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Abstract Various algorithms have been proposed for finding a Bayesian network
structure that is guaranteed to maximize a given scoring function. As the state-of-
the-art algorithms rely on adaptive search strategies, such as branch-and-bound
and integer linear programming techniques, the time requirements of the algo-
rithms are not well characterized by simple functions of the instance size. Fur-
thermore, no single algorithm dominates the others in speed. Given a problem
instance, it is thus a priori unclear which algorithm will perform best and how
fast it will solve the instance.

We show that for a given algorithm the hardness of a problem instance can be
efficiently predicted based on a collection of non-trivial features which go beyond
the basic parameters of instance size. Specifically, we train and test a statistical
model on empirical data, based on the largest evaluation of state-of-the-art exact
algorithms to date. We demonstrate that we can predict the running times to a
reasonable degree of accuracy, and effectively select algorithms that perform well
in terms of running times on a particular instance. Moreover, we also show how
the results can be utilized in building an algorithm portfolio that combines several
individual algorithms in an almost optimal manner.
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1 Introduction

Since the formalization and popularization of Bayesian networks [53] for modeling
and reasoning with multiple variables, much research has been devoted to learning
them from statistical data [28]. One of the main challenges has been to learn the
model structure, represented by a directed acyclic graph (DAG) on the variables.
Cast as a problem of finding a DAG that is a global optimum of a score function
for given data, the Bayesian network structure learning problem (BNSL) is notori-
ously NP-hard; the hardness is chiefly due to the acyclicity constraint imposed on
the DAG to be learned [14]. To cope with the computational hardness, early work
on structure learning resorted to local search algorithms. While local search algo-
rithms oftentimes perform well, they are unfortunately unable to guarantee global
optimality of produced networks. This uncertainty about the quality hampers the
use of the network [48] in probabilistic inference and causal discovery.

The last decade has raised hopes of solving larger problem instances to opti-
mality. The first algorithms guaranteed to find the optimum adopted a dynamic
programming approach to avoid exhaustive search in the space of DAGs [51,36,61,
60]. Later algorithms have expedited the dynamic programming approaches using
the A∗ search algorithm with various admissible heuristics [70], or have employed
quite different approaches, such as branch and bound in the space of (cyclic) di-
rected graphs [11], integer linear programming (ILP) [34,16,17], and constraint
programming (CP) [5]. In this work, we focus on such complete solvers for BNSL,
which we call simply solvers. Our interest is in unsupervised learning of a joint
structure over the variables, only noting in passing that alternative methods have
been developed for supervised learning of the relationship between a designated
response variable and the other, predictor variables (see, e.g., a recent survey [7]
and references therein).

Due to the intrinsic differences between the algorithmic approaches underlying
BNSL solvers, it is not surprising that their relative efficiency varies greatly on a
per-instance basis. To exemplify this, a comparison of the running times of three
current state-of-the-art solver, based on A∗, ILP, and CP, is illustrated in Figure 1
using typical benchmark datasets. Evidently, no single one of these three solvers
dominates the two others.

Figure 1 suggests that, to improve over the existing solvers, an alternative to
developing yet another solver is to design hybrid algorithms, or algorithm port-
folios, which would ideally combine the best-case performance of the different
solvers. Indeed, in this work we do not focus on developing or improving an indi-
vidual algorithmic approach. Instead, we aim to characterize how the performance
of different algorithmic approaches depends on the problem instance, which is the
key to the design of efficient algorithm portfolios and hybrids. The underlying
motivation for developing such techniques is the aim of improving the efficiency
of state of the art in complete solvers in solving hard BNSL instances.

In this quest, it is vital to discover a collection of features that are efficient to
compute and yet informative about the hardness of an instance for a solver. Prior
work has identified two simple features, namely the number of variables and the
number of so-called candidate parent sets, denoted by n and m, respectively. To
explain the observed orthogonal performance characteristics shown in Figure 1, it
has been suggested, roughly, that typical instances can be solved to optimality by
A∗, if n is at most 40 (no matter how large m), and by ILP if m is moderate, say, at
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most some tens of thousands (no matter how large n) [17,70]; for the more recent
CP approach, we are not aware of any comparable description. Beyond this rough
characterization, the practical time complexity of the best-performing solvers is
currently poorly understood. This stems from the sophisticated search heuristics
employed by the solvers, which tend to be sensitive to small variations in the
instances, thus resulting in somewhat chaotic-looking behavior of running times.
Furthermore, the gap between the analytic worst-case and best-case running time
bounds, in terms of n and m, is huge, and typical instances fall somewhere in
between the two extremes.

The starting point of our work is the following basic open question:

Q1 For determining the fastest of the available solvers on a given instance, do the
simple features, the number of variables and the number of candidate parent
sets, suffice?

We answer this question in the affirmative. Our result is empirical in that it relies
on training and testing a statistical model with a large set of problem instances
collected from various sources. We show that a simple set of features gives yields
a model which accurately predicts the fastest solver for a given instance based on
the parameters n and m only. Furthermore, we show how this yields an algorithm
portfolio that almost always runs as fast as the fastest solver, thus significantly
outperforming any fixed solver on a large collection of instances.

However, a closer inspection of the model reveals that the running times it
predicts often differ from the actual running times by one to two orders of mag-
nitude. The large deviations suggest that, if the interest is in accurate estimation
of the running times, then the simple feature set should probably be extended by
additional features:

Q2 For predicting the running time of a solver on a given instance, can the accu-
racy be significantly improved by including additional efficiently computable
features?

Also to this question our answer is affirmative. We introduce and study several
additional features that potentially capture the hardness of the problem more accu-
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Fig. 1 Comparison of three state-of-the-art algorithms for finding an optimal Bayesian net-
work. Running times below 1 or above 7200 seconds are rounded to 1 and 7200, respectively.
The specific solver parameterizations are ILP: GOBNILP INSERT VERSION HERE!, A∗:
A∗INSERT VERSION HERE!CP: CPBayes; see Section 5 for descriptions of the solvers and
the datasets.
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rately for a given solver. We focus on what are currently the three top-performing
solver families based on A∗ [70], ILP [17], and CP [5], which clearly dominate
earlier approaches based on dynamic programming and branch-and-bound [49].
Specifically, we show that models with a wider variety of features yield at times
significant improvements in prediction accuracy.

Besides the aforementioned contributions, the empirical work associated with
this paper also provides the most elaborate evaluation of state-of-the-art solvers
to date, significant in its own right.

need to revise this paragraph after everything else! The present work extends
and revises substantially our preliminary study reported at the AAAI-14 confer-
ence [49]. Here we have thoroughly revised the methodology and analysis presented
throughout the paper. In particular, we have completely replaced the previous ma-
chine learning framework with the state-of-the-art auto-sklearn system [20]; it op-
timizes the choice of preprocessing, model class and model class parameters. Thus,
we avoid difficult, ad hoc choices for these important characteristics. We have also
expanded the portfolio itself to include the very recent CP-based solver [5]. At the
same time, we have updated the runtime results to the most recent versions of
the A∗-based and ILP-based solvers. Furthermore, we provide a more fine-grained
analysis by categorizing datasets based on their origin into benchmark and syn-
thetic data sets. Our results show that the origin of the dataset significantly affects
the relative solver performances. To this end, we have also increased the number of
synthetic data sets considerably, from a few dozens to several hundred. Finally, we
provide a more extensive discussion of the characteristics of the learned models,
such as preprocessing strategies.

1.1 Related Work

Due to the wide range of potential applications, the general research area of algo-
rithm selection, with tight connections to machine learning and algorithm portfolio
design, is very diverse. Instead of aiming at a full review of the relevant literature,
here we aim at a brief overview of the research area by providing references to
some of the key early works on the topic and some of the more recent works most
closely related to ours. For an expanded discussion of the literature on algorithm
selection and runtime prediction, we refer the reader to two recent surveys on the
topic with further pointers to related work [33,38].

