Tilman 1986).  We thus get 

more system-specific, accurate, and testable predictions and explanations from 

models when the abstraction, such as resource (Cabs), is de-abstracted or reified 

into distinct and detailed causal factors (C1, C2, or C3).  

However, the moral is not that holists are sloppier in explanations (or 

predictions) than reductionists or mechanists. For a holist, similarity rather than 

identity of effects of different causes is enough to justify the abstraction, because 

they aim at general and unifying explanations, whereas mechanistic modelers aim 
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at more fine-grained or precise explanations that are system specific. The 

difference is between favoring different kinds of dimensions of explanatory power 

(see section 4). 

Mechanistic models thus have advantages over holistic models in being able 

to produce more exact and testable explanations and predictions. The other side of 

the coin is that mechanistic models lose generalizability in that the class of 

phenomena with which they are concerned may be limited, i.e. they become case 

studies of narrow scope. Moreover, when modeling a phenomena with lower-level 

causal components or finer-scale details, the models tend to become complex, 

intractable, involve many functional and interacting components with a large 

number of parameters, are hard to comprehend, and so on. To avoid these pitfalls, 

reductionists make use of abstractions as well, which I call aggregative 

parameters.  

 

 

3 Reductionism and Aggregative Parameters 
 

In aggregation, one integrates or merges different lower-level or finer-scale causal 

components with different or similar effects to extrapolate what their combined 

effect would be. To do so, a modeler forms a parameter, which combines the 

effects of different causal components into a single monadic coarse scale 

component, the aggregative parameter, which involves abstracting away the 

details of the organization of the system.  In other words, with an aggregative 

parameter one builds a composite abstraction of different causal components (Ci)  

with different or similar effects (Ei),  using a function that combines the effects of 

different components together into one causal proxy (C1+n) which has a compound 

effect (E1+n). An aggregative and abstract function or relation (C1+n→E1+n) is then 

used in mechanistic models. Given that different components or forces are 

typically responsible for the system-level properties in ecology, many would 

welcome a synthesis of ecology by means of aggregative parameters (cf. Schoener 

1986 and Vellend 2010).  

There are general problems with aggregation. Different individual causal 

components (Ci), might fail to be operative in different background conditions. 

Thus, their combination (C1+n) is not stable or projectable if the background 

conditions change. Addition of components and their subtraction typically have 

the result that a qualitatively different compound effect than (E1+n) is produced. 

The organization of how components are put together affects the system behavior.  

That is, the organization of components matter, and changes in organization can 

produce emergent effects. In general, rearrange, substitute, add, or subtract some 

of the individual components (Ci) and the compound effect (E1+n) might be 

qualitatively different (for more detailed cases, see below and Wimsatt 1986).  

There have been heated debates as to what kind of heuristics ecological 

modelers should favor. These debates are related to the issue of what kinds of 

abstractions ecologists should use in their models. In his defense of mechanistic or 

reductionistic ecological models over and above traditional holistic models, 

Schoener suggests that a strong form of mechanistic reductionism holds in 

ecology; namely, that the higher-level properties of ecological systems are 

aggregates of their components’ properties in isolation:  
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The phenomena of interest in population ecology are aggregate properties of 

the individuals composing the population; examples are age structure, sex 

ratios, growth rates, and reproductive schedules. Community ecology deals 

with a group of populations in some place. Here the aggregate properties of 

interest concern the various species populations: abundance distributions, 

species diversity, species-turnover rates, and so on. (Schoener 1986, 91.) 

 

 

As a general or unqualified thesis, Schoener’s claim that the properties of 

ecological systems are aggregates of their components’ properties in isolation is 

implausible. In fact, as a general empirical claim it is false. Consider predation, 

which is a causal factor that has an effect on prey mortality and population density 

– a positive causal mortality factor of prey and thus a negative (regulatory) causal 

factor of prey’s population density.  Predation is an abstraction of the components 

of predator-prey systems.6  

Holling (1959) is a classical study on predation focusing not only on the 

components of predation, but on how the components make up and interact to 

produce a total predation response. The total predation response expresses the 

total proportion of mortality rate of prey by its predators, determining whether the 

                                                           
6 How can I claim that predation is both a causal factor and an abstraction? I thank an anonymous 

referee for pointing out this issue to me. As has been argued by Reisman and Forber (2005), 

higher-level abstract variables can be regarded as causes in the sense of being difference-makers to 

their effects. Even though their arguments concern natural selection and drift as abstract 

population-level causes, the arguments can be applied to predation. In fact, the basic idea behind 

