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Abstract 

Poor solubility of drug compounds is a great issue in drug industry today and decreasing particle size is one 

efficient and simple way to overcome this challenge. Drug nanocrystals are solid nanosized drug particles, 

which are covered by a stabilizer layer. In nanoscale many physical properties, like compound solubility, are 

different from the solubility of bulk material, and due to this drug nanocrystals can reach supersaturation 

as compared to thermodynamic solubility. The most important effect of the smaller particle size is that 

dissolution rate is highly enhanced mainly due to the increased surface area. In this review the most 

important properties of nanocrystalline drug compounds are presented, with multiple examples of the 

development and characterization of nanocrystalline drug formulations.    
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Introduction 

Today more and more new APIs are poorly soluble, and poor solubility is an important issue in drug 

discovery and development. Efficient screening methods find increasing numbers of poorly soluble drug 

candidates for company pipelines and it has been approximated lately that 90% of the new chemical 

entities are poorly soluble. In Biopharmaceutics Classification System (BCS), these compounds belong to 

BCS class II (70%) or class IV (20%) (Loftsson and Brewster, 2010; Müller and Keck, 2012).   

There are different ways to improve the solubility of compounds. In molecular level prodrugs (Huttunen et 

al., 2011), salt formation (Serajuddin, 2007), co-solvent systems (Seedher and Kanojia, 2009) or 

cyclodextrins (Bilensoy and Hincal, 2009) can be beneficial. In particulate level utilization of metastable 

polymorphs (Blagden et al., 2007), co-crystals (Thakuria et al., 2013), amorphous systems (Babu and 

Nangia, 2011) or particle size reduction (Tuomela et al., 2015) have been studied intensively. A third 

approach for solubility/dissolution enhancement are colloidal systems, like SEDDS/SMEDDS/SNEDDS (Thi et 

al., 2009), (micro/nano)emulsions (Shakeel and Faisal, 2010) or different kinds of other lipid based systems 

like lipid solutions (Porter et al., 2007). Based on the physicochemical properties of the drug molecule, the 

most suitable way to improve the solubility should be selected (Shakeel and Faisal, 2010; Chen et al., 2011; 

Brough and Williams III, 2013).   

Drug nanocrystals are solid nanosized drug particles, which are covered by a stabilizer layer, and they are 

mostly utilized for increasing the solubility properties of poorly soluble drugs (Lu et al., 2016). In BCS 

system, class II drugs are poorly soluble but well permeable, and those are the most prominent candidates 

for drug nanocrystals (Liu et al., 2011; Borchard, 2015), but in some cases also BCS class IV drugs, poorly 

soluble and poorly permeable, may benefit from decreased particle size (Kesisoglou et al., 2007; Gao et al. 

2012). For example, a higher concentration gradient between the intestine and lumen (reached with higher 

and faster drug solubility) may lead also to improved drug permeation.      

With a closer focus on drug developability criteria, BCS class II drugs can still be classified into two 

subclasses according to the developability classification system (DCS): dissolution rate limited class IIa, the 

so called brick-dust molecules, and solubility limited class IIb, also known as the grease ball molecules 

(Butler and Dressman, 2010). Brick-dust molecules are poorly soluble not only in aqueous environment but 

also in lipids and organic solvents, while grease ball molecules are normally soluble in at least some lipids 

(Bergström et al., 2016). Brick dust molecules are, therefore, the best candidates for nanosizing (Borchard, 

2015). For grease ball molecules the first choice is lipid formulations, but they have also been formulated 

successfully to nanocrystals (Rydberg et al., 2016).     
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Production of nanocrystals is just one way to modify the intrinsic properties of the raw material: when 

particle size is decreased to nanosized area, the intrinsic properties like solubility are altered as compared 

to bulk sized drug powders. The overall benefits connected to small particle size can be divided into three 

main categories: i) fast dissolution, ii) increased solubility, and iii) better adhesion to membranes. However, 

absolutely most important effect reached with drug nanocrystals is faster dissolution rate based on the 

large surface area per mass solid. But, the role of stabilizer and its careful selection should not be 

neglected. The main role of stabilizer is to stabilize inherently unstable drug nanoparticles against 

aggregation and/or Ostwald ripening after the production and during the storage of nanocrystalline 

formulations. However, many stabilizers utilized can for example help in maintaining the supersaturated 

state in vivo reached after fast dissolution of nanocrystals or they may perform as permeation enhancers 

(Gao et al., 2012; Gao et al., 2014; Chen and Li, 2015; Ueda et al., 2015).  

There are excellent earlier reviews related to drug nanocrystals (Müller et al., 2001; Keck and Müller, 2006; 

Junghanns and Müller, 2008; Müller et al., 2011a; Müller and Keck, 2012; Möschwitzer, 2013; Brochard, 

2016; Li et al., 2016). However, often the role of higher saturation solubility and utilization of 

supersaturation reached with nanocrystalline formulations are poorly described. This review exposes 

various aspects of drug nanocrystals from all the aspects of basic physicochemical principles to final 

bioavailability in an integrated fashion. The fast dissolution and increased solubility reached with drug 

nanocrystals are discussed in detail starting from the physicochemical principles behind drug nanocrystals 

and ending on formulation examples visioning the broader scope.  

1 Characteristics of drug nanocrystals 

Drug nanocrystals are solid drug particles surrounded by a layer of stabilizer(s), and sometimes the drug 

nanocrystals have also been named as solid micelles. Small particle size of hundreds of nanometers makes 

the nanocrystals unstable and stabilizer(s) are needed to prevent the aggregation of individual nanosized 

particles. Typical stabilizers are different kind of polymers, like cellulose derivatives, PVP, poloxamers, 

vitamin E TPGS  (Guo et al., 2013; Tuomela et al., 2014; Rahim et al., 2017) or amphiphilic surfactants such 

as polysorbates, SDS (Liu et al., 2011; Rahim et al., 2017), and these can also improve the solubility via 

better wetting and solubilizing effects.    

