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Abstract. The use of constraint optimization has recently proven to be a suc-
cessful approach to providing solutions to various NP-hard search and optimiza-
tion problems in data analysis. In this work we extend the use of constraint op-
timization systems further within data analysis to a central problem arising from
the analysis of multivariate data, namely, determining minimum-width multi-
variate confidence intervals, i.e., the minimum-width confidence band problem
(MWCB). Pointing out drawbacks in recently proposed formalizations of vari-
ants of MWCB, we propose a new problem formalization which generalizes the
earlier formulations and allows for circumvention of their drawbacks. We present
two constraint models for the new problem in terms of mixed integer program-
ming and maximum satisfiability, as well as a greedy approach. Furthermore, we
empirically evaluate the scalability of the constraint optimization approaches and
solution quality compared to the greedy approach on real-world datasets.

1 Introduction

The use of constraint programming systems has recently proven to be a successful ap-
proach to providing solutions to various NP-hard search and optimization problems in
data mining and machine learning, using a variety of constraint optimization paradigms
such as constraint programming (CP), mixed integer programming (MIP), Boolean
satisfiability (SAT), maximum satisfiability (MaxSAT), and answer set programming
(ASP). Compared to the more typical in-exact, problem-specific local search style al-
gorithms, the benefits of constraint reasoning and optimization lie on one hand in the
ability to provide provably optimal solutions, translating into more accurate solutions to
the data analysis task at hand, and on the other hand by generality of algorithmic solu-
tions resulting from the declarative approach, allowing for capturing different problem
variants simply by enforcing additional or slightly modified constraints.

In this work we extend the use of constraint optimization systems further within data
analysis to a central problem arising from the analysis of multivariate data, namely, de-
termining minimum-width multivariate confidence intervals. Confidence intervals are
commonly used to summarize distributions over reals, e.g., to denote ranges of data,
to specify accuracies of estimates of parameters, or in Bayesian settings to describe
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the posterior distribution. Represented with an upper and a lower bound, confidence
intervals are also easy to interpret together with the data. In contrast to p-values, which
only convey information about statistical significance—a problem which has been long
and acutely recognized in many disciplines [4, 20,23, 25]—confidence intervals give
information on both the statistical significance of the result as well as the effect size.
In fact, since statistically significant results can be meaningless in practice due to the
small effect size, the problem with p-values has been long recognized [23,25]. The
proposed solution is not to report p-values at all, but use confidence intervals instead
[20]. Optimizing the width of multivariate confidence intervals is NP-hard, and further-
more, expectedly even hard to approximate [11], which motivates the use of constraint
optimization systems for the task.

The problem of estimating the confidence interval of a distribution based on a finite-
sized sample from the distribution has been extensively studied, see e.g. [7]. However,
most effort has focused on describing a single univariate distribution over real num-
bers, and there are surprisingly few approaches to multivariate confidence intervals. In
the time series domain, multivariate confidence intervals [9, 11], namely confidence
bands, have been defined in terms of the minimum-width envelope (MWE). The only
exact approach to MWE (in this paper denoted by MWCB(k) as motivated later on)
that we are aware of is the very recent integer programming model of [21]. However, as
explained in [10], solving MWE can result in very conservative confidence bands when
there are local deviations from what constitutes as normal behaviour in the data at hand.
To overcome this, an alternative definition as what we will refer to as MWCB(k, s) was
recently introduced in [10], and a greedy approach to solving this variant was provided;
to the best of our understanding no exact algorithms for MWCB(k, s) have been pro-
posed. However, as we will shortly explain, MWCB(k, s) can result in optimal solutions
exhibiting extremely narrow parts in the confidence band even when there is no clear
explanation for this behaviour in the data.

In this paper, we focus on the combinatorial variant of the minimum-width confi-
dence band problem, and specifically, on constraint optimization approaches to obtain-
ing optimal solutions to a new variant MWCB(k, s, t) of the multivariate minimum-
width confidence interval problem. In more detail, our contributions are the following.
(i) We demonstrate that minimum-width (k, s)-confidence bands as defined in [10] tend
to have very narrow parts without a clear intuitive meaning. (ii) We propose an alter-
native definition to overcome this undesirable property, denoted as the MWCB(k, s, t)
problem. (iii) As a novel application domain of declarative constraint optimization, we
provide two constraint models for MWCB(k, s, t) in terms of MIP and MaxSAT as the
constraint languages of choice at this time. (iv) We also provide a greedy algorithm for
MWCB(k, s, t), which provides more scalability, but also allows for analyzing the ben-
efits of exact constraint optimization for the problem in terms of the quality of obtained
solutions. (v) To this end, we present an overview of an empirical evaluation on the
scalability of the constraint optimization approaches and solution quality.

The rest of this paper is organized as follows. We start with the previously proposed
variants MWCB(k) and MWCB(k, s) of the multivariate confidence interval problem,
pointing out their drawbacks, and motivated by these we propose the focus of this
work, the MWCB(k, s, t) problem (Section 2). We then introduce constraint optimiza-



tion models for MWCB(k, s, t) in terms of MIP and MaxSAT (Section 3), as well as a
first greedy approach to MWCB(k, s, t) for comparing with the constraint models (Sec-
tion 4). Overview of an empirical evaluation of the constraint models is presented in
Section 5 using real-world time series datasets, and related work discussed further in
Section 6.