Holling’s (1959) predation study (see below) is to investigate how the total predation response, as 

a higher- or population-level cause, affects the densities of prey populations, what are the 

components of this abstract cause, and how the components interact to produce the population-

level cause. Another classical study in this context is Paine (1966). Paine was interested in how 

observed high local diversities of many communities are compatible with the competitive 

exclusion principle rather than being exceptions to it. His study and other studies that followed 

afterwards by him and others manipulated predation and investigated what effects different levels 

of predation – as a  population- or community-level cause – has on the diversity of communities 

and population densities of competitor species in communities.  Paine and others discovered 

experimentally that removing one or more of the top predator species from their communities had 

the effect of reducing the alpha diversity of communities’ consumer species: without a common 

predator species, a few (and perhaps even one) competitively dominant consumer species come to 

monopolize the community by outcompeting other consumer species. Paine’s explanation was that 

predators can mediate the coexistence of their prey and maintain the local diversity of a 

community at a high level by keeping competing prey populations’ densities or abundances below 

a level at which the competition would become so severe as to cause local extinctions of species 

from the community. The story about predation as an abstract cause does not end here, but gets 

even more abstract. These and similar experimental findings and explanations of exceptions to the 

competitive exclusion principle were later generalized as the intermediate disturbance rule. 

According to this rule, intermediate levels of abiotic or biotic disturbances, such as predation, 

pathogens, aridity, storms, and fires are capable of mediating the coexistence of competitor species 

and thus maintaining the local diversity of a community at a relatively high level. Different 

instances of intermediate disturbances have the same or a similar effect, for instance, through 

reduction of population densities of competitor species, which counter the strong competitive 

effects between species. (Too small or too infrequent disturbances lead to local extinctions of 

competitively inferior species by competitively dominant ones, whereas too intense or too frequent 

disturbances allow for the few species that are the most stress-tolerant to exclude other species 

from a community.) Note that, in the above rule, “intermediate disturbance” works as an abstract 

causal factor, a sufficient parameter, of which predation is one instance. In sum, abstract causes – 

aggregative and sufficient parameters – can be treated and are treated by ecologists as causes in the 

sense of being difference-makers to their effects.  
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density of prey population is regulated by its predators. The shape of the total 

predation response curve helps to determine whether the predators are able to 

control their prey population density.  Expressed in the terminology of this paper, 

Holling’s idea was to study whether the total predation response is an aggregative 

property of its components’ properties in isolation and how the total predation 

response, as a biotic density-dependent factor, regulates the density of prey 

species populations.  

Holling’s study originally started as a field investigation of a simple 

predator-prey system in a uniform and homogenous environment, which was 

causally isolated from abiotic and biotic background conditions that could 

interfere with the system. The ingenuity of Holling’s study was that he stripped 

down this simple predator-prey system into its basic components to see how the 

components produced the supposedly aggregate property of the system, namely, 

the total predation response.  Later, he started to investigate the basic components 

of predation in the laboratory using other systems. His investigations showed that 

the total predation response is more than the sum of the properties of predator-

prey systems’ components’ properties in isolation, i.e. an emergent rather than a 

simple aggregate property. The results of his investigations apply to predator-prey 

systems in general. In fact, later studies on predation have elucidated different 

ways in which the total predation response is not an aggregative property of 

predator-prey systems in general.  I will paraphrase the results of Holling’s study 

using the terminology of this paper.  

Holling’s (1959) study was originally concerned with the predation of 

cocoons of a sawfly species by three mammal species. Due to the simplicity of the 

predator-prey system and the uniformity of the background conditions, there 

initially seemed to be two main additive components to the total predation 

response: 1) how predators respond dietarily to changes in their prey density, such 

as by consuming their prey in fewer or greater numbers  (the so-called functional 

response of predators) and 2) how predator density is affected by the density of 

their prey (the so-called numerical response of predators).  A functional response 

(C1) is the change in predator’s consumption as a function of change in prey 

density, whereas a numerical response (C2) is the change in predator density as a 

function of change in prey density. The total predation response is a combination 

of functional and numerical responses. Were the total predation response an 

aggregative property of predator-prey systems, then the effects (E1) and (E2) of 

predators’ numerical (C1) and functional (C2) responses on the mortality of their 

prey could be combined as independent (additive) elements, and the aggregative 

function (C1+2→E1+2) could be applied to predator-prey systems to model total 

predation responses. 