Research on algorithm selection for various types of important computational
problems has its roots in [56], where the algorithm selection problem was already
introduced, and feature-based modeling was proposed to facilitate the selection of
the best-performing algorithm for a given problem instance, considering various
example problems. Later works, including [12,21,46], demonstrated the efficacy of
applying machine learning techniques to learn models from empirical performance
data. A Bayesian approach was proposed e.g. in [30].

More recently, empirical hardness models [44,45] have been applied in the
construction of solver portfolios [26] for various NP-hard search problems [39], in-
cluding Boolean satisfiability (SAT) (e.g. in [68]), constraint programming (e.g. in
[24,31]), quantified Boolean formula satisfiability (e.g. in [55]), answer set pro-
gramming (e.g. in [29]), as well as for the traveling salesperson problem (e.g. in



Empirical Hardness of Finding Optimal Bayesian Network Structures 5

[40]). To the best of our knowledge, for the important problem of Bayesian network
structure learning, the present work is the first to adopt the approach.

In terms of terminology, we investigate algorithm selection in the context of
learning Bayesian networks, which is an unsupervised learning task. Nevertheless,
this work is well-situated in the context of meta-learning [25], which most often
consider supervised settings. The BNSL features we propose in Section 3.1 are
exactly a set of meta-features for this particular domain. The regression models
we learn (Section 3.2) capture meta-knowledge about the state-of-the-art BNSL
solvers.

Previous work [41,43] has suggested that in many cases, a small set of fea-
tures can lead to accurate predictions; indeed, in Section 5.2 we show that a very
small number of features leads to near-optimal algorithm selection performance.
Furthermore, while that work relied on qualitative visual analysis, in Section 6.4
we quantify the utility of each feature using the Gini importance [9].

Recently, a simple “Best in Sample” approach [57] was shown to be very ef-
fective for algorithm (classifier) selection in the supervised setting. Briefly, this
approach trains each classifier in the portfolio using a very small subset of the
data; it then selects the classifier to use based on performance on the subset.
“Probing” features—a central form of features in e.g. SAT portfolios [68]—we ap-
ply in the context of BNSL (see Section 3.1) are similar in spirit to this approach,
though adapted to the unsupervised learning setting. In terms of evaluation, our
virtual best solver comparisons in Section 5 are quite similar to Loss Curves [42],
which have previously been used in the context of meta-learning.

1.2 Organization

The remainder of this paper is organized as follows. We begin in Section 2 by de-
scribing the problem of structure learning in Bayesian networks and by giving an
overview of the algorithmic techniques underlying the state-of-the-art solvers. Sec-
tion 3 presents the building blocks of our empirical hardness model: we introduce
several BNSL features; we choose an appropriate statistical learning framework;
and we describe the methods we use for training and evaluating the models. In
Section 4, we present the experimental setting, namely technical details of the
investigated solvers and characteristics of the collected problem instances. Results
on learning solver portfolios and on predicting running times of individual solvers
are reported in Sections 5 and 6, respectively. Finally, we discuss some questions
that are left open and directions for future research in Section 7.

2 Learning Bayesian Networks

A Bayesian network (G,P ) consists of a directed acyclic graph (DAG) G on a set
of random variables X1, . . . , Xn and a joint distribution P of the variables such
that P factorizes into a product of the conditional distributions P (Xi|Gi). Here
Gi denotes the set of parents of Xi in G; we call a variable Xj a parent of Xi, and
Xi a child of Xj , if G contains an arc from Xj to Xi.
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2.1 The Structure Learning Problem

In its simplest form, structure learning in Bayesian networks concerns finding a
DAG that best fits some observed data on the variables.1 Throughout this work,
we only deal with this optimization formulation, here only mentioning that there
are also other popular formulations based on frequentist (multiple) hypothesis
testing [63,13] and Bayesian model averaging [47,23,36].

The goodness of fit is typically measured by a real-valued scoring function
s, which associates a DAG G with a real-valued score s(G).2 Frequently used
scoring functions—based either on (penalized) maximum likelihood, minimum de-
scription length, or Bayesian principles (e.g., BDeu and other forms of marginal
likelihood)—decompose into a sum of local scores si(Gi) for each variable Xi and
its set of parents Gi [28]. In principle, for each i the local scores are defined for all
the 2n−1 possible parent sets. However, in practice this number is greatly reduced
by enforcing a small upper bound for the size of the parent sets Gi or by pruning,
as preprocessing, parent sets that provably cannot belong to an optimal DAG [65,
11]. Applying one or both of these reductions results in a collection of candidate
parent sets, which we will denote by Gi.

This motivates the following formulation of the Bayesian network structure
learning problem (BNSL).

Input: Local scores si(Gi) for a collection of candidate parent sets Gi ∈ Gi
for i = 1, . . . , n.

Task: Find a DAG G that maximizes the score s(G) =
∑

i si(Gi).

Along with the number of variables n, another key parameter describing the
input size is the total number of candidate parent sets m =

∑
i |Gi|. See Figure 2

for an example instance of the BNSL problem.

2.2 Overview of Complete Solvers for BNSL

We call an algorithm that solves the BNSL problem to a guaranteed global op-
timum a complete solver for BNSL, or simply a solver. In the next paragraphs
we review some state-of-the-art solvers that fit the scope of our study. We omit
algorithms that assume significant additional constraints given as input [54] or
massive parallel processing [64,52].

Several works [51,36,60] have proposed dynamic programming algorithms to
solve BNSL. The solvers are based on the early observation [10,15] that for any
fixed ordering of the n variables, the decomposability of the score enables efficient
optimization over all DAGs compatible with the ordering. The algorithms proceed
by adding one variable at a time, only tabulating partial solutions for the explored
subsets of the variables. Thus the running time scales roughly as 2n.

1 Strictly speaking, the data are assumed to consist of some number N of independent and
identically distributed tuples (Xt

1, . . . , X
t
n), t = 1, . . . , N , the dimension of the data being

N × n.
2 The score does not depend on the parameters of the unspecified distribution P , which

are treated as nuisance parameters and absorbed by the scoring function (e.g., estimated or
integrated away).
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Variable Candidate Parents Local Score
Xi Gi si(Gi)

X1 ∅ 2.0

X2 ∅ 1.0

X3 ∅ 0.2
X3 {X1} 1.0

X4 ∅ 0.1
X4 {X6} 0.8

X5 ∅ 0.1
X5 {X1} 0.7
X5 {X1, X2} 2.0

X6 ∅ 0.2
X6 {X3} 0.8
X6 {X3, X4} 2.0

X7 ∅ 0.1
X7 {X5} 0.5
X7 {X4, X5} 1.0

⇒

X1 X2

X3 X4 X5

X6 X7

Fig. 2 An optimal DAG (on the right) for a given scoring function s (on the left). There are
n = 7 variables and m = 15 candidate parent sets in total. The optimal score, 8.1, is the sum
of the local scores shown in bold face. Observe that choosing G4 = {X6} would have increased
the score but violated the acyclicity constraint.

Yuan and Malone [70] formulated BNSL as a state space search through the dy-
namic programming lattice and applied the A∗ search algorithm. Unlike the other
more sophisticated solvers, A∗ maintains the worst-case time bound of dynamic
programming. To this end, they developed several admissible heuristics which re-
lax the acyclicity constraint; these allow the algorithm to prune suboptimal paths
during search, thus typically avoiding visiting all the variable subsets.

The branch-and-bound style algorithm by de Campos and Ji [11] searches in a
relaxed space of directed graphs that may contain cycles. It begins by allowing all
variables to choose their optimal parents, which typically results in some number
of cycles. Then, any found cyclic solutions are iteratively ruled out: it finds a cycle
and breaks it by removing one arc in it, branching over the possible choices of the
arc. It examines graphs in a best-first order, so the first acyclic graph it finds is
an optimal DAG. In this way, the algorithm ignores many cyclic graphs.