2 The Minimum-Width Confidence Band Problem

We consider a set of n data vectors x;, each of length m, represented by a matrix
X € R™™ Let x;; € X denote the j-th element of x;. The data X can, for instance,
represent time series data, i.e., each z; is a sequence of values taken at successive points
in time. (In the general setting, preprocessing may be necessary as one needs to make
sure that the variables or at least their scales are comparable.)

A confidence band is defined as a pair (I, u) of vectors, where [, u € R™ and [; < u;
for all j. The size of the confidence band OB = (I, u) is SIZE(CB) = 37" (u; — ;).
In order to capture the relationship between a confidence band and a dataset, we use the
concept of an error of a confidence band w.r.t. the data at hand. An indicator function

(unity if the condition O is satisfied and zero otherwise) is denoted by I[C]].

Definition 1. Given a data vector x; and a confidence band CB = (l,u), the error
of x; w.r.t. CB is the number of points in x; that lie outside of C B, i.e., ERROR(z;, CB) =
Z;‘nzl I[ZL’U < lj \ u; < ZL'”}

There are several possible ways to control the error. In [9, 11] a data vector is consid-
ered an outlier or extreme if it is outside the confidence band in at least one dimension.
In the minimum-width confidence band (MWCB(k)) problem the number of extreme
data vectors is controlled by a parameter k.

Definition 2 (MWCB(k)). [9, 11] Given a dataset X € R™*™, any confidence band
CB* € argmin SIZE(CB) over those CB for which ;.| I[ERROR(z;, CB) > 0] <
k is a solution to the MWCB(k) problem.

The above definition results in well-defined confidence bands which gives the user
control over the error in analogy to the family-wise error rate. However, as argued
in [10], the resulting confidence bands can be too conservative in cases in which there
are local deviations from what constitutes as normal behaviour in the data at hand. To
overcome this feature, a relaxed variant of the MWCB(k) problem allowing local devi-
ations from the confidence band was recently proposed [10, 24].

Definition 3 (MWCB(k, s)). [10] Given a dataset X € R"*™ and two integers k
and s, any confidence band CB* € argminSIZE(CB) over those CB for which
> I[ERROR(z;,CB) > s| < k is a solution to the MWCB(k, s) problem.

Now, one may observe that a solution to the MWCB(k, s) problem can be very
narrow at places. This was in fact pointed out in [10], where it was further argued
that in real datasets with non-trivial marginal distributions and correlation structure this
was unlikely to happen, and the confidence band would be approximately of similar
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Fig. 1. An example of time series data with n = 50 time series of length m = 64 (represented
with purple lines) for which an MWCB(k, s) confidence band (green lines) has very narrow parts,
while the respective MWCB(k, s, t) confidence band (orange lines) does not. Here we have used
k =t =5 and s = 6, each value representing approximately 10% of the respective dimension.

width across columns. However, we note that optimal solutions to the MWCB(k, s)
problem on real data are likely to contain narrow intervals with no clear explanation. For
example, consider Fig. 1. The data consists of 50 time series of length 64 sampled from
the MITDB data (see Section 5 for details). The green lines represent a confidence band
that is a solution to MWCB(5,6) problem. We can observe that the confidence band is
very narrow at the peak, i.e., around the time interval [25,30]. One should notice that we
use a real data set here to demonstrate the unwanted behaviour, and obviously it is not
difficult to craft synthetic instances for which an optimal solution to the MWCB(k, s)
problem has extremely narrow parts in the confidence band.

These observations suggest that there should be a mechanism to control the amount
of column-wise error in addition to the row-wise constraints, and to this end we propose
the concept of a minimum-width (k, s, t)-confidence band in terms of the MWCB(k, s, t)
problem as follows.

Definition 4 (MWCB(k, s,t)). Given a dataset X € R™*™ and integers k, s, and t,
any confidence band CB* € argmin SIZE(CB) over those CB = (l,u) for which
S I[ERROR(z;,CB) > s] < kand Y. | I[z;; < l; V xy; > uj] < t for all
1 < j < m, is a solution to the MWCB(k, s, t) problem

As straightforward connection between the MWCB(k, s, t) and MWCB(k, s) prob-
lems is the following.

Proposition 1. A confidence band CB for a dataset X € R"*™ js a solution to the
MWCB(k, s) problem iff it is a solution to the MWCB(k, s, n) problem.

The additional parameter ¢ gives the user control over the amount of outliers allowed
column-wise. If local deviations are likely to not to happen too often, setting the value
of t equal to, or slightly larger than, k is a reasonable choice. For example, in Fig. 1,
the orange lines represent a confidence band that is a solution to MWCB(5,6,5). One
can observe that, indeed, for each time point a majority (90%, i.e., 45 out of 50 to be
exact) of the time series are inside the confidence band. Furthermore, at most 10% of
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Fig. 2. Mixed integer programming model for MWCB(k, s, t).

the time series deviate from the confidence band in more than 6 time points. Based on
experimentation, it seems that for the real datasets we consider in this work, the size of
the confidence band is approximately the same for ¢t € {k,k + 1,...,2k} (assuming
k < n), and thus a conservative choice, e.g., t = (1 + €)k for ¢ < 1, seems to be a
reasonable one.