However, as Holling notices, prey density has different kinds of effects on 

the functional response of predators. There is no typical or general response, 

although some qualitative general results can be stated, cf. the classical type I, II, 

and III functional response curves in Box 1. The numerical response is more 

varied, and there are species that show no numerical response, whereas other 

species show a marked positive or even negative7  numerical response vis-à-vis 

changes in the density of their prey. The total predation response is thus a 

                                                           
7 Tilman’s mechanistic or reductionistic taxonomy of resources contains missing items (see section 

2). An example is resources that under certain conditions – as individual causal factors – can have 

a negative effect on the population growth rates, a case which should not be confused with 

antagonist resources. 
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combination of two possible continua: “a negative numerical response to a marked 

positive numerical response” and “no functional response to a marked positive 

effect in functional response.” Thus, there is no general or universal total 

predation response, because the components vary and/or are taxon or system 

specific.8  

Consider a simple case where there is no numerical response in predators, 

but predators respond only functionally to changes in the density of their prey; 

predator species with longer generation times than their prey fit this assumption at 

least approximately. In this case, the total predation response curve is determined 

by the functional response curve of predators (see Fig. 2 in Box 1), and 

consequently the prey mortality rate is determined by the functional response of 

predators. With a linear, type I functional response curve, the mortality rate of 

prey is constant and the prey population density is regulated by its predator, which 

is thought to lead to classical Lotka-Volterra population dynamics in the predator-

prey system, where there are cyclic and coupled changes in both predator and prey 

population densities.9  With a rectangular hyperbola, type II functional response 

curve, the prey mortality rate declines with increases in prey density: predators are 

able to regulate their prey population density at low prey densities, but the death 

rate of prey due to predation starts to diminish at moderate prey densities, and the 

prey population is even capable of escaping the checks of its “natural enemies” at 

high population densities. With an S-shaped, type III functional response curve, 

the mortality rate of prey due to predation is low at its low density, then it starts to 

accelerate at moderate prey densities, because the  functional response of 

predators accelerates with the changes in their prey density, and finally the 

mortality rate of prey starts to diminish and even plateaus at high prey density, 

showing that there is little or no regulation of prey population density by its 

predators at low and high prey density, even though the prey population density 

may be regulated by predators at moderate prey population densities.  

What is more, the total predation response is typically affected by many 

other components of the predator-prey system and its background conditions than 

functional and numerical responses, which can have various and even opposing 

effects on total predation, on the two mentioned basic components, on the 

interactions between the components, and so on. As examples of additional 

                                                           
8 The above does not yet necessarily establish that the total predation response is not an 

aggregative property. This is because the total predation response could be an aggregative property 

of a system’s specific functional and numerical responses, even though the details of aggregation 

vary from one system to another. In a certain predator-prey system, the total predation response 

could be an aggregative property of a numerical response curve 1 in Figure 1 and a functional 

response curve 4 in Figure 2. In this case, the total predation response curve would have the form 

of a curve 5 in Figure 3. In another system, the total predation curve could be an aggregative 

property of a numerical response curve 2 in Figure 1, and a functional response curve 4 in Figure 

2. In the latter case, the total predation response curve would have the form of a curve 6 in Figure 

3. In both cases, the total predation response would thus be an aggregative property of each 

system’s components’ properties in isolation. This would be an empty victory for reductionists, 

however. Aggregations would lack generality and extrapolability.  
9 There is an ongoing debate whether different versions of Lotka-Volterra predator-prey models 

produce robust results (e.g. Weisberg and Reisman 2008). The main issue is whether the results of 

Lotka-Volterra models are affected by the simplifying assumptions used in the models. This 

debate has its own merits. However, if the core assumption of this model itself – the idea that the 

functional response curve of predators is or approximates type I curve – is a bad representation of 

most predator-prey systems (and it often is), robustness analyses of these models cannot establish 

that they are good models. 
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components, consider the availability and quality of alternative resources for 

predators, the degree of resource specialization of predators, immigration and 

emigration of predators and prey, the traits of prey species, such as their 

palatability or defense mechanisms, and competition between predator species for 

resources (Holling 1959, 305-308; Korpimäki and Norrhdahl 1989; and Persson 

and Diehl 1990).  To have a total predation response, the effects of the additional 

components need to be considered on the already existing components and/or 

added to the total predation response. The effects that these other components 

have on the already mentioned two response functions need not be uniform, nor 

are these other components uniform in effects in different background conditions, 

taxa, community structures, etc. That is, the total predation response is not an 

aggregative property of predator-prey systems in general.                                                                                                                                                                                                                                                                                                 