Integer linear programming (ILP) algorithms by Jaakkola et al. [34] and by
Bartlett and Cussens [16,17] search in a geometric space, in which DAGs appear
as vertices of an embedded polytope, corresponding to integral solutions to a
linear program (LP). A series of LP relaxations are solved, and the solution to
each relaxation is checked for integrality; an integral solution corresponds to an
optimal DAG. The search space is effectively pruned by employing domain-specific
cutting planes.

A very recent development in solvers for BNSL is the constraint programming
(CP) based approach by van Beek and Hoffmann [5], constituting a constraint-
based depth-first branch-and-bound approach to BNSL. As a key ingredient, the
approach uses an improved constraint model with problem-specific dominance,
symmetry breaking, and acyclicity constraints and propagators, as well as cost-
based pruning rules applied during search, together with domain-specific search
heuristics.



8 Malone et al.

3 Empirical Hardness Models

In this work, we focus on the hardness of a BNSL instance, relative to a particular
solver. We define the hardness of instance I for solver S simply as the running
time TS(I) of the solver S on the instance I.3 Due to the sophisticated heuristics
underlying the state-of-the-art BNSL solvers, evaluating the empirical hardness is
presumably (under standard complexity-theoretic assumptions) computationally
intractable; indeed, the fastest method we are aware of for evaluating TS(I) is
actually running S on I.

Rather than exactly evaluating the function TS , we take a machine learning
approach to approximate it: from a large collection of example instances for which
the actual running times are known (computed), we learn a model which is effi-
cient to evaluate at any given instance. Underlying this approach is the hypothesis
that an accurate empirical hardness model [44] can be built based on a set of effi-
ciently computable features of BNSL instances; by a feature we refer to a mapping
from the instances to the real numbers. This approach naturally gives rise to the
following supervised machine learning problem, for a fixed solver S.

Input: A training set of BNSL instances (represented as collections of
feature values) and the respective running times of the solver S.

Task: Learn a function T̂S so as to minimize the average prediction error
on an unseen set of BNSL instances.

We next introduce several categories of efficiently-computable features of BNSL
instances. Most of these features have not previously been used for characterizing
the hardness of BNSL. We then explain our training and testing strategies.

3.1 Features for BNSL

We use four different strategies to efficiently compute features to characterize
BNSL instances: Basic, Basic extended, Upper bounding, and Probing.
Table 1 lists the features in each category. Further, for the purpose of comparison,
we define the category All as encompassing all features of all categories.

The Basic features are the number of variables n and the mean number of
candidate parent sets per variable, m/n, which can be viewed as a natural mea-
sure of the “density” of an instance. The features in Basic extended are other
simple features that summarize the size distribution of the collections Gi and the
candidate parent sets Gi in each Gi. During training, we take the logarithm of the
features related to the number of candidate parent sets (Features 2 – 5).

In the Upper bounding category, the features are characteristics of a di-
rected graph that is an optimal solution to a relaxation of the original BNSL
problem. Notice here especially the features based on strongly connected compo-
nents (SCCs), which can be seen as a proxy for cyclicity.4 In the Simple UB

3 While, in principle, the function TS also depends on external factors such as the specific
hardware on which the solver is run, we do not consider those factors in this work.

4 Note that counting the number of cycles in a given graph is, in terms of computational
complexity, presumably highly intractable, whereas SCC computation is achieved fast with
well-known polynomial-time algorithms.
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subcategory, a graph is obtained by letting each variable select its best parent set
according to the scores. The resulting graph may contain cycles, and the associ-
ated score is a guaranteed upper bound on the score of an optimal DAG. Many
of the reviewed state-of-the-art solvers either implicitly or explicitly use this up-
per bounding technique; however, they do not use this information to estimate
the difficulty of a given instance. The features summarize structural properties
of the graph: in- and out-degree distribution over the variables, and the number
and size of non-trivial strongly connected components. In the Pattern database
UB subcategory, the features are the same but the graph is obtained by solving
a more sophisticated relaxation of the BNSL problem using the pattern databases
technique [69]. Briefly, this strategy optimally breaks cycles among some subsets

Table 1 BNSL features

Basic
1. Number of variables
2. Mean number of CPSs (candidate parent sets)

Basic extended
3–5. Number of CPSs max, sum, sd (standard deviation)
6–8. CPS cardinalities max, mean, sd

Upper bounding

Simple UB
9–11. Node in-degree max, mean, sd
12–14. Node out-degree max, mean, sd
15–17. Node degree max, mean, sd
18. Number of root nodes (no parents)
19. Number of leaf nodes (no children)
20. Number of non-trivial SCCs (strongly connected components)
21–23. Size of non-trivial SCCs max, mean, sd

Pattern database UB
24–38. The same features as for Simple UB but calculated on the graph derived from

the pattern databases

Probing

Greedy probing
39–41. Node in-degree max, mean, sd
42–44. Node out-degree max, mean, sd
45–47. Node degree max, mean, sd
48. Number of root nodes
49. Number of leaf nodes
50. Error bound, derived from the score of the graph and the pattern database

upper bound

A∗ probing
51–62. The same features as for Greedy probing but calculated on the graph learned

with A∗ probing

ILP probing
63–74. The same features as for Greedy probing but calculated on the graph learned

with ILP probing

CP probing
75–86. The same features as for Greedy probing but calculated on the graph learned

with CP probing
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of variables but allows cycles among larger groups; it is a strictly tighter relax-
ation than the Simple UB. Both A∗ and CP explicitly make use of the pattern
database relaxation.

Probing refers to running a solver for a fixed number of seconds and collecting
statistics about its behavior during the run. Probing has previously been shown to
be a central form of features e.g. in the context of Boolean satisfiability within the
SATzilla portfolio approach [68]. For a survey on uses of probing features in other
domains, see [33]. Here in the context of BNSL we consider four probing strategies:
greedy hill climbing with a TABU list and random restarts, an anytime variant of
A∗ [50], and the default versions of ILP [17] and CP [5]. All of these algorithms
have anytime characteristics, so they can be stopped at any time and output the
best DAG found so far. Furthermore, the A∗, ILP and CP implementations give
guaranteed error bounds on the quality of the found DAGs in terms of the BNSL
objective function; an error bound can also be calculated for the DAG found using
greedy hill climbing by using the upper bounding techniques discussed above.
Probing is implemented in practice by running each algorithm for 5 seconds and
then collecting several features, including in- and out-degree statistics and error
bound. We refer to these feature subcategories of Probing as Greedy probing,
A∗ probing, ILP probing, and CP probing, respectively.

3.2 Model Training and Evaluation

We use the auto-sklearn system [20] to learn an empirical hardness model T̂S
for each solver S; we refer to the highly sophisticated machine learning algo-
rithm implemented in auto-sklearn, simply as a learner. Briefly, auto-sklearn uses
a Bayesian optimization strategy for learning good model classes and hyperpa-
rameters for those model classes; additionally, preprocessing strategies, such as
polynomial expansion or feature selection, and associated hyperparameters are in-
cluded in this optimization. Importantly, this approach avoids the difficult step
of manually choosing hyperparameters in an ad hoc fashion. In total, the learner
selects among eleven preprocessing strategies, including higher dimensional pro-
jection techniques like polynomial expansion and feature selection strategies based
on, for example, mutual information; twelve model classes for regression are used
in the optimization, including random forests, several support vector machine-
based strategies and various generalized linear models with different regularization
strategies. We refer the reader to the original publication [20] for more details.