3 Constraint Optimization Models for MWCB(k, s, t)

Recently, a MIP model for the MWCB(k) problem was proposed in [21]. However, to
the best of our knowledge, no efficient exact algorithms for solving the MWCB(k, s)
problem (nor the more general MWCB(k, s, t) problem) exist. Two heuristic algorithms
are provided in [10], with no guarantee of solution quality. Korpela et. al [10] do provide
a MIP model for the special case of one-sided confidence bands. However, this model
is only used to show an approximability result and does not yield a practically efficient
method, even for the special case.

In the following we present two constraint optimization models for MWCB(k, s, t),
one using mixed integer programming and the other using maximum satisfiability. For
notation, let A" = {1,...,n} and M = {1,...,m}. Both of our constraint models use
a column ordering for the data X. Thus, we assume that we have an ordering for each
of the columns using dense-rank® (as provided in R) and denote by " the maximum
rank in column j. In the following, for a given 7 € {1,..., 7"} , we use () to denote
the index ¢ such that x;; has rank r in column j.

3 In case of ties, both elements get the same rank  and the next greatest element gets rank r -+ 1.



3.1 Mixed Integer Programming Model

For our MIP model, we use the band-wise reduction procedure suggested in [22], simi-
larly to [21]. However, in our model, instead of looking for whole data vector to exclude
from the confidence band, we need to allow the exclusion of individual data points while
maintaining both the column-wise and the row-wise constraints.

Our MIP model is presented in detail in Fig. 2. We introduce variables I;,u; € R
for each j € M for the confidence band, and the objective (1) is to minimize the size
of the confidence band, i.e., the sum of (u]» — lj)’s over all columns j. We introduce
n X m binary variables d;; with the interpretation d;; = 1 iff the jth element of x; is
outside the confidence band, i.e., z;; < l; or x;; > u;. Furthermore, we use n binary
variables y; with the interpretation y; = 1 iff x; is outside the confidence band in at
least s positions, i.e., Y 7" I[zi; < 1j Vx5 > uj] > s.

For the band-wise reduction procedure [22], we can make use of the following ob-
servation: since we have the column-wise constraint that at most ¢ data points can be
outside the confidence band at each column, we know that the value with rank ¢ + 1 has
to be inside the lower band. Thus, we include the constraints (2). Respective constraints
for the upper band are provided in (3). Next, the constraints (4) (resp. (5)) encode the
choice that either a value x;; is inside the lower (resp. upper) band or it is outside. Here
we use constant vectors M; = (M} ..., M!)and M* = (MY, ..., M) defined as

l .
Mj = z(41); — min(zyy, ..., T,;) and

u o __
M} = max(z1j, ..., Tnj) — L(ymas ).

Now, if d;; = 1, the constraints are de-activated, and if d;; = 0 the constraints (4) and
(5) together ensure that [; < z;; < u;. Here we once more use the property that at most
t values can be outside the confidence band. The constraints (6) enforce this. We use
the constraints (7) to represent the relationship between d;;’s and y;. If y; = 0, then at
most s variables d;; for each j € M can have value 1. On the other hand, if y; = 1,
then each constraint (7) reduces to Z;”:l d;; < m which is always satisfied. Finally, the
constraint (8) makes sure that at most & data vectors have more that s elements outside
the confidence band.

3.2 Maximum Satisfiability

Before presenting our second constraint optimization model for MWCB(k, s, t), we
give a brief background on maximum satisfiability. For a more extensive review we
direct the reader to [2].

For a Boolean variable x there are two literals, the positive literal  and the nega-
tive literal —z. A clause is a disjunction (V) of literals and a conjunctive normal form
(CNF) formula is a conjunction (A) of clauses. Equivalently, a clause is a set of literals
and a CNF formula a set of clauses. A truth assignment 7 is a function from Boolean
variables to {0,1}. A truth assignment 7 satisfies a clause C' (7(C) = 1) if it assigns
a positive literal, z € C to 1 or a negative literal -z € C to 0, and else 7 falsifies the
clause (7(C) = 0). Assignment 7 satisfies a CNF formula F if it satisfies all clauses
in F. An instance of the (weighted partial) maximum satisfiability (MaxSAT) problem
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Fig. 3. The base clauses in our MaxSAT encoding for MWCB(k, s, t).

(Fy, Fs,w) consists of two CNF formulas, the set of hard clauses F}, and the set of
soft clauses F, together with a function w: Fs — N assigning a positive weight to all
soft clauses. Any truth assignment 7 that satisfies all hard clauses is a solution to the
MaxSAT problem. A solution 7 is optimal if it minimizes the sum of the weights of the
soft clauses it falsifies, i.e., if Y o p (1= 7(C))w(C) < Y cp (1= 7(C))w(C) for
all solutions 7.