The nature of alternative resources matter. Alternative perfectly 

substitutable resources for predators can negatively affect their functional 

response, but positively affect their numerical response, whereas antagonistic 

resources can have negative effects on both functional and numerical responses. 

Essential, complementary, and switching types of alternative resources have 

different kinds of effects – positive, negative, or none – on the numerical and/or 

functional response of predators.  The additional components are thus capable of 

interacting in qualitatively different ways with the basic components and/or are 

capable of having qualitatively different effects on the total predation response, 

the way the components interact with each other, and so on.   

As predation increases, prey can respond to this in various ways, such as 

producing chemicals that make the prey less palatable or organizing to defend 

themselves. This can have a negative effect on the functional response of 

predators, it can have an effect on the way in which alternative resources are 

consumed by predators, which in turn can have negative or positive effects on the 

numerical or functional response of predators. And there are higher-order 

interactions between different components that need to be considered, such as the 

effects of competition between predator species for their prey, the predators of 

predators, which are capable of producing positive and negative causal feed-back 

loops affecting the system and its components in various and qualitatively diverse 

ways.  

The upshot is that the total predation response is typically not an 

aggregative property of its components’ properties in isolation, but an emergent 

property of a predator-prey system. The way the components interact, how they 

are organized, what are the biotic and abiotic background conditions, and so on, 

do matter and produce qualitative different or emergent total predation response 

curves (see Box 1). Total predation is mechanistically explainable, but it is more 

than the sum of its components’ properties in isolation. Other cases of non-

aggregate properties include, for instance, fitness (Cohen 1985), Tilman’s 

complementary and antagonistic resources (see section 2), and Vellend’s (2010) 

selection, drift, speciation, and dispersal. Many and perhaps even most of the 

higher-level properties of systems in ecology cannot be treated or modeled as 

mere aggregates of their components’ properties in isolation, in contrast to what 

seems to be suggested by Schoener (1986) in the passage quoted above.  

What was said about problems of treating the properties of ecological 

systems as aggregates was not aimed to show that aggregation is futile. Nor was 

the above presented as an argument against reductionism as a heuristic. 

Aggregation is an effective method to make complex mechanistic or reductionist 
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models simpler, more mathematically or analytically tractable, less sensitive to 

parametric variation in results, less prone to the parameter value estimation 

problems, and so on (Levin 1991, 1992). Aggregation is an effective strategy for 

abstracting with regard to simple systems and their properties in homogenous or 

constant environments. Approximations and partial aggregations sometimes 

suffice (Iwasa et al. 1987; Iwasa et al. 1989). Aggregation errors can be corrected 

and different methods are discussed in the literature (Gardner et al. 1982; Rastetter 

et al. 1992). Carelessly treating or naively assuming, however, in the sense of 

Schoener (1986) and perhaps Vellend (2010),  that the higher-level properties of 

ecological systems are mere aggregates of their components’ properties in 

isolation can lead to simplification errors and biases in results, non-projectable 

results, and unjustified policy- and decision-making recommendations.   

Finally, the above discussion in this and the previous section on two kinds 

of abstractions utilized by holists and reductionists shows that mechanists are not 

committed to the unqualified thesis that adding details, i.e. de-abstracting, always 

or typically improves their explanations (see discussion in Machamer et al. 2000, 

15-18; Kaplan 2011, 347-348; Levy and Bechtel 2013; Boone and Piccini 2016, 

1517-1519; and Miłkowski 2016 on this topic). Mechanists use abstractions to 

make better model-based explanations and predictions, it is just that the 

abstractions utilized are different from those used by holists. Both adding certain 

kinds of details, such as de-abstracting a sufficient parameter and omitting certain 

other kinds of details, such as utilizing an abstract aggregative parameter, can 

improve a mechanistic model without necessarily jeopardizing the basic tenet of 

mechanistic explanations being system-specific, constitutive, and precise. 
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Fig. 2. Functional response 

curves: predator consumption (y 

axis) vs. prey density (x axis)  

Fig. 1. Numerical response 

curves: predator density (y 

axis) vs. prey density (x axis)  

Fig. 3. Total predation response 

curves: total predation (y axis) vs.  

prey density (x axis)  

 

 

 

Box 1. Numerical, functional, and total predation curves (partly adopted from Holling 1959).  