As described in detail in Section 4.2, this study includes three types of BNSL
instances: Real, Sampled and Synthetic. For training, we mix instances of all
types of datasets. As a first step in training, we normalize each feature so that
it has zero mean and unit variance; the same mean and variance are later used
to scale the test data. We then use auto-sklearn to learn two different, indepen-
dent regression models for each solver. First, we optimize prediction accuracy by
learning an ensemble of 50 regressors with optimized hyperparameters; each re-
gressor also has its own preprocessing technique. We largely treat the ensemble
as a blackbox model for regression. Second, we use auto-sklearn to find a single
random forest (and associated preprocessor) with optimized hyperparameters; in
this setting, the goal is to find an interpretable model to allow qualitative analysis.
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The portfolios and prediction accuracy are evaluated using standard 10-fold
cross-validation. In other words, the data is partitioned into 10 non-overlapping
subsets. For each fold, nine of the subsets are used to train the model. Internally,
auto-sklearn uses one-third of the training data as a validation set. We give 5 hours
for training time for each fold. The remaining subset is used for testing, which only
takes a few seconds; each subset is used as the testing set once. The instances are
partitioned the same way for all solvers. We predict the runtime of each testing
instance using the appropriate model for each solver. We then either select the
solver with the lowest predicted runtime (and examine its actual runtime against
the runtime of the fastest solver) or compare the predicted runtimes to the actual
runtimes. The overall performance is the union of performance on each test subset.

4 Experimental Setup

We continue with a detailed description of our experimental setup, including de-
scriptions of the solver parameterizations used, the data sets used in the experi-
ments, as well as the computing infrastructure used.

4.1 Solvers

Our focus is on complete BNSL solvers that are capable of producing guaranteed
globally optimal solutions. Specifically, we evaluate three complete approaches:
Integer-Linear Programming (ILP), A∗-based state-space search (A∗), and a con-
straint programming based approach (CP). Importantly, these approaches consti-
tute the current state-of-the-art solvers for BNSL.5

We consider the following solvers and their parameterizations.

ILP We use the GOBNILP solver [17] as a state-of-the-art representative of the
ILP-based approaches to BNSL. GOBNILP uses the SCIP framework [1]
and an external linear program solver; we chose the open source SoPlex
solver [67] bundled with the SCIP Optimization Suite. We consider the most
recent version, GOBNILP 1.6.2, which uses SCIP 3.2.0 with Soplex 2.2.0,
as well as GOBNILP 1.4.1 (SCIP 3.0.1, SoPlex 1.7.1). For both versions we
consider two parameterizations: the default configuration, which searches for
BNSL-specific cutting planes using graph-based cycle finding algorithms, and
a second configuration, “-nc” (“no cycle-finding”), which only uses nested
integer programs. We call these parameterizations ilp-141, ilp-141-nc, ilp-162,
and ilp-162-nc, respectively, for short.

A∗ We use the URLearning solver [70] as a state-of-the-art representative ap-
proach to BNSL based on the well-known A∗ search method. We consider
three variants: A∗-ed3, which uses dynamic pattern databases, A∗-ec, which
uses a combination of dynamic and static pattern databases, and A∗-comp
which uses a strongly connected component-based decomposition [18].

5 In a preliminary version of this work [49], we also considered an earlier proposed branch-
and-bound approach [11], which we found to be always dominated by ILP; therefore, we
dropped it from consideration. Furthermore, the earlier proposed dynamic programming ap-
proach [36] is clearly dominated by A∗. We have also discarded some parameterizations of both
ILP- and A∗-based solvers that were found to be uncompetitive.
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CP We use the CPBayes solver [5] as the most recent state-of-the-art represen-
tative approach to BNSL based on branch-and-bound style constraint pro-
gramming search with problem-specific filtering (search-space pruning) tech-
niques. This solver does not expose any parameters to control its behavior.
As such we apply the solver in our experiments in its default configuration,
cpbayes.

The non-default parameterizations of the solvers were suggested to us by the
solver developers. While we use both an “up-to-date” version (1.6.2) and an older
version (1.4.1) of GOBNILP, it is important to note that, generally, the choice of
parameters and the solver version can at times have a noticeable effect on the per-
instance running times of the resulting solver—so much so that one could consider
the solvers different.6

4.2 Training Data

To train our models we first obtained a collection of datasets from various sources.
For each dataset we then evaluated one or more scoring functions to produce a col-
lection of BNSL instances. We used datasets from the following three categories.7

Real Real-world datasets obtained from machine learning repositories: the
UCI repository [2], the MLData repository (http://mldata.org/),
and the Weka distribution [27]. We searched primarily for datasets
of fully or mostly categorical data and a reasonable number of vari-
ables (16–64) to produce instances that are feasible but non-trivial to
solve. Every dataset found and matching these criteria was included.
While some of the datasets have originally been designed for super-
vised learning, they have been regularly included also in studies of
unsupervised learning. These datasets are summarized in more detail
in Table 7 of Appendix A.

Sampled Datasets sampled from benchmark Bayesian networks, obtained from
http://www.cs.york.ac.uk/aig/sw/gobnilp/. These datasets are widely
used for evaluating the performance of individual solvers, for exam-
ple, recently in the context of optimal BNSL in [4–6,17–19,49,48,58].
These datasets are summarized in Table 8 of Appendix A.

Synthetic Datasets sampled from synthetic Bayesian networks. We generated
random networks of varying number of binary variables (20–60) and
maximum in-degree (2–8). For each network one dataset was produced
by sampling a random number (100–10,000) of records.

We preprocessed each dataset by removing unique identifiers (to avoid over-
fitting) and trivial variables that only take on one value. Continuous variables as

6 For corroborating evidence on this, see e.g. empirical data provided in [17] for different
parameterizations and versions of GOBNILP.

7 The main motivations for including both more real and, on the other hand, synthetic
datasets in the study are two-fold: (i) We aimed at a notably heterogeneous set of benchmarks
for the study, yielding insights into the prediction task on a wide range of datasets with different
properties; and (ii) the three-way categorization has analogies in the benchmark categorization
used in the SAT domain [35].



Empirical Hardness of Finding Optimal Bayesian Network Structures 13

Table 2 Number of source datasets, instances generated from the source datasets, and in-
stances used in training and testing the models.

Category Datasets All Instances Training & Testing

Real 39 637 486
Sampled 19 317 283
Synthetic 477 477 410

well as other variables with very large domains were either removed or discretized
using a normalized maximum likelihood approach [37] when possible. The maxi-
mum number of records per dataset was limited to 60, 000 to make the evaluation
of scoring functions feasible.

We considered five different scoring functions8: BDeu with the Equivalent Sam-
ple Size parameter selected from {0.1, 1, 10, 100} and the BIC scores. For each
dataset of the first two classes we produced multiple instances by considering all
scoring functions and varying upper bounds on the size of each candidate parent
set, ranging from 2 to 6, as well as the unbounded case. For each synthetic dataset
we produced one instance, choosing both the scoring function and the parent limit
at random. For larger datasets evaluating the scores was feasible only up to lower
parent limits. The total number of datasets and BNSL instances produced is sum-
marized in Table 2.

For running all solvers on these instances we used a cluster of Dell PowerEdge
M610 computing nodes equipped with two 2.53-GHz Intel Xeon E5540 CPUs and
32-GB RAM. For each individual run we used one CPU core, with a timeout of
two hours and a 30-GB memory limit. We treat the runtime of any instance as
two hours if a solver exceeds either the time or memory limit.

For training the models we used a subset of all instances, obtained by removing
very easy instances, solved within five seconds by all solvers, as well as instances
on which all solvers failed.9 We call these the training instances (see Table 2) and
focus on them in the following sections.

4.3 Feature computation

In order to train the models we computed the features detailed in Section 3.1
for all training instances. Table 3 summarizes the time spent to compute these
features separately for each feature category. We observe that the computation
takes around 16 seconds per instance on average and about 26 seconds in the worst
case. Further, most of the time is spent on probing, while features of all other
categories are computed in less than one second. Probing occasionally requires
more than the limit of 5 seconds to finish a preprocessing step, in which case it is
given 10 seconds in total.

8 In our experiments, the results were not very sensitive to the scoring function, except
through its effect on the number of CPSs and other features, so our results can generalize to
other decomposable scores as well.