Our MaxSAT model makes extensive use of cardinality networks [1]. For our pur-
poses, given a set of literals L, a literal [ 3 and an integer bound K, a cardinality network
produces a set of clauses

CNF() 1> K — p)
leL

that encodes the property that whenever more than K literals from the set L are assigned
to 1, then so is the literal /5. We use CNF(}_,.; | < K) as shorthand for the CNF
formula CNF(},., I > K — Ip) A (—lp). Notice that the clauses in CNF(} ., | <
K) together essentially enforce that at most K literals of the set L can be assigned
to 1. As an important special case we also use CNF(}_,., I = 1) as shorthand for
CNF(} e ! < K) A (V,ep 1), enforcing that exactly one of the literals in L has to be
assigned to 1.

Figure 3 gives the clauses in our MaxSAT encoding. We start be describing the
intuition behind the Boolean variables used. Note that for every solution CB = (I, u)
to the MWCB(k, s,t) problem and every j € M, there exists a r € {1,...,t + 1}
(resp. 7 € {r7"®* —t,...,r"%"}) such that [; = x(,); (resp. u; = x(,);). For each
column j, we use R, to denote the set of possible r for which [; = x(,; can hold.
Since at most ¢ points can lie outside the lower band for any j € M, we have R, =



Ry = {1,...,t + 1}. Similarly we use R}, = {rire® —t,..., 7"} to denote the
set of possible indices r for which u; = x(,y; can hold. We introduce variables [7 and

h forje M,r e R,and h € Rj with the interpretation [ = 1 (resp. uh = 1) iff
lj = m(); (resp. uj = 2(n);). In addltlon we use the variables d” and y; w1th the same
semantlcs as in the MIP model.

Next we describe the hard clauses enforcing these semantics. The constraints (9)
enforce that at most k data vectors are outside the confidence band in more than s
elements. The constraints (10) enforce the correct semantics for the y; variables, i.e.,
whenever z; lies outside the confidence band in more than s elements, the variable y; is
also set to true. Next, the constraints (11) enforce that at most ¢ data points lie outside
the confidence band in each column. The constraints (12) and (13) enforce that the value
of /; and the value of u; is uniquely defined in each column j, i.e., exactly one of the [7
and u? variables are true for each j. The constraints (14) enforce the correct semantics
for the lr variables: whenever a data point T(r)j is inside the lower confidence band [,
ie., d(r) ; = 0, then the value of [; is at most the value of z(;.);. In order to get shorter
clauses in the final MaxSAT instance, we use instead an equivalent condition stating that
whenever d(,.; = 0, the value of /; is not equal to x(,); forany " € {r+1,...,t+1}.
The constraints (15) enforce a similar condition for the u? variables. The soft clauses
(16) enforce that the confidence band defined by the l h and uh variables is of minimum
size. For a fixed column j, the clause (—|l§ —\u]) is fa131ﬁed if both [7 and u are
true, corresponding to I; = x(,); and uj = z(3);. The cost of the clause is set to be
T(hyj — T(r)j = Uj — l;, i.e., the contribution of that column to the size of the final
confidence band. Notice that due to the hard clauses in the encoding, exactly one soft
clause per column will be falsified.

Redundant Constraints The clauses just described are enough to guarantee soundness.
However, the encoding also includes redundant clauses meant to improve performance
of the MaxSAT algorithms. These are based on the fact that at most ¢ data points can
lie outside the confidence band in each column. For a fixed column j this implies that
there are certain pairs of indices r € R,,,, h € ng for which the variables u;‘ and l;
cannot both be set to true.

As an example, the variables u/ and l;“ for r = r7"® — ¢ cannot be set to true
simultaneously, since this would require 2¢ data points, namely x(y);,...,%(); and
T(pmaz)j, ..oy T(pmas_(;—1)); tO be outside of the confidence bands in column j. Hence

the clause (—|u§ Vv —J;H) for r = 7" —t is always satisfied, making it redundant
as a soft clause in our encoding. However, we can instead introduce it as a hard clause
to improve propagation during search. Generalizing the above observation, for a fixed
variable [ we introduce the clause (=} V ﬂu;?) as hard clause instead of a soft one for

all he {rmar — ¢, pmas — (4 — (7 — 1))},

4 A Greedy Approach to MWCB(k, s, t)

In this section we present a greedy algorithm for finding (typically non-optimal) so-
lutions for the MWCB(k, s, t) problem. The overall idea is to exclude individual data
points greedily as long as the row-wise and column-wise constraints remain satisfied.



input : dataset X € R™*™, integers k,s,t
output: CB € R™*?

1 begin

2 R <—ordering structure for observations in X

3 rmdc <—zeros(m); rmdr <—zeros(n); rmde,t < 0

4 G <—priorityQueue(gains(R))

5 while G # () do

6 (val, 7, b) <—getMaximumElement(G)

7 1 +idx(R;,1,b)

8 if rmd¢(j) < t and (rmdg (i) # s or rmdcn: < k) then
9

R <remove(R;, b)
10 if rmdr (i) == s then
1 | rmden++
12 rmdg (¢)++
13 rmde (j)++
14 val < value(Rj,1,b)— value(R;,2,b)
15 G.add(key=val, col=j, bit=b)
16 forj €1:mdo
17 ‘ CB(j,:) < [value(R;,1,0), value(R;, 1,1)]
18 return C'B

Algorithm 1: Greedy algorithm for MWCB(k, s, ).

The general idea is similar to the greedy algorithm proposed in [11], but instead of
excluding a data vector fully, we consider excluding a single data point at a time.