1.1 Increased dissolution rate 

Increased dissolution rate as compared to bulk drug is the most important effect reached with drug 

nanocrystals, and it is based mainly on large interfacial area due to the decreased particle size. Taken as an 

example spherical particles, the surface area versus volume, A/V = 3/r. This means that if the particle size is 
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reduced from 50 µm (typical particle size for bulk drug) to 500 nm (drug nanocrystals), increase in 

dissolution rate is 100 fold according to Noyes-Whitney equation (Equation 1): 

𝑑𝐶

𝑑𝑡
=

𝐷𝑆

𝑉ℎ
(𝐶𝑆 − 𝐶) ,  (1) 

where dC/dt is dissolution rate (concentration change as a function of time), D is diffusion coefficient, S is 

surface area, V is dissolution volume, h is diffusion layer thickness, Cs is saturation concentration and C is 

the concentration at time t. Accordingly, particle size is an important factor for determination of dissolution 

rate. However, when the dissolution tests are performed under sink conditions, the differences are typically 

not seen between different nanocrystal size fractions, and more discriminating dissolution test protocols 

are needed (Liu et al., 2013). 

1.2 Higher saturation solubility 

In Noyes-Whitney equation diffusion layer thickness and saturation concentration are also affected by the 

nanosized particles. For particle size below approximately 50 µm the diffusion layer is starting to get 

thinner (Sheng et al., 2007), which enhances the dissolution. The increase in saturation concentration is 

stated in the Ostwald-Freundlich theory (Equation 2), which was first developed for liquid droplets in gas 

phase, but later it has been shown to be correct also for solid particles in liquid below particle sizes 

approximately 1 µm:  

𝑆𝑁𝑃 = 𝑆0 (
2𝑉𝑚𝛾

𝑅𝑇𝑟
),   (2) 

where SNP is the solubility of nanoparticles with a radius r, S0 is the solubility of bulk material, Vm is the molar 

volume, γ is the interfacial tension, R is the gas constant and T is the temperature. The effect of particle size 

on saturation concentration starts to be seen with particle sizes below 1 µm, but when the particle size is 

decreased the effect is more pronounced; below 100 nm the increase is even exponential. 

Higher dissolution rate and increased saturation concentration leads to supersaturated state, which has 

been shown to enhance drug permeation (Brouwers et al., 2007 and 2009; Mellaerts et al., 2008). The 

challenge in vivo is the maintenance of supersaturation until the permeation takes place and hindrance of 

uncontrolled precipitation/crystallization.  

1.3 Supersaturated state 

Similar to amorphous formulation, due to the higher apparent solubility of drug nanocrystals as compared 

to thermodynamic solubility, drug nanocrystals produce supersaturated state, which is thermodynamically 



6 
 

unstable (Mah et al., 2015). For example, when drug nanocrystals were compressed to a flat surface, the 

concentration levels of the dissolved drug next to the sample surface with nanocrystals sized 580 nm was 

over five-fold higher than concentration levels reached with bulk indomethacin (Figure 1; Sarnes et al., 

2013). In another study, aqueous solubility values of nimodipine nanocrystals were determined by a 

traditional shake flask test (Fu et al., 2013). When the aqueous solubility of crude drug after 72 hours 

testing was 1.879 µg/ml, for nanocrystals with average particle size of 830 nm, 500 nm and 160 nm, 

corresponding solubility values were 22.526 µg/ml, 30.093 µg/ml and 51.269 µg/ml, respectively, indicating 

very high level of supersaturation and also considerably long time period for the system to remain in 

supersaturated state. Sun et al. (2012) tested kinetic solubility values of nanocrystalline coenzyme Q10 with 

particle size fractions from 80 nm to 700 nm, and the kinetic solubility increased as the particle size 

decreased. Ueda et al. (2015) analyzed the maintenance of supersaturated state with amorphous and 

nanocrystalline carbamazepine by real-time NMR spectroscopy by monitoring the amount of dissolved 

carbamazepine. With carbamazepine nanocrystals concentration values were nearly constant for 50 h time, 

while with amorphous carbamazepine the initial concentration was higher but it then dropped below the 

concentration of the nanocrystal sample.  Accordingly, examples of higher apparent solubility values 

related to nanocrystals can be found, but still this clear benefit reach with nanocrystals are mostly left 

without consideration in nanocrystal applications. 
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Figure 1. Apparent concentration-distance profiles from UV imaging of indomethacin nanocrystals (particle 

size 580 nm) and micron sized particles with two different stabilizers (poloxamers F68 and F127) as well as 

bulk indomethacin at 5, 15 and 30 min time points: (A) F68 stabilized nanocrystals, (B) F68 stabilized micron 

sized particles, (C) F127 stabilized nanocrystals, (D) F127 stabilized micron sized particles and (E) bulk 

indomethacin. (Reprinted from Sarnes et al., 2013 with permission from Elsevier). 

The challenge in benefitting supersaturation is how to maintain it until the successful drug permeation. For 

example, in GI tract the pH changes may induce fast precipitation, like was the case with itraconazole 

nanocrystals produced by wet milling (Sarnes et al., 2014). Dried nanocrystals were packed in capsules, and 

in vivo tests were performed with rats. Though in vitro itraconazole nanocrystals showed superior 

dissolution rate as compared to Sporanox® granules, the in vivo bioavailability was higher with marketed 
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product. The problem with drug nanocrystals was that fast dissolution was followed by rapid transition of 

drug solution to intestine, where precipitation of itraconazole took place: as a basic compound, the 

solubility of itraconazole is appr. 250-times higher in stomach (lower pH) as compared to intestine (higher 

pH). However, when itraconazole nanocrystals were bind to nanofibrillar cellulose matrix, increased 

dissolution rate in vitro was also seen in enhanced in vivo performance of the drug: AUC-value with 

nanocrystalline formulation was 1.3 times higher as compared to marketed Sporanox® granules (Figure 2; 

Valo et al., 2011). Accordingly, the formulation was in key role in order to reach IVIVC. 

 

Figure 2. Plasma concentration profiles of itraconazole and OH-itraconazole in rats after oral administration 

of Sporanox® granules, three nanocrystalline formulations (HFBI, HFBI + NFC, HFBI-DCBD + NFC) and 

itraconazole microsuspension. (Reprinted from Valo et al., 2011, with permission from Elsevier.) 

Another formulation factor, which should be taken into account is selection of stabilizer for drug 

nanocrystals. As already discussed, dissolution from drug nanocrystals can lead to supersaturated state. 