9 This is in line with related work on portfolio construction in other domains such as SAT [33]
as well as the SAT Competitions where a similar criterion is used to filter out “too easy”
instances from the competition benchmark sets [3]. Solver selection for very easy instances is
essentially trivial, as any choice of a solver is essentially a good one.
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Table 3 The running time of feature computation for each feature category in seconds, shown
as the average, median, minimum, and maximum running time over all training instances.

Feature set Average Median Min Max
Basic 0.00 0 0 0
Basic extended 0.00 0 0 0
Lower bounding 0.00 0 0 0
Greedy probing 2.53 2 0 6
A* probing 4.61 5 0 7
ILP probing 3.94 5 0 10
CP probing 4.49 6 0 10
All 15.57 18 0 26

We conclude that the overhead from computing the features is negligible from
a portfolio perspective, as our main interest is in choosing the fastest solver for
harder instances that take several minutes or even hours to solve. The easiest
instances by contrast are often solved already in the probing phase.10

4.4 Availability of Experiment Data

To facilitate open access and further analysis of the data produced in the experi-
ments of this work, we have made the full solver running time data, as well as the
models learned for runtime prediction, available at

http://bnportfolio.cs.helsinki.fi/

Furthermore, the runtime and feature data available as a scenario in the ASlib
Algorithm Selection Library [8] for further benchmarking purposes at

http://INSERT-URL-HERE and also to the response / KUSTAA

5 Portfolios for BNSL

This section focuses on the construction of practical BNSL solver portfolios in
order to address question Q1. Optimal portfolio behavior is to always select the
best-performing solver for a given instance. As the main result, we will show that,
perhaps somewhat surprisingly, it is possible to construct a practical BNSL solver
portfolio that vastly outperforms any single solver using only the Basic features.

5.1 Solver Performance

As the basis of this work, we ran all the solver parameterizations on all the BNSL
instances, as described in Section 4. A comparison of solver performance is shown
in Figure 3, in terms of the number of instances for which a particular solver was
empirically faster than all other solvers on the considered benchmarks. Table 4
shows an alternative comparison in terms of the total number of instances that
were successfully solved within the given computational resources as well as the

10 We note here that the benchmark set used was not filtered based on probing results.
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total CPU time required to either solve an instance or run out of time or memory.
We observe that among the ILP parameterizations the two default configurations,
ilp-141 and ilp-162, are empirically the best performing on the considered bench-
marks, while in terms of total running time all four show fairly similar performance
empirically. Among the A∗ variants, A∗-comp does best on average, while A∗-ec out-
performs A∗-ed3 on nearly all instances and also A∗-comp in the Real class. The
numbers are given in comparison to the Virtual Best Solver (VBS), which is the
theoretically optimal portfolio that always selects the best algorithm, constructed
by selecting a posteriori the fastest solver for each input instance; essentially, an
upper bound on the runtime of any portfolio approach using k solvers is k times
the running time of the VBS.

We proceed to present two real portfolios, portfolio-basic and portfolio-all, which
use all eight solver parameterizations. As some of these parameterizations are
highly correlated, we will from hereon present detailed comparisons only for a
smaller set of representative solvers. To choose these representatives, we consider
the Shapley value [59], which was recently proposed as a principled measure of a
solver’s contribution to a portfolio [22]. In this framework, one considers construct-
ing a portfolio by adding solvers incrementally and measuring the value of each
solver as the increase in the portfolio’s performance when the solver is added. As
these values greatly depend on the order in which solvers are added, the Shapley
value of a solver is defined as its average value over all possible solver permuta-
tions. Table 5 shows the Shapley values for all solver parameterizations, using the
total number of instances solved as the measure of portfolio performance. In the
light of these results, we will focus on ilp-162, cpbayes, and A∗-comp, since these
solvers have the highest Shapley values among each solver family on the considered
benchmarks.
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Fig. 3 The number of training instances for which a solver was fastest. Ties between solvers
are broken at random.
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Table 4 The performance of all solver parameterizations as well as the Virtual Best Solver
(VBS) and two portfolios on all training instances, measured as the number of instances
solved and the overall running time. Instances that were not successfully solved within the
given resources count as 7200 seconds in the running times.

Running time (s)
Algorithm Instances solved Cumulative Average Median

VBS 1179 259,440 220 7.33
VBS without CP 1164 368,690 313 9.40
VBS without A∗ 1157 475,032 403 8.96
VBS without ILP 937 2,022,296 1,715 33.35

portfolio-all 1152 459,765 390 9.02
portfolio-basic 1134 569,351 483 11.95

ilp-141 1036 1,364,855 1,158 36.39
ilp-141-nc 1034 1,384,022 1,174 41.83
ilp-162 1029 1,453,932 1,233 29.56
ilp-162-nc 1026 1,494,879 1,268 32.18
cpbayes 896 2,423,547 2,056 85.83
A∗-comp 768 3,152,809 2,674 185.79
A∗-ec 519 4,866,797 4,128 7,200.00
A∗-ed3 478 5,163,876 4,380 7,200.00

While the ILP approach appears to be the best-performing measured in the
total running time and the number of instances solved on the set of benchmarks
considered, the results suggest that the performance of ILP on a per-instance basis
is quite orthogonal to that of both CP and A∗ (recall Figure 1). We will now show
that a simple BNSL solver portfolio can closely capture the best-case performance
of all eight of the considered solvers and variants in terms of empirical runtimes.

5.2 A Very Simple Solver Portfolio

We found that using only the Basic features (number of variables, n, and mean
number of candidate parent sets, m/n) is enough to construct a highly efficient
BNSL solver portfolio. We emphasize that, while on an intuitive level the impor-
tance of these two features may be to some extent unsurprising, such intuition
does not directly translate into an actual predictor that would close-to-optimally
predict the best-performing solver.

Table 4 shows the performance of our portfolios compared to each individual
solver parameterization as well as the Virtual Best Solver. Here, portfolio-basic is
our simple portfolio, which uses only the Basic features to choose a solver, con-
structed and evaluated as described in Section 3.2. For comparison, we present
results also for portfolio-all, which uses All features, that is, all features of all cate-
gories. Figure 4 presents a more detailed view of portfolio performance, measured
in the number of instances solved within a specific time.

We observe that, while there remains some room for improvement compared
to the VBS, portfolio-basic performs nearly as well as portfolio-all and greatly out-
performs every individual solver.

For more in-depth understanding, Figure 5 gives more insight into the effect of
the Basic features on the solver runtimes. The correlation between ILP and the
number of candidate parent sets is most apparent (coefficient of determination,
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Table 5 The contribution of each solver to the VBS and the two portfolios measured as the
Shapley value.

Algorithm VBS portfolio-all portfolio-basic
ilp-162 184.53 182.60 177.62
ilp-141 184.12 181.31 180.69

ilp-141-nc 182.48 180.46 179.16
ilp-162-nc 181.50 177.44 177.72
cpbayes 160.42 152.73 147.55
A∗-comp 136.24 129.73 125.55

A∗-ec 78.28 77.22 75.85
A∗-ed3 71.43 70.50 69.86

that is, explained variance, R2 > 0.7 for all variants11), while CP (R2 ≈ 0.38)
and A∗ (R2 > 0.47 for all variants) exhibit moderate correlation with the number
of variables. Figure 6 highlights the advantages of different solver families in the
space spanned by these two features. The figures support the rough characteriza-
tion (recall Section 1) of the computational limitations of state-of-the-art solvers.
Specifically, we observe that ILP can fairly reliably solve instances up to around
1, 000 candidate parent sets per variable and typically fails on instances beyond

11 R2 ranges from 0 to 1, where 0 indicates that the feature is completely uninformative
about runtime, and 1 indicates that all of the variance in runtime is explained by the respective
feature.
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Fig. 4 Fraction of instances solved by the VBS, the portfolios, and individual solvers within
a given amount of time.
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Fig. 5 Correlation between the Basic features and the runtimes of solvers.

this point. On the other hand, ILP appears not to depend heavily on the num-
ber of variables (R2 < 0.001 for all variants), achieving a consistent performance
throughout the spectrum considered in the benchmarks.