The greedy algorithm is presented in pseudocode as Algorithm 1. We use an order-
ing structure R (line 2) that allows us O(1) time access to the largest and the second
to largest (resp. the smallest and the second to smallest) element in each column. The
ordering structure consists of a doubly-linked list I2; for each column j, and can be
initialized in O(mnlogn) time. We use vectors rmdc and rmdp to keep track of the
number of excluded values for each column and row, respectively, as well as a counter
rmd.,; to keep track of the number of rows for which more than s elements are ex-
cluded. Let gains(R) on line 4 be a method returning the possible gains for each of the
columns, i.e., T(2y; — T(1); for the lower band and T (pmaz)j = L(pmaw_1); for the upper
band in O(m) time. The values are stored in a priority queue G in O(m) time.

The main part of the algorithm is the while-loop on lines 5-15. The loop is re-
peated at most O(mn) times and each iteration takes O(log m) time. We use a Boolean
b € {0,1} to keep track of whether the current gain is obtained from the lower band
(b = 0) or the upper band (b = 1). At each iteration the element with largest gain
is used as a candidate for removal. On line 7, idx(R;, b) returns the index of the cur-
rently highest/lowest ranked value in I2;. On line 8, we have the condition under which
it is possible to exclude a value from the confidence band (realized by removing the
respective element from the ordering structure R). In every case we have to maintain
the column-wise constraint, i.e., check that less than ¢ values have been excluded from
the column in previous steps. Furthermore, the row-wise constraints can be satisfied in
two ways. The first condition rmdg(7) # s summarizes two cases: if rmdg(i) < s, it
is always safe to exclude the candidate. On the other hand, if rmdg (i) > s, then the



data vector with index ¢ is already among the & possible outliers with more than s ele-
ments excluded, and thus the current value can be excluded as well. The remaining case
rmd (i) == s requires that no more than k — 1 data vectors have more than s elements
excluded.

The respective counters are then updated (lines 10—13). On lines 14 and 15, a new
candidate gain is computed and pushed to the priority queue. Here val(R;,r, b) is the
value of the lowest (b = 0) or the highest (b = 1) ranked element still present in R; for
r = 1, resp. the value of the second lowest/highest ranked element for » = 2. Finally,
the confidence band to be returned is directly obtained from the ordering structure.
The overall time complexity for the greedy algorithm is O(mn log mn) and memory
complexity O(mn).

S Experiments

We present an overview of an empirical evaluation on the scalability of the MIP and
MaxSAT models using state-of-the-art solvers on MWCB(k, s, t) instances constructed
from real-world time series datasets, as well as on the relative quality of solutions pro-
vided by exact constraint optimization and the greedy approach.

For the experimental evaluation, we used the state-of-the-art commercial mixed
integer programming system CPLEX version 12.7.1 from IBM [8], and the Maxsat
solvers QMaxSAT [12], MSCG [19], and MaxHS [3]. The MaxSAT solvers are repre-
sentatives of state-of-the-art solvers based on different types of algorithms: QMaxSAT
is a so-called model-guided SAT-based solver (using a SAT solver to search for increas-
ingly good solutions until no better solutions can be found), MSCG is a core-guided
SAT-based solver (using a SAT solver to extract and rule out unsatisfiable cores of
a MaxSAT instance until a satisfying assignment is found), and MaxHS is a hybrid
SAT-IP solver for MaxSAT, implementing a so-called implicit hitting set approach. The
experiments were run on 2.83-GHz Intel Xeon E5440 quad-core machines with 32-GB
RAM and Debian GNU/Linux 8 using a per-instance timeout of 3600 seconds.

We implemented the greedy procedure (recall Section 4) in R. As the greedy pro-
cedure has much better running time scalability than the constraint solvers on finding
provably-optimal solutions, here we focus on comparing the improvements in solution
costs provided by the exact approaches to those provided by the greedy procedure.

5.1 Datasets

For the experiments, we obtained benchmark instances based on the following real-
world time series datasets.

Milan temperature data (MILAN) We use the max—temp—-milan dataset from [11].
The raw data is obtained from Global Historical Climatology Network (GHCN)
daily dataset [17, 16] from US National Oceanic and Atmospheric Administration’s
National Climatic Data Center (NOAA NCDC)*. The preprocessed data contains
average monthly maximum temperatures for a station located in Milan for the years
1763-2007, resulting in n = 245 time series with length m = 12.

* http://www.ncdc.noaa.gov/



Table 1. Summary of datasets and the instances generated.

Dataset ‘ sample sizes for n sample sizes for m
MILAN (n=245, m=12) | 50, 100, 150, 200, 245 12
POWER (n=1417, m=24) | 200, 400, 600, 800, 1000 24

MITDB (n=2027, m=253) | 100, 150, 200, 250, 300 | 26, 32, 43, 64, 127, 253

UCI-Power data (POWER) The UCI-Power dataset is the individual household elec-
tric power consumption data® from the UCI machine learning repository [13]. It
consists of hourly averages of the variable act ive.power, resulting in a dataset
with n = 1417 time series with m = 24 time points.