 

Fig. 1. Curve 1: a positive numerical response. Curve 2: no numerical response. Curve 3: a 

negative numerical response. Fig. 2. Curve 4: a positive functional response, the so-called 

Type II functional response, which has the form of a rectangular hyperbola.  Type I and III 

curves are represented as dashed curves. Fig. 3. Curve 5: the total predation response:  curves 

1+4. Curve 6: the total predation response: curves 2+4. Curve 7: the total predation response: 

curves 3+4. Even in the simple case presented here, where there is only one type of functional 

response, Type II, which is added to three different numerical response curves, shows that 

there is no general total predation response curve, but quantitatively (curves 5 and 6) and 

qualitatively (curve 7) different kinds of curves do exist. The case is more complex when one 

adds different functional response curves to three basic numerical response curves (dashed 

curves in Fig. 2, which represent the so-called Type I (linear) and Type III (S shaped) 

functional curves):  qualitatively very different kinds of total predation response curves than 5, 

6, and 7 follow. Note that the total predation response is presented in Fig. 3 as an additive or 

aggregative of numerical and functional response curves. Actually, this is not necessarily the 

case, but numerical and functional response can interact in emergent ways. However, let us 

suppose that the total predation response is additive of the two components. Now, add the 

effects of other components of total predation, such as availability of alternative resources, to 

the functional or numerical response component and/or to total predation. These can affect 

both numerical and functional response curves in various and even opposite ways. For 

instance, numerical responses can be made more positive or negative, functional responses can 

become more positively pronounced, and so on. The effect that alternative resources have on 

total predation response curves can be very varied, and qualitatively very different curves than 

curves 5-7 follow. Similarly, competition between predators for resources can have different 

effects on the numerical or functional response or on the total predation response, and so on. 

That is, there are direct and indirect interactions between the components of the total predation 

response curve that have varied and emergent effects on the form of the total predation 

response, on the components of the curve, how the components interact, and so on – cf. the 

dashed total predation response curve in Fig. 3, which presents a hypothetical curve of how 

different components could “add up” to form a complex and non-aggregative total predation 

response curve.  
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4 Model Pluralism and Complementarity of Heuristics  

 

In ecology, the strategy of using a diverse set of holistic and reductionistic models 

to gain understanding of a common phenomenon, such as competition or 

predation, is typical (Levins 1966; Levin 1991, 1992). This diversity of models 

for one and the same phenomenon cries out for an explanation. Is the diversity of 

models a good or a bad thing? Should it be eliminated or maintained? And for 

what methodological, epistemic, or pragmatic reasons?  

Pluralism implies diversity, but diversity does not necessarily imply 

pluralism. The accounts viewing different heuristics as contrary or contradictory 

perspectives (Levins 1998, 2006; Winther 2006) seem to imply that there is no 

model pluralism, but a diversity of incompatible models for a common 

phenomenon. If holism and reductionism are contradictory, there is no pluralism. 

This is because the truth of holism implies that reductionism is false about their 

common phenomenon and vice versa. Similarly, if holism and reductionism are 

contrary, there is no pluralism, because the two do not share a phenomenon of 

which both can be at least partially true. Thus, whether model diversity in ecology 

implies model pluralism – and whether it is a vice or virtue – remains an 

unresolved issue.10 

In this section, I argue that model diversity implies beneficial model 

pluralism. Different methodological functions, strengths, and limitations in using 

sufficient parameters and aggregative parameters were discussed in previous 

sections. Here, I present an epistemic defense of model pluralism by arguing for 

the explanatory complementarity of reductionism and holism as heuristics. 

Different models utilizing different heuristics have different epistemic strengths 

and limitations and they provide incomplete but complementary research 

perspectives of cognitively limited beings.  