A∗, by contrast, seems able to solve instances irrespective of the number of
candidate parent sets (R2 < 0.05 for all variants) but is in turn more heavily
restricted by the number of variables; the benchmark instances are solved reliably
up to 30 variables, many of them up to 40, and only very few past this point.

The CP approach appears to take a middle ground between the two extremes,
solving many instances at the high end of either of the Basic features, albeit less
consistently than A∗ and ILP. In terms of time required to solve an instance, CP
appears to excel on instances where both the number of variables and candidate
parent sets (R2 ≈ 0.09) are moderate, whereas A∗ and ILP typically do better
than other solvers when the respective feature is large.

None of the state-of-the art solvers considered are able to solve the benchmark
instances where both of the Basic features are large.

6 Predicting Runtimes

In this section we turn to the arguably harder problem of predicting per-instance
runtimes of individual solvers. Apart from pure scientific interest, accurate runtime
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Fig. 6 Top left: All benchmark instances plotted in the space of the two Basic features, the
number of variables and the mean number of candidate parent sets. Each instance is marked
according to which solver was the fastest to solve it, specifically, whether the fastest solver
was from the A∗, ILP, or CP family, or whether none of the solvers could solve the instance.
The other three plots present the same view separately for each solver family, highlighting
their limitations as either or both features grow too large. Marker size scales as a logarithm of
running time for instances that were successfully solved.

predictions on a per-instance basis are useful for job schedulers as computing clus-
ters often require an estimated job time. In our case specifically, such predictions
could also facilitate development of improved BNSL solvers. For example, a model
could be exploited as a heuristic estimate for subproblem hardness during search
within a parallel BNSL solver. As a further motivation, model-based algorithm
configuration [32] crucially relies on runtime predictions in order to guide search
for better configurations in the algorithm configuration space. In such contexts,
note also that runtime is a primary resource to predict, as e.g. running out of other
resources such as memory directly imply running out of time as well.

As shown in Section 5, the Basic features can effectively distinguish between
solvers to use on a particular instance of BNSL. We will now address question Q2,
that is, whether the accuracy of running time predictions can be improved with
additional features (cf. Section 3.1).

6.1 Predictions with Added Features

Figure 7 depicts the actual runtimes of solvers compared to the runtimes predicted
by the regression models based on ensembles learned with auto-sklearn. On the
left we see this comparison for models trained using the Basic features only.
Even though these predictions allow for good portfolio behavior, the considerable
amount of prediction error makes them less useful for obtaining actual estimates of
the runtime. The right side, on the other hand, shows the same comparison when
using All, where the predictions are now more concentrated near the diagonal. In
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Fig. 7 The actual runtimes of solvers compared to the predicted runtimes when using the
Basic (left) or All (right) features.

other words, the larger, more sophisticated feature set results in more accurate
runtime predictions. Table 6 presents a numerical measure of the improvement in
terms of change in the approximation factor, defined as ρ = max{ap ,

p
a}, where a

and p are the actual and predicted runtimes, respectively. In particular, smaller
approximation factors are better.

Table 6 The percentage of instances with an approximation factor within the given ranges of
ρ, when predicting runtimes based on either Basic or All features. Higher percentages with
lower approximation values indicate more accurate predictions.

A∗-comp cpbayes ilp-162
Range of ρ Basic All Basic All Basic All

< 2 49% 62% 44% 68% 58% 72%
[2, 5) 21% 21% 28% 21% 30% 22%
[5, 10) 12% 7% 13% 6% 8% 4%
> 10 18% 10% 15% 4% 4% 1%
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We also evaluated the impact of incrementally adding sets of features. Figures 8
and 9 show how the prediction error changes as we add Basic (features 1–2), Ba-
sic extended (1–23), Upper bounding (1–38), the relevant probing features for
A∗ (1–38, 51–62), CP (1–38, 75–86), and ILP (1–38, 63–74), and finally All (1–86)
for every solver. The results show that predictions using the Basic features are
typically worse than those incorporating the other features, although this behavior
is more pronounced for some solvers, feature sets and instance classes than others.
The plots also suggest that some features help more than others for the different
algorithms. For instance, Upper bounding features greatly improve the predic-
tions of A∗ compared to the Basic and Basic extended features. By hindsight,
this is relatively unsurprising since the efficacy of the upper bounding directly
impacts the performance of A∗, showing that the learner effectively exploits fea-
tures we intuitively expect to characterize the empirical hardness. Probing offers
a glimpse at the true runtime behavior of the algorithms, and the learner lever-
ages this information to further improve prediction accuracy. For both A∗ and ILP
probing with the respective solvers alone is informative, while the other probing
strategies (All features) yield little improvement and even weaken some of the pre-
dictions. In contrast, surprisingly, for CP the predictions modestly benefit from
probing with other solvers as well. Out of the three solver families CP predictions
improve most from added features in general.

Finally, we evaluate the root mean squared error (RMSE) of the predictions
for each solver as we incrementally add feature sets. Figure 10 echoes the results
from Figures 8 and 9. We again see that Upper bounding improves predictions
on all A∗ variants. The respective probing features greatly improve the prediction
accuracy for A∗-ec and A∗-ed3; probing also improves the accuracy for the ILP
family of solvers and cpbayes. Strikingly, the RMSE for A∗-comp increases as the
more sophisticated feature sets are added. As we show in Section 6.2, it appears
the learner discards useful information from these features in preprocessing.

6.2 Preprocessing Characteristics

We now turn to more qualitative analysis based on a single random forest with
optimized hyperparameters learned by auto-sklearn.

First, we examine preprocessor choices. As shown in Figure 11, the choice of
preprocessor often reflects the amount of information inherently available in the
feature sets. Furthermore, in the clustering, we see that the families of solvers tend
to cluster together.

For the Basic feature set (dark tan), the learner almost always selects a pre-
processor which increases the dimensionality, either the polynomial expansion or
random forest embedding technique; we interpret this to mean that the features
alone do not provide sufficient information for accurate prediction, so the learner
attempts to increase the information with preprocessing. These are not always
statistically significant, though, because the learner uses each of polynomial ex-
pansion and random forest embedding about half of the time. Likewise, many of
the “mildly informative” feature sets, such as Simple UB (dark teal), almost
exclusively result in polynomial expansion for preprocessing the input features.
Interestingly, the Basic extended feature set (light tan) results in polynomial
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Fig. 10 The improvement of the root mean squared error of the runtime predictions as the
more sophisticated features are used. “Probing” refers to the appropriate probing feature set
for the respective solver, such as A∗ probing for the A∗-ec solver.

expansion, a dimensionality expansion strategy, and feature agglomeration, a di-
mensionality reduction strategy, in roughly equal proportions for all solvers.

On the other hand, for the A* algorithms with the larger feature sets like All
(light brown), the learner has “too much” information, so it uses feature aggre-
gation, as well as model-based and percentile-based feature selection, to combine
or remove uninformative features; these choices typically are statistically signifi-
cant. For predicting most of the ILP runtimes using “informative” feature sets,
such as All and ILP Probing (light teal), the learner does not typically use any
preprocessing; again, almost all of these choices are statistically significant.

This analysis demonstrates that the choice of preprocessing strategy by auto-
sklearn largely agrees with intuition. For small, relatively uninformative feature
sets, feature expansion strategies like polynomial expansion are often used; when
more informative features are available, the learner leaves them relatively un-
changed. Finally, when “too much” information is present, the learner uses more
sophisticated feature selection strategies to distinguish useful features from noise.