Also, it is well known that some polymers, like hydroxypropyl methylcellulose (HPMC), hydroxypropyl 

methylcellulose acetate succinate (HPMCAS), poly(vinyl pyrrolidone) (PVP), and Soluplus®, are able to 

prohibit drug crystallization from supersaturated solutions and hence capable of maintaining the system in 

highly concentrated state (Van Speybroeck et al., 2010; Chauhan et al., 2014; Ueda et al., 2014; Surwase et 

al., 2015, Figure 3); molecular level interactions between the polymer and the drug has been shown to 

determine the efficiency of maintaining the level of supersaturation (Chauhan et al., 2014; Ueda et al., 

2014). Same above mentioned polymers has been utilized also as stabilizers for drug nanocrystals (Tuomela 

et al., 2014). In our preliminary studies we have shown same kind of crystallization prohibiting effect of 

HPMC and PVP in nanocrystalline systems (unpublished data), but with nanocrystals the impact of polymers 

still needs more studies in order to fully utilize the benefits of these polymers properly. 
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Figure 3. Impact of PVP on maintaining the supersaturated state of amorphous indomethacin for 

indomethacin-PVP solid dispersion (Figures a,c,e) and for amorphous indomethacin dissolved in aqueous 

PVP solution (Figures b, d, f) in pH 5.5 at 25 °C. Figures a and b: PCA scores plots of the IR spectra of 

indomethacin samples (arrows indicating the path of crystallization); Figures c and d: IR spectras of 

indomethacin samples; and Figure e and f: concentration-time profiles showing the maintenance of 

supersaturated state in the presence of PVP. (Reprinted from Surwase et al., 2015 with permission from 

Elsevier.) 

2 Formation of drug nanocrystals 

There are two approaches to make drug nanocrystals: i) top-down approach, where nanosized particles are 

produced by decreasing the particle size of bulk drug in a liquid suspension, for example by different kinds of 

milling or homogenization techniques (Keck and Müller, 2006; Peltonen and Hirvonen, 2010; Laaksonen et 
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al., 2011; Müller et al., 2011b; Möschwitzer, 2013), and ii) bottom-up approach, where the nanosized 

particles are built molecule by molecule by precipitation (Valo et al., 2011 and 2013; Wang et al. 2012). Most 

of the commercial pharmaceutical products are produced by top-down methods, mostly by milling, because 

in these techniques the process repeatability is at a high level and changes in scaling are considerably easy 

to perform (Chin et al., 2014). Process yield varies depending on the process and process type, and in the 

literature there are not many reports related to process yield. For example, liquid atomization based 

processes the yield can be very low, and material is lost on the atomization chamber walls. In milling 

processes, if the process is batch process, the yield can be considerably high, but again, material can be lost 

on the surfaces of the beads and the vessel.  

2.1 Physical properties of drug nanocrystals 

All the production techniques produce solid drug cores surrounded by a stabilizer layer, but depending on 

the process, certain properties, like particle shape, size, porosity and level of crystallinity, may be altered 

depending on the selected process and process parameters. Selection of stabilizer should be based on the 

drug properties, but it is also good to be aware of that many common stabilizers have some drug transport 

influencing activities. For example, many surfactants, like polysorbates, are able to open up tight junctions 

(Deli, 2009) and poloxamers and polysorbates are known to have effects on intestinal P-gp activity (Thakkar 

and Desai, 2015).  

When thinking about the particle shape, milling for example typically produces edged particle shapes (Liu et 

al., 2011), while antisolvent precipitation or liquid atomization can lead to almost spherical particles (Valo et 

al., 2011). Also the raw material affects the particle shape: milling of itraconazole produced needle shaped 

particles while indomethacin formed oval particles (Liu et al., 2011). In the bottom-up techniques particle 

sizes below 100 nm are easily reached (Valo et al., 2011), but also modern high energy milling set-ups can 

lead to particle size fractions around 100 nm (Bujnakova et al., 2015a and 2015b; Li et al., 2015). More porous 

particles can be formed with liquid atomization based techniques, and with these techniques also amorphous 

material can be produced (Wang et al., 2012). Formation of amorphous material increases the solubility, but 

it also creates stability problems where uncontrolled crystallization is possible.  

2.2 Quality by Design (QbD) approach for production of drug nanocrystals 

All the listed properties are important to be aware of and to control because they can have an impact on 

dissolution, solubility and also cellular interactions in vivo (Liu et al., 2013; Ma et al., 2013; Sarnes et al., 2013; 

Shang et al., 2014), especially, when thinking of Quality by Design (QbD) approach for production of 

nanosuspensions (Ghosh et al., 2012; Peltonen and Strachan, 2015; Kassem et al., 2017; Li et al., 2017; 
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Soliman et al., 2017). QbD approach for nanosuspension production can be divided into three phases: i) 

selection of stabilizer(s) and production method based on Quality Target Product Profile (QTPP), ii) 

establishing Critical Quality Attributes (CQAs), and iii) formation of a design space based on Design of 

Experiments (DoE) (Li et al., 2017). CQAs can be for example particle size, shape, solubility or stability 

(Peltonen and Strachan, 2015). Critical process parameters (CPPs) aid in process controlling in order to find 

suitable tools for process control purposes during manufacturing, while proper design space ensures 

repeatable product performance batch after batch. For example, Afolabi et al. (2014) studied with the aid of 

microhydrodynamic model the effect of stirrer speed, bead concentration and drug loading on the bead-

bead collisions and particle breakage kinetics during the wet milling process. They found out that increase in 

stirrer speed or bead concentration led to faster breakage via higher specific energy and milling intensity 

factor while increase in drug loading had opposite effect. 

2.3 Down-scaling and up-scaling of nanocrystallization processes 

Up-scaling and down-scaling are possible with some nanocrystallization techniques and mostly they have 

been studied with milling setups (Van Eerdenbrugh et al., 2009; Singare et al., 2010; Niwa et al., 2011; Ghosh 

et al., 2012; Tuomela et al., 2015). In milling aqueous drug-stabilizer suspension together with milling 

medium is agitated and scaling changes are considerably easy to perform. The total energy input and particle 

size reduction kinetics determine the final particle properties, and this can cause differences in final product 

properties (Date and Patravale, 2004; Bilgili and Afolabi, 2012; Afolabi et al., 2014; Tuomela et al., 2015). 