Let me make a distinction between two kinds of causal explanations, simple 

causal claims and mechanistic explanations (Raerinne 2011). A simple causal 

claim describes a causal relationship between the phenomenon-to-be-explained 

and the thing that does the explaining. It refers to a causal explanation in which 

one has a causal relationship between variables, but no or little account – or 

mechanistic explanation – as to why or how the relationship holds between the 

variables. A simple causal claim is thus a manipulable black box relation holding 

between variables.  

Describing a mechanism of a phenomenon is not contrary to describing 

what the causal relationship of a simple causal claim of that phenomenon is. 

Instead, a mechanistic explanation is a complement to a simple causal claim, since 

                                                           
10 A trivial argument for the diversity of models exists. A similar argument is utilized by many 

who confuse diversity with pluralism (e.g. Beatty 1995, 65-75 and Jamniczky 2005). If different 

models applied to the same general phenomenon, but to different systems, so that holistic models 

are used to investigate complex systems of a phenomenon, whereas reductionistic models are used 

to investigate simpler systems of this phenomenon (or vice versa), this would account for the 

diversity of models. At the same time, this would not justify pluralism, since there is no pluralism 

about models that do not share a target. Instead of pluralism, there would be a diversity of local 

monisms. Alternatively, one could call this case global pluralism in the sense that at the discipline 

or science level different heuristics are needed to account for the whole diversity of its target 

systems. Instead of applying this argument, I try to provide arguments in support of epistemic and 

methodological pluralism in theoretical ecology, which does not just establish model diversity, but 

instead the local pluralism of holistic and reductionistic models. 
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it describes how the causal relationship produces its phenomenon-to-be-explained. 

A mechanistic explanation describes the underlying mechanism within the system 

by showing how the system is constituted and how this produces the 

phenomenon-to-be-explained. The suggestion is to view traditional holistic 

ecological models, such as the Lotka-Volterra competition and predation models 

utilizing abstract resources or competition coefficients and Levins’ (1966) 

environmental uncertainty model as providing simple causal claims, whereas 

reductionistic models provide us with mechanistic explanations of the former.  

Holistic and mechanistic models are not exclusive explanatory rivals in the 

sense that when one is true, then the other must be false.  Rather than being 

contrary or contradictory, they can be viewed as complementary explanations.  

Traditional holistic models investigate what would happen to community- or 

population-dependent variables if community or population independent variables 

were manipulated. These are simple causal claims in the sense that we investigate 

what would happen to a system if some of its higher-level variables were 

manipulated without worrying about what is the specific population or individual 

level causes(s) or mechanism(s) behind the change in the system. Mechanistic 

models investigate how this same change happens by accounting for the change in 

dependent variables in terms of lower-level – population- or individual-level – 

independent variables (Tilman 1977, 1980, 1990; Schoener 1986; Grimm 1999). 

Mechanistic models investigate what is the specific mechanism responsible for 

this or that change in variables in which community models are derived from 

population models and population models from individual-based models.  

When one has a mechanistic account of how and why a higher-level simple 

causal relationship holds, this does not show that the higher-level relationship 

becomes non-explanatory or redundant. In fact, both holistic and mechanistic 

models have become more reliable in the sense that we have a holistic model with 

simple causal claims which is convergent with a possible modeled mechanism at a 

lower level. Sometimes the models provide non-convergent results with regard to 

certain parameter or variables values. It is not a priori correct to blame holistic 

models for the failure. In fact, the specific simplifying assumptions about the 

mechanism, such as the aggregative assumptions used, and even the core 

assumptions concerning the mechanism might be incorrect. In the case of non-

convergent results, it may be the case that holistic and mechanistic models need to 

be modified, simplifying assumptions need to relaxed, the results of models need 

to be restricted to certain parameter or variable values, systems, and so on.  

The usual reply is that mechanistic models give better or deeper 

explanations than holistic models of the same phenomenon which are based on 

simple causal claims.11 The explanatory power of an explanation is not, however, 

a one-dimensional attribute. Ylikoski and  Kuorikoski (2010) have distinguished 

between five different dimensions of explanatory power of an explanation: non-

sensitivity (stability of an explanatory relationship with regard to changes in 

background conditions), precision (how well the explanation characterizes the 

                                                           
11 An anonymous referee asked exactly whose reply this is.  However, the relevant question is 

where and when the claim is true.  Compare the specific predictions and explanations given by 

individual-based mechanistic rabies models (Jeltsch et al. 1997; Thulke et al. 1999) to classical 