6.3 Model Complexity

We additionally analyzed the complexity of the learned random forests, in terms
of the mean size of the regression trees composing them. As expected, Figure 12
(a) shows that the trees learned using the Basic features are the smallest. Other
simpler feature sets, such as Basic extended and Simple UB also resulted in
small trees for all solvers.

Somewhat surprisingly, though, the regression trees for the various ILP solvers
are much larger than those for the cpbayes and A∗ family of solvers for the A∗

probing, Pattern database UB, All and CP probing feature sets. As shown
in Figure 11, the learner often forewent preprocessing in these cases for ILP. On
the other hand, it used sophisticated preprocessing, like the model-based approach,
for A∗ and cpbayes a significant amount of the time. Thus, these results suggest
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an implicit tradeoff in auto-sklearn between resources used for preprocessing and
the model itself.

Also unexpectedly, the trees for ILP without the graph-based cutting plane
routines (the “-nc” variants) are much larger than those using it with the ILP
probing feature set. The ILP implementation used in probing does use the graph-
based cutting plane routines. The learner uses preprocessing only sparingly in all
of these cases, so it again appears that a more complex model is used to handle
the noise in the features.

6.4 Important Features

Finally, we computed the Gini importance [9] of each feature for predicting each
solver while using the appropriate Probing features. The importance for a par-
ticular feature is calculated using a standard two-step technique [9]. First, the
feature is corrupted with noise to create a new dataset. Then, the new dataset
is used for training and testing as usual. The normalized increase in error when
using the noisy feature is taken as its importance. For the random forests, this
procedure is performed for all trees in the forest. The feature importance is then
the average across all trees. Finally, we average the feature importances across
each cross-validation fold.

Figure 12(b) shows important features for the different solvers. Several of the
importances are unsurprising; the number of variables in the dataset determines
the size of the search space for A∗, and that was the most important feature for
all variants. Similarly, the size of the linear program solved by ILP is directly
determined by the number of CPSs, and its most important features describe the
CPSs. Likewise, the respective probing error bound features were typically very
important for ILP and CP. This is sensible because these features indicate when
a solver can quickly converge to a nearly-optimal solution.

The CP solver uses relaxations from both A∗ and ILP; it shares many impor-
tant features with the A∗ variants. Surprisingly, though, it only has one important
feature in common with ILP. CP implicitly uses the pattern database relaxation,
and the pattern database node degree is indeed one of its most important fea-
tures. This suggests that the learner successfully identifies relevant features for
the solvers.

In contrast to ILP and CP, A∗-comp is the only A∗ variant for which probing
was an important feature. Coupled with its worse RMSE shown in Figure 10 when
using probing, this suggests that the runtime characteristics of the anytime variant
of A∗ are different enough from A∗-comp that it adds significant noise to learning.

Another somewhat unexpected result concerning A∗ is that many Simple UB
features are quite important. Previous experimental results [70] show that the
pattern database bounding approach is much more informative during the A∗

search. However, the solvers construct their pattern databases differently than
those used for extracting features, so the structural properties, such as the number
of non-trivial SCCs, of the constructed graphs may not reflect the difficulty of the
problem for the solver.

In general, the results presented in Figure 12(b) reveal that a small number of
features were consistently important for any particular solver; this is in line with
previous work [41,43]. Qualitatively, this implies that most of the trees were based
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on the same small set of features. Developing a more in-depth understanding of
these instance characteristics in light of solver performance is an important aspect
of future work.

7 Conclusions

We have investigated the empirical hardness of BNSL, the Bayesian network struc-
ture learning problem, in relation to several state-of-the-art complete solvers, par-
ticularly solvers based on A∗ search, integer linear programming, and constraint
programming. While each of these solvers always finds an optimal Bayesian net-
work structure (w.r.t. a given scoring function), the running times of the solvers
can vary greatly even within instances of the same size. Moreover, on a given in-
stance, some solvers may run very fast, whereas others require considerably longer
time, sometimes by several orders of magnitude. We validated this general view,
which has emerged from a series of recent studies, by conducting the most elaborate
evaluation of state-of-the-art solvers to date. We have made the rich evaluation
data publicly available12 in order to facilitate possible further analyses that go
beyond the scope of the present work.

As the second contribution, we applied machine learning methods to construct
empirical hardness models from the data obtained by the solver evaluations. In-
stantiating the general methodology of empirical hardness models (e.g., [56,45]),
we proposed several features, i.e., real-valued functions of BNSL instances, which
are potentially informative about solver running times and which go beyond the
basic parameters of instance size. As we cannot expect the features to capture
all the variability in solver running times and we can only use limited training
data, we adopted a statistical modeling approach. We used auto-sklearn [20], a
state-of-the-art system for optimizing model class, preprocessing and relevant hy-
perparameters, for learning our regression models. For each solver and group of
features, a dedicated empirical hardness model was learned and evaluated.

The learned models allowed us to answer two basic questions concerning our
ability to predict the solvers’ relative and absolute performance before actually
running the solvers. The first question (Q1) asked whether the basic parameters
of input size suffice for reliably predicting which of the solvers is the fastest on a
given problem instance. We answered this question in the affirmative by showing
that whenever a solver is significantly slower than the fastest solver on a given
instance, the slower one is very rarely predicted as the fastest one. Naturally,
when the differences between the fastest solvers are small, predicting which one
is the fastest among them gets less reliable, but also less important. Indeed, we
demonstrated the utility of the learned empirical hardness model by building an
efficient solver portfolio, which exploits the high running time variance over the
different solvers. For varying distributions of instances, our portfolio solver runs
nearly as fast as the fastest solver overall. In contrast, the cumulative running time
of the best individual solver is over five times that of the VBS. As a result, the
proposed solver portfolio is currently the fastest algorithm for solving BNSL when
averaged over a large heterogeneous set of instances.

12 http://bnportfolio.cs.helsinki.fi/
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Fig. 12 (a) The average size of the regression trees in the random forests learned by auto-
sklearn for each solver and feature set. (b) The Gini importance [9] of features in the learned
random forest models for each solver using the respective Probing feature set. Only features
with an importance of at least 0.05 for at least one solver are included. We use the abbreviations
“Pd” for pattern database and “sd” for standard deviation. The UPGMA algorithm [62] with
a Euclidean distance metric was used for clustering in both cases; the features in (b) were not
clustered.
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Our answer was affirmative also to the second question (Q2) of whether the
running times of each of the solvers can be predicted significantly more accu-
rately by extending the set of features. We observed that, in general, the more
high-quality features, the more accurate predictions. In the solver portfolio per-
formance, however, the more accurate running time predictions translated only
to a small improvement. This was somewhat expected since the simple portfolio
already achieved very good performance.

Via the extensive empirical evaluation presented as part of this work, we man-
aged to answer some of the key basic questions about the empirical hardness of
BNSL. This first study opens several avenues for future research. First, we believe
the proposed collection of features is not complete—presumably, there are even
more informative, albeit possibly slower-to-compute, features yet to be discov-
ered. The question of how to efficiently trade informativeness for computational
efficiency is relevant also more generally for the algorithm selection methodology;
probing features [33], as applied in this work to the context of BNSL, provide
just one, rather generic technique. Second, the empirical hardness model and its
evaluated performance obviously depend on the distribution of the training and
test instances. While this dependency is unavoidable, it is an intriguing question
to what extent the dependency can be weakened by considering appropriate dis-
tributions and sufficiently large samples of instances. In the course of answering
these questions, we also validated that the models learned by auto-sklearn capture
many sensible characteristics of the solvers.