Yuminoki et al. (2016) used rotation/revolution mixer for media milling (Takatsuka et al., 2009; Yuminoki et 

al., 2016). The smallest batches were 100 mg of drug material. Later, process was scaled up to 1 kg batch 

size. Specific collisional energy was calculated by a theoretical equation modified for wet milling. Calculations 

showed that the relative centrifugal acceleration of revolution (straightly related to radius of the revolution 

and the number of revolutions per minutes) and drug concentration in the suspension where most important 

process variables: when these factors where identical, different scaling produced similar particle size 

fractions. Other successful scaling up case examples are: SmartCrystal combination process from laboratory 

to pilot scale (Shaal et al., 2010), combination process with static mixing and spray drying to continuous large-

scale production (Hu et a., 2011), and precipitation followed by homogenization for large scale production 

(Quan et al., 2011). 

Van Eerdenbrugh et al. (2008) performed milling in 96-well plate with 10 mg of drug: in screening tests the 

drug amount is enough for a thorough physicochemical characterization. Seven drugs were milled 

successfully, when the drug suspension together with milling pearls were put into the wells and the 96-well 

plate was agitated in an orbital shaker. Instead of milling particle breakage can be reached via acoustic mixing 

(Leung et al., 2014). In this technique, the drug suspension together with milling pearls are mixed in an 
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acoustic mixer. For screening purposes, the mixing can be performed in 96-well plate with only 2 mg of drug 

per well. Still another possibility is to put the suspension together with the milling pearls into small vials, 

which are packed inside of milling vessel. All the above mentioned protocols are suitable for preclinical 

screening purposes, but extra care should be taken with wearing of the well plate/vials, which leads 

contamination. In milling it is important that the milling pearls and vessel are from the same material, and 

softer well plate/vial material are vulnerable for erosion during milling process as well.  

During high pressure homogenization, suspension is forced through a narrow homogenization gap, which 

limits the scaling down possibilities. However, equipment with 3.5 ml sample volume has been tested (Müller 

et al., 2001), and in laboratory scale the equipment can be used in discontinuos mode, which lowers the 

required sample amount (Grau et al., 2000). 

2.4 Top-down nanocrystallization techniques 

In top-down methods the particle size diminishing is based on mechanical attrition or high pressure collisions, 

and these can induce contamination due to the wearing and tearing of the equipment (Juhnke et al., 2012; 

Li et al., 2015). Process parameters like bead size/bead material, stirrer speed and energy input affect the 

level of contamination. With the same bead material, level of contamination can be minimized by shortening 

the process time and lowering the bead contact pressure by using smaller bead sizes.  Other drawbacks of 

the top-down techniques are high energy consumption, particularly if the process times are long; however, 

today especially in milling the process times can be considerably shorter due to the more efficient milling 

equipment which lowers the overall energy consumption (Liu et al., 2011). 

Milling and high pressure homogenization are performed in suspension. Mostly the suspension medium is 

water, but also oils or PEGs can be used (Keck and Müller, 2006; Al-Kassas et al., 2017). Possibility to avoid 

organic solvents has made these techniques environmental friendly (Chin et al., 2014; Peltonen et al., 2014). 

Presence of water also protects the contents against formation of amorphous material, because water 

enhances molecular mobility and lowers the glass transition temperature (Sharma et al., 2009). After milling 

the drug is typically in crystal form, although polymorphic changes are possible (Müller et al., 2001; Liu et al., 

2011). High pressure homogenization may induce lowering of crystallinity, but also here the presence of 

water stabilizes the drug crystals (Müller et al., 2001; Sharma et al., 2009; Homayouni et al., 2014; Soliman 

et al., 2017).  

Technically high pressure homogenization (HPH) can be separated in two different approaches: i) jet 

streaming (microfluidizer, IDD-PTM, insoluble drug delivery microparticle technology) and ii) piston-gap 

homogenization. In jet streaming high energy suspension flows collide in a microfluidizer, while in piston-gap 
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type homogenizer drug suspension is forced with high pressure through a narrow gap (Keck and Müller, 

2006). Piston gap homogenization can further be divided in homogenization in water (Dissocubes®) (Müller 

et al., 2011a) and in non-aqueous media, like PEG (Nanopure®) (Radtke and Müller, 2001; Salazar et al., 2014). 

2.5 Bottom-up nanocrystallization techniques 

In bottom-up processes the drug nanocrystals are formed via precipitation/crystallization from a 

supersaturated solution. Bottom-up techniques have been studied a lot in laboratory scale, but scaling up is 

often problematic. Challenges are faced also due to difficulties in controlling the particle size growing, finding 

a suitable solvent/antisolvent combination, and the volume and demanding removing process of solvents. 

Especially solvent/antisolvent process mostly requires utilization of organic solvents due to poor solubility 

properties of drug materials.  

Most traditional way is to induce precipitation via antisolvent addition, but also supercritical fluids, solvent 

removal or liquid atomization based techniques have been used (Valo et al., 2011; Sinha et al., 2013a; Valo 

et al., 2013; Sahu and Das, 2014). Especially liquid atomization techniques may produce amorphous materials 

due to the extremely fast solvent removal process, which can cause stability problems afterwards when 

amorphous drug starts to crystallize (Sinha et al., 2013a; Homayouni et al., 2014; Soliman et al., 2017). 

2.6 Combination nanocrystallization methods 

If the end product is not reaching the required CQAs in a single process, combination techniques can be 

utilized. Combination techniques are two step processes, which include i) pre-process step, for example pre-

milling or precipitation and ii) high-energy top-down process (most often milling or high pressure 

homogenization) (Sinha et al., 2013b; Zong et al., 2017). Benefits of combination methods are that with them 

often even smaller particle sizes can be reached and avoidance of process related problems, like clogging of 

high pressure homogenizer, or shortening of the final top-down process time.  

Though combination techniques can be beneficial when thinking of the end product properties or in avoiding 

process related challenges, more complicated process increases overall costs and complexity of the whole 

production process. Hence, combination techniques are never the first choice, and they should be selected 

only if clear benefits are reached by utilizing them. 