holistic reaction-diffusion rabies models (Murray et al. 1986). Individual-based rabies models give 

more exact, accurate, and testable predictions and better explanations of rabies epizootics than 

classical holistic models.  In this context, the authors thus have a justification to claim that 

mechanistic models give better explanations than holistic reaction-diffusion models.  
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object of explanation), factual accuracy (lack or innocence of simplifying 

assumptions used in explanations), unification, and cognitive salience 

(ergonomics of explanation – how easily the explanation can be followed and 

understood by limited  cognitive beings). There are trade-offs between the 

different dimensions of explanatory power. More importantly, holist and 

mechanistic models have different strengths and limitations with regard to 

different dimensions of explanatory power.  

Mechanistic models usually give more precise explanations than holistic 

ones, because they include details of causal components and mechanisms rather 

than sufficient parameters (see discussion of resources in section 2 and footnote 

11). Increased precision and complexity in models usually comes at the cost of 

decreased analytical or mathematical tractability. Moreover, complex models are 

more difficult to understand than simpler models, thus, their cognitive salience is 

typically diminished. An explanation characterized too precisely can make it too 

complex for us to understand it (cf. Putnam 1975; Nathan 2012; Raerinne and 

Baedke 2015; Raerinne forthcoming). In other words, precision reduces cognitive 

salience. This is a crucial problem for sciences dealing with complex phenomena, 

such as ecology.    

Holistic models are more unified than mechanistic models. In a holistic 

model with a sufficient parameter, knowing the actual cause or mechanism could 

be irrelevant because the causal relationship holds regardless of which of the 

cause(s) or mechanism(s) were operative. They are also more cognitively salient, 

because they are less precise and include sufficient parameters. In general, there is 

a trade-off between cognitive salience and precision as dimensions of explanatory 

power.  

Holistic models are often more stable or less sensitive than mechanistic 

models in the sense that they utilize higher-level causal proxies or sufficient 

parameters and omit mechanistic details. If a cause does not operate when certain 

background conditions are in place, or if it does not operate in a certain 

system/taxon, then another alternative or back-up cause with similar effects might 

be operative and the model applies to the situation (see environmental uncertainty 

in section 2). Thus, an explanation utilizing sufficient parameters can be claimed 

to be a stable or an insensitive one.   

The proponents of mechanistic models sometimes claim that their models 

include fewer, better, or less factually inaccurate simplifying assumptions than 

holistic models. Both holistic and mechanistic models include simplifying 

assumptions. At the same time, the simplifying assumptions are of different kind, 

and there is probably no general metric to evaluate different kinds of simplifying 

assumptions associated with different heuristics as to how good, reliable, or 

innocent they are. Sufficient and aggregative parameters as abstractions have 

different methodological functions, strengths, and sources of errors. Neither is in 

any straightforward sense less innocent or better than another as a simplifying 

assumption. Thus, insofar as factual accuracy is concerned, it seems to be a 

comparable attribute of explanations within a heuristic, not between heuristics.  

Thus, holistic and mechanistic models are not contrary as explanations. If 

they provide us with convergent results, then they can be viewed as 

complementary. Moreover, given the many and some conflicting dimensions of 

explanatory depth or power, it is not self-evident that mechanistic models provide 

us with better explanations than holistic models. Reductionists and holists focus 

on the same phenomenon, of which both can be true as explanations. But they 
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prefer different dimensions of explanatory power: reductionists want their 

explanations to be precise and system specific, whereas holists favor explanations 

that are unified, cognitive salient, and non-sensitive.  

Several authors have previously discussed different dimensions of 

explanatory power (cf. Fodor 1974; Putnam 1975; Kitcher 1984; Weslake 2010; 

Haug 2011). In contrast to the account of explanatory power presented above, 

these accounts are one-dimensional, for instance, referring to the greater 

generality of higher-level explanantia or mechanistic details of lower-level 

explanantia as the dimension conferring the explanantia with a high explanatory 

power.  The multi-dimensional account of explanatory power not only can 

accommodate the idea of the one -dimensional accounts via, for instance, 

unification or precision, but the one-dimensional accounts lack the flexibility and 

diversity of the multi-dimensional account.  Finally, the multi-dimensional 

account is biased neither towards reductionism nor holism, as the one-dimensional 

accounts are, but can be used to analyze explanatory strengths and limitations of 

both kinds of explanations. Thus, the multi-dimensional account of explanatory 

power is more comprehensive than and superior to the one-dimensional accounts. 

