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Many functions of eukaryotic cells are compartmentalized

within membrane-bound organelles. One or more cis-encoded

signals within a polypeptide sequence typically govern protein

targeting to and within destination organelles. Perhaps

unexpectedly, organelle targeting does not occur with high

specificity, but instead is characterized by considerable

degeneracy and inefficiency. Indeed, the same peptide signals

can target proteins to more than one location, randomized

sequences can easily direct proteins to organelles, and many

enzymes appear to traverse different subcellular settings

across eukaryotic phylogeny. We discuss the potential benefits

provided by flexibility in organelle targeting, with a special

emphasis on horizontally transferred and de novo proteins.

Moreover, we consider how these new organelle residents can

be protected and maintained before they contribute to the

needs of the cell and promote fitness.
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Introduction
Every organism has emerged from a long evolutionary

process of change and selection. However, attention is

typically focused upon the specific alterations that appear

to increase or decrease fitness, rather than the overarching

capacity of a population to find its way across a phenotypic

landscape. This evolutionary potential, or evolvability,

would itself be heritable and subject to selection within

the lineage to which it may ascribe future benefits

[1,2]. Evolvability often refers to increased proficiency

in accepting, maintaining, distributing, and exploiting

genetic variation that drives a specific phenotypic

outcome with conventional mechanistic explanations.

However, evolvability can also be linked to near-term
www.sciencedirect.com 
phenotypic plasticity emerging at the interface of genetic,

environmental, and stochastic processes.

Vertically inherited protein sequences  can move across

fitness landscapes by a series of stepwise substitutions

within amino acid sequence space [3]. However, many

mechanisms are available that allow eukaryotes to take

larger leaps across these landscapes by acquisition of

new genetic material. For example, gene duplication

has been widely recognized as a contributor of raw

genetic material for construction of new cellular com-

ponents [4]. Moreover, horizontal gene transfer (HGT)

from endosymbionts and other prokaryotes appears to

have been relatively abundant during early eukaryotic

evolution [5], and some speculate that genes may have

been shared laterally between the earliest eukaryotic

ancestors [6,7]. Accumulating evidence suggests that

fixation of HGT events, although potentially reduced

in scope at present day [8], continues to contribute to

eukaryotic evolution [9]. Finally, we are only beginning

to understand, by accumulation of genomic, transcrip-

tomic, and proteomic datasets, the de novo appearance

of protein coding genes [10�].

A marvelous array of conserved translocation mechanisms

and machineries can direct proteins across membranes to

selected destinations within the highly compartmental-

ized eukaryotic cell. Typically, sequential or structural

information harbored within a polypeptide allows its

direction to a final destination, as initially proposed

by Günter Blobel within his well-established ‘signal

hypothesis’ (Box 1). Decades of subsequent research have

provided a clearer, yet still incomplete, picture of what

properties characterize the organelle targeting signals

(OTSs) that allow nucleus-encoded proteins to traverse

at least five different membranes en route to a final

destination [11,12]. Here, we consider how recognition

and trafficking of organelle-directed proteins may be a

factor in promoting or restricting the evolvability of

eukaryotes.

How degenerate are organelle targeting
sequences?
Since a primary purpose of organelles is to partition and

organize metabolism [13], one might presume that entrance

to these compartments would require a distinct and highly

specific signal. Instead, the process of organelle targeting

appears to be surprisingly permissive. Early experiments

applying a genetic approach to OTS identification found

that �20% of random human genome segments can serve
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Box 1 History of the signal hypothesis