First combination technique was antisolvent precipitation pre-process followed by high pressure 

homogenization (NanoedgeTM; Möschwitzer, 2003). More recent are SmartCrystal® group of technologies 

where high pressure homogenization is combined with different pre-processes (Shegokar and Müller, 2010): 

H42 (spray-drying pre-process), H69 (precipitation pre-process), H96 (lyophilization pre-process) and CT 
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(media milling pre-process). More rarely studied combinations are for example antisolvent precipitation 

combined with ultrasonication (Soliman et al., 2017).  

3 Drug nanocrystal based formulations 

Nanocrystal formulations for drug delivery purposes have been increasingly popular in recent years (Lakshmi 

and Kumar, 2010; Arunkumar et al., 2009). As stated above in this review article, current drug discovery 

programs provide a high number of drug candidates showing high in vitro efficiencies, but actual clinical 

applications have often been restricted due to the poor aqueous solubility. Nanocrystals provide a potential 

way to overcome this problem and, thus, several successful, mostly orally administered products have 

already reached the market or are in the research pipelines (Junghanns and Müller 2008, Bansal et al., 2012; 

Table 1). Due to the increased surface area a rapid in vivo dissolution, fast absorption and increased 

bioavailability of these kinds of drugs have been reached. Administration of drug nanocrystals may take place 

via different drug delivery routes. Oral drug delivery route is the most popular and convenient and oral solid 

dosage forms of nanocrystals are usually preferred for commercialization. Sirolimus (Rapamune®) was the 

first nanocrystalline drug on the market in 2000, soon followed by other orally administered nanocrystalline 

formulations like megestrol acetate (Megace®, 2001), aprepitant (Emend®, 2003) and fenofibrate (Tricor®, 

2004) (Bobo et al., 2016).  

Table I. Examples of nanocrystalline products on the market approved by the US FDA. 
Modified from Bobo et al. (2016) and Gao et al. (2013). 

   

Drug Indication Special notes Process 
  

Aprepitant Antiemetic Faster absorption and higher bioavailability Milling 
  

Fenofibrate Hyperlipidemia Higher bioavailability, easier administration Milling 
  

Sirolimus Immunosupressant Higher bioavailability Milling 
  

Megestrol acetate Anti-anorexic Reduced dosing Milling 
  

Morphine sulfate Psychostimulant Higher drug loading and bioavailability, extended release Milling 
  

Dexamethyl-phenidate HCl Psychostimulant Higher drug loading and bioavailability Milling 
  

Methylphyenidate HCl Psychostimulant Higher drug loading and bioavailability Milling 
  

Tizanidine HCl Muscle relaxant Higher drug loading and bioavailability Milling 
  

Calcium phosphate Bone substitute Mimics bone structure allowing cell adhesion and growth NanOssTM  
  

Palperidone palmitate Schizophrenia Allows slow release of injectable low solubility drug Milling, HPH 
  

Drug development in mind, the size-controlled nanocrystals of a drug under development are often 

converted into dry powders, which are further formulated into dosage forms: tablets, capsules, pellets or 

liquid nanocrystal suspensions. Gao et al. (2012) listed the benefits of nanocrystalline and nanoparticulate 

dosage forms in oral drug delivery: enhanced oral bioavailability due to the improved drug 

dissolution/solubility, reduced fasted/fed state variation in drug absorption, potentially improved 

transcellular uptake or prolonged mucoadhesion of the nanoparticles, and improved safety profiles of the 

nanocrystal formulations. The mucoadhesive and gastroretentive properties of coated (stability-improved) 
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nanoparticles can be modified, for example, with hydrophobin proteins (Sarparanta et al., 2012). Upon entry 

of the nanoparticles from the stomach into the intestines, it was observed that hydrophobin-protein coated 

nanoparticles were retained in rat stomach up to three hours after administration, whereas corresponding 

uncoated nanoparticles were released significantly faster in the same conditions.  

Despite the benefits above and the relative ease of administration, nanocrystals provide special challenges 

in the design of oral solid drug formulations. Tuomela et al. (2015) screened comprehensively powder and 

tablet compositions of indomethacin and itraconazole nanocrystals in order to find out optimal properties 

for the tableting conditions and tablet formulations. As such, the mere presence of nanocrystals in the 

composition improved the compressibility of tablets. The smaller the particle size was, the more contact 

surfaces there were providing potential inter-particle bonds that resulted in increased hardness/crushing 

strength of the tablets. When the nanocrystals were processed into granules before tableting, a further 

decrease in the required compression force was detected (Tuomela et al., 2015). Disintegration testing of the 

tablets revealed changes in the texture and inner structures of the tablets: the less was the amount of drug 

nanocrystals in the formulation, the more porous was the structure formed. Disintegration times correlated 

also well with the crushing strength values of the tablets. Composition-wise, it was found out, at least in the 

cases of indomethacin and itraconazole, that the optimal amount of freeze-dried nanocrystals in the tablet 

composition was about 40% of the total mass  (corresponding to theoretical drug loading of 22-29%), in which 

cases the improved dissolution profiles and disintegration times of the corresponding nanocrystal tablets 

were still maintained. 

After oral delivery, development of parenterally administered nanocrystal formulations is the second most 

popular approach. Intravenous, intramuscular and subcutaneous delivery routes provide a quick (i.v.) or 

potentially retarded (i.m.) onset of action, rapid reach of different body parts and organs with concomitant 

potential for drug targeting, and reduced dosage need of the drug. These routes are beneficial for drugs 

undergoing first-pass metabolism and drugs that are not absorbed or are degraded/irritating in the GI tract. 

Nanoparticles have potential as novel intravascular formulations for both diagnostic (imaging) and 

therapeutic purposes (drug delivery), or even combination of these (theranostics) (Ahmed et al., 2012). 