Heartbeat data (MITDB) We use the preprocessed datasets heartbeat-normal
and heartbeat-pvc from [11]. These datasets are obtained from the MIT-BIH
arrhythmia database available at Physionet [5]. The data contains annotated 30-
minute records of normal and abnormal heartbeats [18]. There are 1507 observa-
tions in heartbeat-normal and 520 observations in heartbeat-pvc both
with m = 253 time points.

As a preprocessing step, we shifted the data so that all values are non-negative. To
assess the scalability of our constraint models, we used the datasets to produce in-
stances with varying dimensions. To obtain an instance with n’ time series, we ran-
domly sample n’ time series from the respective dataset. For the heartbeat data, we
create instances with n’ observations by sampling at random 0.9n time series from
heartbeat-normal and 0.1n’ time series from heartbeat-pvc. Furthermore,
in order to obtain instances with m’ < 253 while maintaining the autocorrelation struc-
ture, we take every jth time point for j € {2,4,6,8,10}. Table 1 summarizes the
datasets and the parameters of the instances sampled from the datasets.

5.2 Results

Due to the large parameter value space, we will present selected views on the results
which provide interesting insights into the performance of the MIP and MaxSAT ap-
proaches for the problem, as well as quality of solutions obtained.

Scalability of the Exact Approaches We start the overview of the empirical results
with the scalability of the exact approaches, i.e., CPLEX on the proposed MIP model
and the three considered state-of-the-art MaxSAT solvers on the MaxSAT encoding.

Results from this comparison are provided in Figs. 4 and 5. Figure 4 (left) shows
the number of instances solved by each of the four solvers under different per-instance
time limits on instances based on the MILAN dataset using the parameter values k €
{0.01n,0.02n,0.05n}, s € {1,2},and t € {k, k+2}, rounding values below 1 to 1, and
the rest to the nearest integer. To increase the number of instances, we used k& € {1, 2, 3}
for the smallest value n = 50. This results in 60 instances in total. Out of the three
MaxSAT solvers, the model-guided QMaxSAT performs the best. However, CPLEX on
the MIP model solves each of the instances very fast, surpassing in performance the
MaxSAT solvers on the MaxSAT encoding.

3 http://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption



Based on this, we take a further look at the performance of CPLEX and QMaxSAT
as the two most promising out of the considered solvers. Figure 4 (right) shows the
number of solved instances generated from all of the three benchmark datasets (MILAN,
POWER, and MITDB) using parameter values k € {0.01n,0.02n,0.05n},t € {k, k+2}
and s = {0.01m, 0.02m, 0.05m} (720 instances in total), and gives further support for
the fact that CPLEX dominates in performance the MaxSAT approach.

One should note that the value of ¢t has a direct impact on the size of the search
space. Values ¢ < k are allowed by the definition, but can result in unintuitive solu-
tions. Thus, we consider values ¢ > k. As an increase in the value of ¢ can intuitively
drastically increase the hardness of an instance (in the worst case all nm values need to
be considered for removal), we assessed the effect of ¢ on the solution quality, i.e., the
size of the optimal confidence bands. Experimentation with instances from the MITDB
and POWER dataset with 200—400 time series showed that increasing the value of ¢
from k to 2k for k = 0.05n decreased the size of an optimal solution by less that 1%.
Thus, to assess the scalability of our approach, we chose to use the conservative values
t € {k,k + 2}. One should note, however, that the best value for ¢ depends on the
dataset at hand and the expected distribution of local and global outliers.

Figures 5 and 6 give further insights into the scalability of the MIP approach, using
instances based on the MITDB dataset with m = 43 and m = 127. As parameters values
we consider s = {0.02m,0.05m} and t € {k,k + 2}. For instances with m = 43,
we use k € {0.01n,0.02n,0.05n,0.10n}, and for instances with m = 127 we use
k € {0.01n,0.02n,0.05n}.

First, we consider the effect of data dimensions to the solving time. We observe
that an increase in the length of the time series m affects the solving time more than an
increase in the number of time series n, i.€., the instances based on the MITDB data with
n = 250 and m = 127 are easier to solve than instances with n = 100 and m = 253
(detailed results for MITDB-m253 not reported due to space constraints).

As for the scalability w.r.t. parameter k, typically one would be interested in 95%
or 90% confidence intervals. The 95% confidence intervals correspond to setting k =
10.05], and our MIP model can handle k£ = [0.05n | with instances up to n = 300 and
m = 127. For the instances based on MITDB data with m = 253, instances with up to
n = 100 and POWER data with m = 24 instances with up to n = 600 can be solved.
In the case corresponding to 90% confidence intervals, MITDB instances with m = 43
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Fig. 4. Comparison of solver scalability. Left: MILAN dataset, right: all datasets.
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Fig. 5. The solving times for the instances sampled from the MITDB data with m = 43 using the
MIP model. Left: ¢t = k, right: ¢t = k + 2.
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Fig. 6. The solving times for the instances sampled from the MITDB data with m = 127 using
the MIP model. Left: t = k, right: ¢t = k + 2.

up to n = 200 (with s = 0.05m) can be solved before timeout. In Figs. 5 and 6 the
effect of parameter s on solving time seems smaller than that of parameter k. This is
to some extend to due to the fact that for the actual values used, namely 1 < s < 6,
the number of possible combinations stays reasonable. For larger s, the effect becomes
more visible.