In addition to the above epistemic argument for the complementarity of 

heuristics, a methodological argument for their complementarity exists. This 

applies even if mechanistic and holistic models were not true of a common 

phenomenon as explanations. Holism and reductionism are research perspectives 

on nature having their distinctive methodological strengths and limitations, which 

can be revised, criticized, and corrected. And we often need another heuristic to 

see and correct for the limitations of our heuristic, as the case of a mechanistic 

taxonomy of resources illustrates.  

Tilman’s (1980, 1986) de-abstraction of resources (discussed in section 2) in 

part helped to spell out more accurately under what conditions resources can or 

cannot be successfully treated as a holistic sufficient parameter. Note that this is 

not a case of a victory for reductionism. Rather, it is a case where the perspective 

of one heuristic was needed to better the perspective of another. It is not only that 

resources cannot always be treated as a holistic abstraction, because in some 

research contexts the causal details of different resources matter. In fact, and 

contrary to the holistic abstraction of resources, it is not even true that all the 

resources have a positive, let alone similar, effects on the growth rates of 

populations, since some resources are capable of having negative effects on the 

growth rates of populations, as was discussed in section 3. Thus, a reductionistic 

heuristic helped to see and overcome the limitations of holistic models utilizing 

abstract resources. However, it is not true that systems in general can be treated as 

mere aggregates of their components’ properties in isolation, as the case of 

predation in section 3 demonstrated. Rather, reductionists need to adopt a more 

holistic perspective in modeling systems, since the organization of systems matter 

and cannot always be abstracted away. Finally, even the mechanistic taxonomy of 

resources by Tilman (1980, 1986) is not strictly speaking reductionistic, since it 

includes emergent, holistic elements, such as complementary and antagonistic 

resources. To provide a comprehensive and utilizable mechanistic taxonomy of 

resources, one thus needs to adopt a more holistic perspective in overcoming the 

limitations of applying a strict reductionistic heuristic to this case.  

Levins (1966) argued for using a family of different models when studying 

a common phenomenon, where the models differ in generality, precision, and 

realism. In this section, I have defended the idea of model pluralism in ecology in 



19 
 

explanatory and methodological terms. In fact, as I argued above, Levins’ (1998, 

2006) ideas concerning heuristics cannot be used to argue for model pluralism, 

since they imply a diversity of incompatible models.  

 
  

5 Conclusions 

 

I have argued that holism and reductionism as heuristics and their associated 

abstractions have distinctive methodological and epistemic strengths and 

limitations. Rather than arguing that different research perspectives are 

incompatible, we should view them as complementary – epistemically and 

methodologically. This is easy if heuristics provide us with convergent results. 

But when they produce non-convergent results, we should remember that all 

heuristics have limitations. They are research perspectives that can be corrected, 

revised, and criticized, and we often need another perspective to see the limitation 

of our own perspective.  

We should aim at an ecological theory that is pluralistic in methods and 

explanations. In principle, I have nothing against the possibility of having a 

synthesis of different perspectives, revealing the true or correct nature of nature 

(sensu Levins 1998, 2006 and Winther 2006), even though I have disagreed that 

the perspectives are always or typically contrary or contradictory. Whether such a 

synthesis is forthcoming and whether its development and understanding is 

possible for cognitively limited beings, such as us, is beyond the scope of this 

paper. But insofar as part of the job of philosophy of science is to help scientists 

in their current methodological, epistemic, and evidential matters, we cannot wait 

for such a synthesis to occur. Instead, we have work with and accept more limited 

heuristics. Though heuristics have their limitations, we can effectively use them if 

we are aware of these limitations.   

I do not suggest that the presented taxonomy of abstractions is exhaustive. 

Levy and Bechtel (2013), for instance, discuss a putative distinct variety of 

abstraction – causal connectivity – which they argue is compatible with 

mechanistic explanations.12 Rather, the aim was to provide a starting point for 

building a more comprehensive functional taxonomy of abstractions and to 

discuss the implications this has, for instance, for the debate whether – and/or to 

what extent – mechanistic accounts of explanation are compatible with the use of 

abstraction, that is, whether mechanistic accounts are committed to the thesis that 

de-abstracting or adding more details to an explanation always or typically makes 

the explanation better. 
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