Successful parenteral nanoformulation delivery requests the drug to be able to target in specific tissues and 

cell types and escape from the reticuloendothelial system (Åkerman et al., 2002). Parenteral administration 

of nanocrystals has certain advantages: administration of poorly soluble drugs without using high 

concentrations of toxic co-solvents, improved therapeutic effect of the drug, and targeted drug delivery to 

macrophages. Obvious drawback of this delivery route is the invasiveness of the mode of administration and 

the associated poor patient compliance.  
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Fuhrmann et al. (2014) discuss thoroughly the benefits and difficulties in the in vitro - in vivo correlation of 

injectable, non-targeted and targeted nanocrystals. As small (< 400 nm) and adjustable systems, the 

intravenously injected nanocrystals are able to extravasate from the blood through the leaky endothelium 

and accumulate in, for example, tumor tissue via the enhanced permeation and retention (EPR) effect 

(Matsumura and Maeda, 1986). In addition to this passive targeting phenomenon, some of the stabilizers 

can be functionalized with targeting/internalizing ligands to promote active tumor accumulation or uptake, 

respectively. These vital stabilizers, for example polymers or surfactants, typically stabilize nanocrystals by 

adsorbing to the surfaces and provide steric (e.g., poloxamers, cellulose derivatives) or electrostatic (e.g., 

sodium dodecyl sulfate, Tween®) barriers to aggregation (Peltonen and Hirvonen, 2008; Fuhrmann et al., 

2014). As only a small amount of stabilizing agent is typically required to mask the nanocrystals and prevent 

their aggregation, drug contents of typically 50 to 90% (wt) are reached, which is clearly higher than with 

some other nanocarrier systems. As described in more detail in this review, nanocrystals exhibit a 

characteristic nonlinear increase of kinetic solubility upon miniaturization that is described by the Ostwald–

Freundlich equation (Chapter 1.2). This increased rate of dissolution is generally utilized for the non-targeted 

delivery. A drawback in targeted i.v. nanocrystal delivery is that the enhanced dissolution interferes and 

reduces the efficacy of targeted nanocrystalline drug delivery: increased drug delivery off the target, reduced 

circulation time of the nanosystems, and potential sub-standard efficacy and utilization of the stabilizing 

agents and/or targeting agents. 

3.1 Development of nanocrystalline cancer drug formulations 

In order to increase the cancer drug deposition in cancerous tissues, the research group of Professor Leroux, 

among others, has applied different strategies for nanocrystals delivery and action: instead of utilizing the 

fast and high dissolution, they have intensively tested polymer-coated paclitaxel nanocrystals with slow 

dissolution and retarded drug release properties (Polomska et al., 2017). Successful delivery of the drug to 

the site of disease requests that the nanocrystals should deposit a significant amount of the cancer drug to 

the right place in order to improve the treatment efficacy, although at the same time the formulation should 

minimize the potential drug-associated, and also the excipient-associated, side effects. In this respect the 

small size and high-energy nanocrystals surfaces lead to a too rapid dissolution and administration, which 

may oftentimes reduce the local accumulation of the drug at the exact sites of cancerous tissue(s). In the 

case of paclitaxel nanoparticles, this might lead to markedly higher risk of hypersensitivity reactions and 

higher incidence of neuroptenia. Attempts to extend and prolong the delivery and improve the relatively low 

accumulation of anticancer drug nanocrystals has been tested by polyelectrolyte multilayers (layer-by-layer 

technology; Polomska et al., 2017), by PEGylated nanocages as non-sheddable stabilizers for drug 
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nanocrystals (Fuhrmann et al., 2012), and by redox-responsive stabilizers for drug nanocrystals (Fuhrmann 

et al., 2013). 

Also other groups have studied the extended and targeted delivery of the cancer drug paclitaxel. Deng et al. 

(2010) studied the stabilization method on paclitaxel-Pluronic F127 nanocrystals (Figure 4). Increased drug 

dosing was expected to result in improved antitumor activity of paclitaxel without the incidence of acute 

toxicity. Desorption experiments of Pluronic F127 stabilizer showed different surfactant adsorption affinities 

to the paclitaxel nanocrystal surfaces above and below the critical micelle concentration (CMC) of the 

polymer. Below the CMC the monomers were bound to the nanocrystal surface with high affinity, but above 

the CMC the low affinity surfactant aggregates were removed rapidly from the nanocrystal surfaces upon 

dilution. The overall conclusion in this study was that in order to improve the stability of nanocrystals, re-

nanonization by incubation–sonication procedure should be used to disrupt the preferred crystal growth 

patterns of paclitaxel (Deng et al., 2010).  

 

Figure 4. TEM figures of F127 stabilized paclitaxel nanocrystals. Drug surfactant ratio (A) drug:surfactant ratio 

1:10 (w/w) and (B) 1:20 (w/w). Scale bar is 200 nm. (Reprinted from Deng et al., 2010 with permission from 

Elsevier). 

Lu et al. (2014) prepared and evaluated paclitaxel nanocrystal formulations by stabilizing them non-

covalently with a serum protein transferrin. In addition to transferrin, also other serum proteins including 

albumin and immunoglobulin G were evaluated with respect to the stabilizing effect. In vivo antitumor 

efficacy studies were conducted in mice that had been inoculated with drug containing KB cells. The results 

demonstrated significantly higher tumor inhibition rate (45%) for the paclitaxel-transferrin formulation 

compared to the paclitaxel nanocrystal treatment alone (29% inhibition) (Figure 5). It is to be noted here that 

commercial Taxol® formulation showed higher antitumor activity in mice than the paclitaxel-transferrin study 

formulations, reaching a 93% tumor inhibition rate (Lu et al., 2014). On the other hand, the paclitaxel-
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transferrin formulations showed lower levels of toxicity, which was indicated by a steady increase in body 

weight of the mice during the cancer treatment period. In comparison, treatment with Taxol® resulted in 

toxicity related problems as the body weight of the mice was decreased.  

 

Figure 5. In vivo antitumor efficacy of paclitaxel formulations in mice: curves from top to down: Control, PTX 

paclitaxel nanocrystal suspension, PTX-Trf paclitaxel transferrin nanocrystal suspension and Taxol®. 

(Reprinted from Lu et al., 2014 with permission from Elsevier). 

Professor Torchilin’s group prepared stable nanocrystal colloids of poorly soluble cancer drugs paclitaxel and 

tamoxifen with very high drug loadings (up to 90% wt) utilizing the layer-by-layer technology, alternating the 

adsorption of oppositely charged polyelectrolytes on the surface of drug nanocrystals produced by 

ultrasonication of larger drug crystals (Agarwal et al., 2008). Such polymeric coatings prevent the aggregation 

of drug nanocrystals and create stable polymeric shells on their surface. Drug release rates of the cancer drug 

nanocrystals can be controlled by assembling multilayer shells with variable shell densities and thicknesses. 

Also here various specific targeting ligands could be rather easily attached to the surfaces of the nanosystems 

by using polymers with free reactive groups on the outer coating, e.g., free amino groups. Shutava et al. 