Finally, as expected, typically an increase on the value of parameter ¢ results in an
increase in solving times. However, in contrast to the other parameters, the solving times
do not monotonically increase upon increasing t. In fact, there are some instances with
t > t’ for which it is faster to solve the MWCB(k, s, t) problem than the MWCB(k;, s, t')
problem, e.g., the MITDB-m43 instance with n = 200.

Overall, based on the empirical results, CPLEX on the proposed MIP model for
MWCB(k, s, t) scales reasonably well on the real-world datasets under various param-
eter value combinations.

Solution Quality: Exact vs Greedy Finally, we look at the relative quality of solutions
obtained on one hand using the exact MIP approach and, on the other hand, using the
greedy algorithm presented in Section 4. Here we focus on the question of whether
the higher computational cost of exact optimization pays off by offering in cases better
solutions than the greedy approach.
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Fig.7. Comparison of the relative cost of greedy and optimal solutions of solutions for the
MITDB instances with m = 43 and n € {100,150, 200, 250,300}. Left: ¢ = k, right:
t = k + 2. The other parameter values used were k € {0.01n,0.02n,0.05n,0.1n} and
s € {0.02m,0.05m,0.1m}. The relative cost is provided for the 110 (out of 120) instances
for which a provably optimal solution is found in 3600 seconds.

As witnessed by the results presented in Fig. 7, the optimal solutions are in cases
non-negligibly better than those provided by the greedy approach. In more detail, the
histograms in Fig. 7 show the counts of the relative costs of greedy and optimal solu-
tions, defined as SIZE(C B, ) /SIZE(C B,y ), for instances based on the MITDB (m =
43) dataset with t = k (left) and ¢ = k + 2 (right).

We observe that there are greedy solutions that have a cost of up to approximately
1277.5% of that of the optimal solution, while on average the cost of the greedy solution
is 108% of the optimum for the MITDB-m43 instances.

Furthermore, we observed that the MIP approach can provide solutions with a low
cost (without proving them optimal) often much faster than what it takes for CPLEX to
prove the solutions found optimal. In detail, for 91 out of the 120 instances considered in
Fig. 7, CPLEX provided a provably optimal solution in less than one minute on our MIP
model. For 28 out of the remaining 29 instances, CPLEX provided within 60 seconds
solutions with 7 % lower cost on average compared to the solutions provided by the
greedy algorithm. Thus we observed that even in cases in which an optimal solution
cannot be found fast, our MIP model can be typically used to obtain better than greedy
solutions relatively fast.

These observations motivate the exact approach presented in this work, as well
as future work on ways of further improving the scalability of exact approaches for
the MWCB(k, s, t) problem. On the other hand, if solutions to very large instances of
MWCB(k, s, t) are needed very fast, our greedy algorithm is also a viable option.

6 Related Work

The univariate confidence interval of a distribution based on a finite-sized sample from
the distribution has been extensively studied (see, e.g., [7]). However, there are surpris-
ingly few approaches to multivariate confidence intervals and most of the effort has



been focused on describing univariate distributions. Another alternative are the confi-
dence regions (see, e.g., [6]), which however require making assumptions about the un-
derlying distributions or which cannot be described simply by upper and lower bounds;
e.g., confidence regions for multivariate Gaussian data are ellipsoids.

In the time series domain, multivariate confidence intervals [9, 11], namely confi-
dence bands have been defined in terms of the minimum-width envelope (MWE) prob-
lem: a time series is within a confidence band if it is within the confidence interval of
every time point, also see [14, 15,21] for similar approaches. While this definition has
desirable properties, it can result in very conservative confidence bands if there are local
deviations from what constitutes as normal behaviour. To overcome this limitation, an
alternative definition was recently introduced in [10, 24], where a data vector is within a
confidence band if it is outside the confidence intervals of at most s elements, yielding
the MWCB(k, s) problem extended further in this work.

MWCB(k, s) becomes quickly unfeasible as data/parameter values grow, as each of
the points is potential for exclusion. Furthermore, as explained in Section 2, solutions
to MWCB(k, s) can be problematic. In terms of greedy procedures for obtaining con-
fidence intervals, the closest work to ours is [10] which focuses on MWCB(k, s). The
quality of solutions of our greedy algorithm for MWCB(k) and MWCB(k, s) compared
to those in [11, 10] depends on the data. In the typical case of n > m, [11] has higher
time complexity than us. In terms of using exact constraint optimization to determin-
ing confidence bands, the only and closest work to our is [21] where a MIP model is
provided for MWCB(k); we generalize here to MWCB(k, s, t). Our approach applies
also to the special case of MWCB(k), although for capturing at the same time the more
general setting considered here we use n X m binary variables (as compared to n binary
variables in [21]).