Finally, we note that while in this work we focused on understanding and pre-
dicting the runtime behavior of complete BNSL solvers, i.e., exact algorithms that
provide provably-optimal solutions to given BNSL instances, the techniques stud-
ied and developed in this paper could also be extended to cover in-exact local-
search style, greedy, and approximate algorithmic approaches to BNSL. While
such approaches exhibit typically better scalability than the here-studied exact
approaches, the fact that in-exact approaches cannot give guarantees of optimal-
ity on the produced solutions brings new challenges in terms of portfolio construc-
tion and prediction, specifically in understanding the interplay between solution
quality and runtimes. Another potentially interesting direction—although some-
what secondary aspect compared to runtime behavior—for further study would be
to understand and predict the memory usage of exact approaches. Furthermore,
it would be interesting expand the study in the future by including additional
datasets e.g. from OpenML [66]
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22. Fréchette, A., Kotthoff, L., Michalak, T.P., Rahwan, T., Hoos, H.H., Leyton-Brown, K.:
Using the shapley value to analyze algorithm portfolios. In: D. Schuurmans, M.P. Wellman
(eds.) Proceedings of the 30th AAAI Conference on Artificial Intelligence, pp. 3397–3403.
AAAI Press (2016)

23. Friedman, N., Koller, D.: Being Bayesian about network structure. a Bayesian approach
to structure discovery in Bayesian networks. Machine Learning 50, 95–125 (2003)

24. Gebruers, C., Hnich, B., Bridge, D.G., Freuder, E.C.: Using CBR to select solution strate-
gies in constraint programming. In: 6th International Conference on Case-Based Reason-
ing (ICCBR 2005), Lecture Notes in Computer Science, vol. 3620, pp. 222–236. Springer
(2005)

25. Giraud-Carrier, C., Vilalta, R., Brazdil, P.: Introduction to the special issue on meta-
learning. Machine Learning 54(3), 187–193 (2004)

26. Gomes, C.P., Selman, B.: Algorithm portfolios. Artificial Intelligence 126(1-2), 43–62
(2001)



Empirical Hardness of Finding Optimal Bayesian Network Structures 31

27. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA
data mining software: an update. SIGKDD Explorations 11(1), 10–18 (2009)

28. Heckerman, D., Geiger, D., Chickering, D.: Learning Bayesian networks: The combination
of knowledge and statistical data. Machine Learning 20, 197–243 (1995)

29. Hoos, H., Lindauer, M.T., Schaub, T.: claspfolio 2: Advances in algorithm selection for
answer set programming. Theory and Practice of Logic Programming 14(4-5), 569–585
(2014)

30. Horvitz, E., Ruan, Y., Gomes, C.P., Kautz, H.A., Selman, B., Chickering, D.M.: A
Bayesian approach to tackling hard computational problems. In: Proceedings of the 17th
Conference on Uncertainty in Artificial Intelligence (UAI 2001), pp. 235–244. Morgan
Kaufmann (2001)

31. Hurley, B., Kotthoff, L., Malitsky, Y., O’Sullivan, B.: Proteus: A hierarchical portfolio
of solvers and transformations. In: Proceedings of the 11th International Conference on
Integration of AI and OR Techniques in Constraint Programming (CPAIOR 2014), Lecture
Notes in Computer Science, vol. 8451, pp. 301–317. Springer (2014)

32. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for gen-
eral algorithm configuration. In: Selected Papers of the 5th International Conference on
Learning and Intelligent Optimization (LION 5), Lecture Notes in Computer Science, vol.
6683, pp. 507–523. Springer (2011)

33. Hutter, F., Xu, L., Hoos, H.H., Leyton-Brown, K.: Algorithm runtime prediction: Methods
& evaluation. Artificial Intelligence 206, 79–111 (2014)

34. Jaakkola, T.S., Sontag, D., Globerson, A., Meila, M.: Learning Bayesian network structure
using LP relaxations. In: Proceedings of the Thirteenth International Conference on Arti-
ficial Intelligence and Statistics (AISTATS 2010), JMLR Proceedings, vol. 9, pp. 358–365.
JMLR.org (2010)

35. Järvisalo, M., Le Berre, D., Roussel, O., Simon, L.: The international SAT solver compe-
titions. AI Magazine 33(1), 89–92 (2012)

36. Koivisto, M., Sood, K.: Exact Bayesian structure discovery in Bayesian networks. Journal
of Machine Learning Research pp. 549–573 (2004)
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ness of learning Bayesian networks. In: Proceedings of the 28th AAAI Conference on
Artificial Intelligence (AAAI 2014), pp. 2460–2466. AAAI Press (2014)

50. Malone, B.M., Yuan, C.: Evaluating anytime algorithms for learning optimal Bayesian
networks. In: Proceedings of the 29th Conference on Uncertainty in Artificial Intelligence
(UAI 2013). AUAI Press (2013)

51. Ott, S., Imoto, S., Miyano, S.: Finding optimal models for small gene networks. In: Pro-
ceedings of the Pacific Symposium on Biocomputing 2004, pp. 557–567. World Scientific
(2004)

52. Parviainen, P., Koivisto, M.: Finding optimal Bayesian networks using precedence con-
straints. Journal of Machine Learning Research 14, 1387–1415 (2013)

53. Pearl, J.: Probabilistic reasoning in intelligent systems: networks of plausible inference.
Morgan Kaufmann (1988)

54. Perrier, E., Imoto, S., Miyano, S.: Finding optimal Bayesian network given a super-
structure. Journal of Machine Learning Research 9, 2251–2286 (2008)

55. Pulina, L., Tacchella, A.: Treewidth: A useful marker of empirical hardness in quantified
Boolean logic encodings. In: Proceedings of the 15th International Conference on Logic
for Programming, Artificial Intelligence, and Reasoning (LPAR 2008), Lecture Notes in
Computer Science, vol. 5330, pp. 528–542. Springer (2008)

56. Rice, J.: The algorithm selection problem. Advances in Computers 15, 65–118 (1976)
57. Rijn, J.N., Abdulrahman, S.M., Brazdil, P., Vanschoren, J.: Fast algorithm selection using

learning curves. In: Proceedings of the 14th International Symposium on Advances in
Intelligent Data Analysis (IDA 2015), Lecture Notes in Computer Science, vol. 9385, pp.
298–309. Springer (2015)

58. Saikko, P., Malone, B., Järvisalo, M.: MaxSAT-based cutting planes for learning graphical
models. In: Proceedings of the 12th International Conference on Integration of Artificial
Intelligence and Operations Research Techniques in Constraint Programming (CPAIOR
2015), Lecture Notes in Computer Science, vol. 9075, pp. 345–354. Springer (2015)

59. Shapley, L.S.: A value for n-person games. Contributions to the theory of games 2, 307–317
(1953)
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Appendix A Details on the Data Sets

The numbers of variables and records in each of the data sets used in the experi-
ments are shown in Table 7 (for Real) and in Table 8 (for Sampled).

Table 7 Sizes of the datasets in Real.

Dataset #Variables #Records
letter 17 20000
voting 17 435
zoo 17 101
lymph 19 148
eucalyptus 20 736
hepatitis 20 155
credit-g 21 1000
hypothyroid 22 3772
mushroom 22 8124
spect 23 267
autos 26 205
colic 28 368
pyrim 28 74
flag 29 194
trains 30 10
anneal 32 898
backache 32 180
marketing 33 364
student-mat 33 395
student-por 33 649
turkiye 33 5820
dermatology 35 366
soybean 36 307
kr-vs-kp 37 3196
stemmatology 37 1208
abscisic 41 5456
diabetes 41 60000
connect-4 6000 43 6000
connect-4 60000 43 60000
covtype 60000 43 60000
sponge 45 76
wiki4he 53 913
lung-cancer 57 32
promoters 58 106
triazines 59 186
splice 61 3190
audiology 63 63 226
optdigits 63 5620
plants 63 63 34781
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Table 8 Sizes of the datasets in Sampled.

Dataset #Variables #Records
kredit 18 1000
insurance 27 100; 1000; 10,000
water 32 100; 1000; 10,000
mildew 35 100; 1000; 10,000
alarm 37 100; 1000; 10,000
hailfinder 56 100; 1000; 10,000
carpo 60 100; 1000; 10,000