(2012) prepared 150-200 nm nanocapsules containing 60–70% (wt) of poorly soluble paclitaxel and 

camptothecin, again with the layer-by-layer assembly of the drug nanocores, in solutions containing 

uncharged stabilizers. Concentrated colloids of the cancer drugs (3-5 mg/mL) were found out to remain stable 

in isotonic salt buffers. Nanocrystal aggregation during the layer-by-layer-assembly was prevented by using 

minimal amounts of low molecular weight block-copolymers of poly-L-lysine and poly-L-glutamic acid with 

polyethylene glycol (PEG) in combination with heparin and bovine serum albumin at each bilayer building 

step. The PEGylated nanosystems presented high colloidal stability in PBS buffer and increased protein 

adhesion resistance. 
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SN-38 (7-Ethyl-10-hydroxycamptothecin) is another potent broad-spectrum antitumor drug, an irinotecan 

derivative. As the compound is poorly soluble and instable (with a labile active lactone ring), the clinical use 

of this compound has been compromised. Nanocrystal formulations have, therefore, been attempted to 

solve these problems and evaluate the true antitumor effect of SN-38 in vitro and in vivo (Chen et al., 2017).  

Nanocrystals with clearly different particle sizes were prepared, SN-38/NCs-A and SN-38/NCs-B, with mean 

diameters of 230 and 800 nm, respectively. Dissolution and release rate results in the case of SN-38/NCs-A 

were significantly faster than with SN-38/NCs-B. Accordingly, enhanced intracellular accumulation of SN-

38/NCs-A was observed in HT1080 cells compared to that of SN-38/NCs-B nanocrystals and SN-38 solution. 

Moreover, the SN-38/NCs-A nanocrystals provided a higher bioavailability and significant inhibition of tumor 

growth compared to the SN-38 solution and SN-38/NCs-B nanocrystals in vivo after intravenous injection 

(Chen et al., 2017). The tissue distribution study in tumor-bearing mice showed that the nanocrystals could 

markedly improve the drug accumulation in tumor tissues by, presumably, the EPR effect when compared to 

SN-38 solution. The amount of SN-38 in tumors of after the treatment with SN-38/NCs-A nanocrystals was 

clearly higher than after the delivery of SN-38/NCs-B nanocrystals.  

As stated repeatedly above, one interesting way to slow down the dissolution and improve the (targeted) 

delivery of anticancer nanocrystals is the utilization of layer-by-layer assemblies of polyelectrolytes around 

the nanocrystals. As shown in the above study examples, this has been proven to be a successful strategy at 

least in vitro. However, in vivo nanoparticles with charged surfaces are highly susceptible to opsonization and 

clearance by the mononuclear phagocyte system, leading to short biological half-lives and fast accumulation 

in the liver and spleen (Sarparanta et al., 2012). This fast clearance obviously diminishes significantly the 

tumor accumulation of “normal” nanocrystals in vivo. Flexible hydrophilic polymers like poly(ethylene glycol) 

on top of the multilayers are thus warranted in order to sterically hinder the adsorption of plasma proteins 

on the nanosystems (Polomska et al., 2017). As of today, little is still known about the stability of PEGylated 

polyelectrolyte-coated drug nanocrystals in the complex environment of blood circulation and tissue 

compartments, and also about the circulation times or drug biodistribution profiles of these nanosystems in 

vivo. 

3.2 Orally administered nanocrystal formulations 

Despite the numerous success stories (Table 1), formulation and delivery of nanocrystalline dispersions, 

tablets and other solid formulations via the GI-tract are often not straightforward processes (Gao et al., 

2012). The impact of physiological factors like the variation of pH and peristalsis towards the nanocrystals 

are not simple to predict.  The acidic nature of a drug affects strongly to the rate and extent of nanocrystal 

dissolution in the GIT. For example, in the cases of indomethacin and itraconazole the fast in vitro dissolution 

may not be maintained in the gut/intestines in vivo, leading to potentially uncontrolled drug precipitation 
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during the transit in the GI-tract (Sarnes et al., 2014, Figure 6). In the GI fluids, the disintegration of the 

nanoformulation leads to the formation of nanocrystal dispersion. Stabilizer molecules attached on the 

surface of nanocrystals will offer again ionic or steric repulsion, given that they are not affected by the 

gut/intestines environments (Peltonen and Hirvonen, 2008). Just like with the injectable nanocrystal 

formulations, the most orally relevant nanocrystal stabilizers are found in the groups of polymeric and non-

ionic surfactants, such as poloxamers or polysorbate (Tween®) 80, as these stabilizers provide effective steric 

repulsion in GI fluids, given that the amount of stabilizers is adequate (Lai et al., 2014). Generally, again, ionic 

stabilizers like NaCMC and SDS, are effective in aqueous environment, but often the ionized state is not 

maintained in dry nanocrystalline powder material, thus making them less effective. Furthermore, ionic 

stabilizers are sensitive to pH changes and ionic strength when the dry powders are redispersed in the GI 

fluids. 

 

Figure 6. Bioavailability in rats of itraconazole and OH-itraconazole after per oral administration of 

nanocrystalline itraconazole formulations: nanocrystal suspension (ITC-NPs), freeze dried nanocrystals 
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(freeze dried ITC-NPs), granulated nanocrystals (granulated ITC-NPs), Sporanox® granules and physical 

mixture (mean ± sem, n = 5–6). (Reprinted from Sarnes et al., 2014 with permission from Elsevier). 

Rahim et al. (2017) attempted to enhance the dissolution rate, oral bioavailability and analgesic potential of 

aceclofenac nanocrystals in Swiss albino rabbits. The nanocrystal suspensions were produced by a 

precipitation–ultrasonication method with hydroxypropyl methylcellulose, polyvinylpyrrolidone and sodium 

dodecyl sulfate as stabilizers/excipients. Saturation solubility of aceclofenac nanocrystals was increased 2.6- 

and 4.5-fold compared with unprocessed API in stabilizer solution and with totally unprocessed drug, 

respectively. As expected, the dissolution rate of the aceclofenac nanocrystals was substantially enhanced in 

vitro, and also the in vivo studies of stabilized aceclofenac nanocrystal suspension showed increased Cmax 

(4.98- and 2.80-fold) and AUC0→24 h (3.88- and 2.10-fold) values of the nanocrystal formulations when 

compared with the unprocessed drug and the currently marketed formulation of aceclofenac, respectively. 