7 Conclusions

We focused on the combinatorial optimization problem of determining tight (minimum-
width) multivariate confidence bands as a central yet NP-hard optimization problem
in data analysis. Pointing out drawbacks in earlier characterizations of the problem,
we proposed a generalization MWCB(k, s, t) circumventing some of the earlier draw-
backs. We proposed two constraint models allowing for exactly solving instances of
MWCB(k, s, t), as well as a greedy algorithm for the problem. We studied the scal-
ability of mixed integer programming and maximum satisfiability solvers on the re-
spective constraint models, and observed that mixed integer programming especially
provides good scalability on MWCB(k, s, t) instances based on real-world data. The
greedy algorithm, on the other hand, can provide relatively good solutions very fast.
However, we also showed empirically that the optimal solutions provided by the ex-
act constraint-based approach can at times provide noticeably better solutions than the
greedy approach, and can also provide relatively fast better quality solutions (without
proving optimality). The study of potential alternative characterizations (e.g., objec-
tive functions) of the minimum-width confidence band problem which would still have
the same benefits as MWCB(k, s, t) compared to MWCB(k) and MWCB(k, s) is one
interest aspect for further work.



References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

. Asin, R., Nieuwenhuis, R., Oliveras, A., Rodriguez-Carbonell, E.: Cardinality networks: a

theoretical and empirical study. Constraints 16(2), 195-221 (2011)

. Biere, A., Heule, M., van Maaren, H., Walsh, T.: Handbook of Satisfiability, Frontiers in

Artificial Intelligence and Applications, vol. 185. IOS Press (2009)

. Davies, J., Bacchus, F.: Exploiting the power of MIP solvers in MaxSAT. In: Proc. SAT.

Lecture Notes in Computer Science, vol. 7962, pp. 166—181. Springer (2013)

. Gardner, M.J., Altman, D.G.: Confidence intervals rather than p values: estimation rather

than hypothesis testing. British Medical Journal (Clinical Research Edition) 292(6522), 746—
750 (1986)

. Goldberger, A.L., Amaral, L.A.N., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark, R.G., Mi-

etus, J.E., Moody, G.B., Peng, C.K., Stanley, H.E.: PhysioBank, PhysioToolkit, and Phys-
ioNet: Components of a new research resource for complex physiologic signals. Circulation
101(23), e215-e220 (2000)

. Guilbaud, O.: Simultaneous confidence regions corresponding to Holm’s step-down proce-

dure and other closed-testing procedures. Biometrical Journal 50(5), 678 (2008)

. Hyndman, R.J., Fan, Y.: Sample quantiles in statistical packages. The American Statistician

50(4), 361-365 (1996)

. IBM ILOG: CPLEX optimizer (2017), http://www-01.ibm.com/software/

commerce/optimization/cplex-optimizer/

. Kolsrud, D.: Time-simultaneous prediction band for a time series. Journal of Forecasting

26(3), 171-188 (2007)

Korpela, J., Oikarinen, E., Puolamiki, K., Ukkonen, A.: Multivariate confidence intervals.
In: Proc. SDM. pp. 696-704. SIAM (2017)

Korpela, J., Puolamiki, K., Gionis, A.: Confidence bands for time series data. Data Mining
and Knowledge Discovery 28(5-6), 1530-1553 (2014)

Koshimura, M., Zhang, T., Fujita, H., Hasegawa, R.: QMaxSAT: A partial Max-SAT solver.
Journal of Satisfiability, Boolean Modeling and Computation 8(1/2), 95-100 (2012)
Lichman, M.: UCI machine learning repository (2013), http://archive.ics.uci.
edu/ml

Liu, W., Jamshidian, M., Zhang, Y., Bretz, F., Han, X.: Some new methods for the compar-
ison of two linear regression models. Journal of Statistical Planning and Inference 137(1),
57-67 (2007)

Mandel, M., Betensky, R.A.: Simultaneous confidence intervals based on the percentile boot-
strap approach. Computational Statistics & Data Analysis 52(4), 2158-2165 (2008)

Menne, M., Durre, 1., Korzeniewski, B., McNeal, S., Thomas, K., Yin, X., Anthony, S., Ray,
R., Vose, R., Gleason, B., Houston, T.: Global Historical Climatology Network — Daily
(GHCN-Daily), version 3.11 (2012)

Menne, M., Durre, L., Vose, R., Gleason, B., Houston, T.: An overview of the Global Histori-
cal Climatology Network-Daily Database. Journal of Atmospheric and Oceanic Technology
29, 897-910 (2012)

Moody, G.B., Mark, R.G.: The impact of the MIT-BIH arrhythmia database. IEEE Engineer-
ing in Medicine and Biology Magazine 20(3), 45-50 (2001)

Morgado, A., Dodaro, C., Marques-Silva, J.: Core-guided MaxSAT with soft cardinality con-
straints. In: Proc. CP. Lecture Notes in Computer Science, vol. 8656, pp. 564-573. Springer
(2014)

Nuzzo, R.: Scientific method: Statistical errors. Nature 506, 150-152 (2014)

Schiissler, R., Trede, M.: Constructing minimum-width confidence bands. Economics Letters
145, 182-185 (2016)



22.

23.
24.

25.

Staszewska-Bystrova, A., Winker, P.: Constructing narrowest pathwise bootstrap prediction
bands using threshold accepting. International Journal of Forecasting 29(2), 221-233 (2013)
Trafimow, D., Marks, M.: Editorial. Basic and Applied Social Psychology 37(1), 1-2 (2015)
Wolf, M., Wunderli, D.: Bootstrap joint prediction regions. Journal of Time Series Analysis
36(3), 352-376 (2015)

Woolston, C.: Psychology journal bans P values. Nature 519, 9 (2015)