The improved antinociceptive (pain receptor relieving) activity of the aceclofenac nanocrystals was also 

shown at lower drug doses. The same group (Shah et al., 2016) developed nanocrystalline formulations of 

antimalarial drug artemether, another compound of poor solubility and consequently low bioavailability. 

“Smart nanocrystals” of artemether were produced using a wet milling technology resulting in mean 

artemether nanocrystal particle sizes of 160 nm. The saturation solubility of the artemether nanocrystals was 

substantially increased to 900 µg/mL, compared to the raw artemether solubility in water (145 µg/mL) and 

artemether microparticles in stabilizer solution (300 µg/mL). Results of in vitro studies showed significant 

antimalarial effect of artemether against Plasmodium falciparum and Plasmodium vivax cultures. The IC50 

(median lethal oral dose) values of artemether nanocrystals were 28-54-fold lower than the IC50 values of 

unprocessed drug and 13-21-fold lower than the IC50 values of marketed artemether tablets, respectively. A 

2 mg/kg dosing of artemether nanocrystals showed significantly higher (89%) reduction in parasitemia 

against Plasmodium vivax compared with unprocessed artemether (27%) or the marketed artemether tablets 

(45%) (Shah et al., 2016). An acute toxicity study in Swiss albino mice demonstrated that the LD50 value of 

artemether nanocrystals was between 1,500 mg/kg and 2,000 mg/kg when given orally.  

Professor Rainer H. Müller and his research group has extensively studied also the oral drug delivery route, 

see for example Müller et al. (2001; 2006). The group has developed and optimized oral nanoformulations 

for cyclosporine A (2%) as solid lipid nanoparticles (SLN™, mean size 157 nm) and as nanocrystals (mean size 

962 nm). The encapsulation of cyclosporine A in SLN was 96%, while the nanocrystals were composed of 

100% of the drug. The blood profiles in young pigs after the oral administration revealed that for the drug 

nanocrystals most of the blood concentration values were low with high differences between the measuring 

time points and the tested animals. On the contrary, administration of cyclosporine-loaded SLN led to higher 

mean plasma profiles with low variations, while at the same time successfully avoided the potential side 
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effects by high blood concentrations, as was the case with the commercial microemulsion product of 

cyclosporine-A (Sandimmun®). 

Overall, pharmaceutically relevant nanocrystal formulations have been widely studied and commercialized 

with improved solubility/dissolution properties of poorly soluble drug materials. Nanocrystals are often 

formed from 100% drugs covered by stabilizer layer(s) in relatively simple and efficient manufacturing 

processes.  

Conclusions 

Nanosizing is simple and straightforward way to improve solubility properties of poorly soluble drug 

materials, and often even very small changes in particle size are enough for acceptable product 

performance.  The most important property of drug nanocrystals is increased dissolution rate due to the 

smaller particle size, but in nanoscale physical properties like solubility are also different from 

thermodynamic solubility value. These two important properties of drug nanocrystals can be utilized in 

order to reach higher bioavailability with nanocrystal formulations, and drug nanocrystals are one versatile 

option for improving solubility properties of BCS class II and in some cases also class IV drugs. There are 

already a lot of studies and marketed products with different formulations in various administration routes 

based on drug nanocrystals. In the future the research will be headed more on functional properties of the 

stabilizers utilized in drug nanocrystals, role of supersaturation and QbD approach in formulation design, 

and drug targeting applications for example in cancer therapeutics or theranostics through the attachment 

of protecting layers and targeting ligands on the surfaces of the nanosystems.  
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Figure Captions: 

Figure 1. Apparent concentration-distance profiles from UV imaging of indomethacin nanocrystals (particle 

size 580 nm) and micron sized particles with two different stabilizers (poloxamers F68 and F127) as well as 

bulk indomethacin at 5, 15 and 30 min time points: (A) F68 stabilized nanocrystals, (B) F68 stabilized micron 

sized particles, (C) F127 stabilized nanocrystals, (D) F127 stabilized micron sized particles and (E) bulk 

indomethacin. (Reprinted from Sarnes et al., 2013 with permission from Elsevier). 

Figure 2. Plasma concentration profiles of itraconazole and OH-itraconazole in rats after oral administration 

of Sporanox® granules, three nanocrystalline formulations (HFBI, HFBI + NFC, HFBI-DCBD + NFC) and 

itraconazole microsuspension. (Reprinted from Valo et al., 2011, with permission from Elsevier.) 

Figure 3. Impact of PVP on maintaining the supersaturated state of amorphous indomethacin for 

indomethacin-PVP solid dispersion (Figures a,c,e) and for amorphous indomethacin dissolved in aqueous 

PVP solution (Figures b, d, f) in pH 5.5 at 25 °C. Figures a and b: PCA scores plots of the IR spectra of 

indomethacin samples (arrows indicating the path of crystallization); Figures c and d: IR spectras of 

indomethacin samples; and Figure e and f: concentration-time profiles showing the maintenance of 

supersaturated state in the presence of PVP. (Reprinted from Surwase et al., 2015 with permission from 

Elsevier.) 

Figure 4. TEM figures of F127 stabilized paclitaxel nanocrystals. Drug surfactant ratio (A) drug:surfactant 

ratio 1:10 (w/w) and (B) 1:20 (w/w). Scale bar is 200 nm. (Reprinted from Deng et al., 2010 with permission 

from Elsevier). 

Figure 5. In vivo antitumor efficacy of paclitaxel formulations in mice: curves from top to down: Control, 

PTX paclitaxel nanosuspension, PTX-Trf paclitaxel transferrin nanosuspension and Taxol®. (Reprinted from 

Lu et al., 2014 with permission from Elsevier). 

Figure 6. Bioavailability in rats of itraconazole and OH-itraconazole after per oral administration of 

nanocrystalline itraconazole formulations: nanosuspension (ITC-NPs), freeze dried nanosuspension (freeze 

dried ITC-NPs), granulated nanosuspension (granulated ITC-NPs), Sporanox® granules and physical mixture 

(mean ± sem, n = 5–6). (Reprinted from Sarnes et al., 2014 with permission from Elsevier). 