The concept of OTSs encoded within a mature translation product

evolved as a result of a series of individual conceptual and techno-

logical advances [69]. Initial electron microscopy observations by

Keith Porter and George Palade in the 1940s and 1950s identified

granular particles, later identified as ribosomes, that were distributed

both to the cytosol and to the ER membrane. Radiolabeling experi-

ments showed that a significant fraction of newly synthesized pro-

teins accumulate inside the ER, a reaction that was soon recapitu-

lated in an in vitro system using pigeon microsomes [70]. Together,

the observation of ER-bound ribosomes and the finding that newly

synthesized proteins can accumulate inside the ER lumen suggested

that the nascent polypeptide itself might play a role in the ER

targeting and insertion process. Prompted by these findings, Günter

Blobel proposed a model, highly speculative at its introduction in

1971, that cytosolically synthesized proteins can contain ‘a common

sequence of amino acids’ at their amino-terminus, and that this

signal sequence would be sufficient for directing the translating

ribosomes to the ER surface. Experiments by Cesar Milstein sub-

sequently provided evidence for the existence of presequences, and

their potential removal after translocation, through discovery of pre-

cursor and mature forms of antibody light chains [71]. In due course,

early protein sequencing studies began to illuminate the amino acid

content of presequences [72], and further work by the laboratories of

Günter Blobel, Bernhard Dobberstein, Gottfried Schatz, Suresh

Subramani, and others found that the signal hypothesis could be

applied to other eukaryotic trafficking events outside of ER translo-

cation [73–75].
as an amino-terminal OTS allowing endoplasmic reticulum

(ER) translocation and subsequent secretion of an enzyme

from the yeast Saccharomyces cerevisiae [14]. In conceptually

similar experiments, up to 25% of random nonamer peptides

could act as targeting sequences driving translocation to

the mitochondrial matrix [15]. Experiments focused upon

protein transport to the plastid-derived malarial apicoplast

demonstrated that nearly 30% of peptides randomly gener-

ated on the basis of a biased amino acid composition

were apicoplast-targeted [16]. While highly sensitive

genetic experiments or in vitro assays with purified

organelles may not accurately reflect the specificity and

import kinetics characteristic of an in vivo setting [17],

and while similar experimental surveys of random or

pseudo-random sequences await completion for other

organelles and organisms, it is certainly astounding how

much flexibility is inherent to OTSs. Supporting the liberal

nature of OTS recognition and delivery, the evolution rate

of many signal peptides is several-fold higher than their

respective mature protein domains [18], and experimental

evidence suggests that signal peptide function can be

robust to mutation [19,20].

Given the clear degeneracy in OTS recognition, it is

conceivable that every protein family may have had the

opportunity to explore every organellar location over

billions of years of eukaryotic evolution [21]. Indeed,

more than 30% of eukaryotic protein families show

evidence of targeting to multiple subcellular compart-

ments across eukaryotic phylogeny [22]. Dual-targeting

and mis-targeting of polypeptides may be a mechanism
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by which different vertically inherited proteins find a

way to function together within a new location [23], and

instances in which the same polypeptide can be targeted

to multiple subcellular locations abound [11,24]. More-

over, the propensity of otherwise specific OTSs to be

mistargeted can be easily revealed by cellular perturba-

tion [25�,26]. Beyond nonspecific targeting of the same

protein to multiple subcellular compartments, mutation,

as well as errors during transcription or translation, can

allow sampling of new organelles. Sampling may lead to

an initially neutral foothold within an organelle that

could later serve toward adaptation. Alternatively,

sampling could introduce a new biochemical capacity

that leads to an immediate leap across a fitness land-

scape. Promiscuous compartmentalization of cellular

metabolism is perhaps best exemplified by localization

of the ancient pathway of glycolysis, as localization of

glycolysis reactions to specific organelles may prevent

cross-interference with other pathways that share the

same intermediates [27]. While glycolysis occurs exclu-

sively in the cytoplasm of human cells, enzymes of

glycolysis can be compartmentalized within a peroxi-

some-derived organelle in trypanosomes [27], within

the mitochondria of stramenopiles [28,29], or within

chloroplasts of plants and other photosynthetic organ-

isms [30–32]. Other metabolic activities are scattered

across different organelles in diverse eukaryotic clades,

including isoprene biosynthesis [33] and fatty acid

beta-oxidation [34]. Taken together, these findings

suggest that the ease with which proteins can be targeted

to new locations may be a feature, either taxon-restricted

or pan-eukaryotic, that promotes evolvability.

Organelle targeting of novel and foreign
proteins
Beyond the acquisition of new targeting information

by vertically inherited proteins (Box 2), recent high-

throughput sequencing of eukaryotic genes and tran-

scripts has revealed a surprising amount of HGT that

extends beyond early eukaryogenesis. Some of these

proteins become (in the case of HGT from other organ-

isms) or commonly remain [in the case of endosymbiotic

gene transfer (EGT)] localized to specific organelles

after nuclear acquisition (Figure 1a). For example,

gut parasites from the genus Blastocystis have received

a mitochondria-targeted glutamine synthetase from

bacteria, potentially leading to enhanced proficiency

in nitrogen capture [35]. Several eukaryotic lineages

have acquired nucleotide transporters from bacterial

donors, and these polypeptides are likely to be initially

targeted to the ER [36,37]. Currently, the amoebae

Paulinella chromatophora is in the process of converting

its photosynthetic cyanobacterial endosymbiont to

an organelle, providing superb examples of EGT

to the nucleus. Even so, an even greater number of

bacterial genes transplanted to the nuclear genome have

been obtained by HGT from bacteria other than the
www.sciencedirect.com
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Box 2 Acquisition of organelle targeting sequences by vertically

inherited proteins

Several molecular mechanisms may lead to novel organellar locali-

zation of an ancestral protein. First, gene duplication may generate

raw genetic material allowing novel protein compartmentalization

while minimally perturbing the existing cellular phenotype, yet sub-

functionalization or neofunctionalization would be expected to occur

before redundancy leads to loss of a functional gene copy [4]. Next,

given the apparent ease with which randomly generated sequences

can serve as OTSs, simple extension of an open reading frame at

either protein terminus may generate a sequence suitable for

directing proteins into one or more organelles. This may occur, for

example, by changes to transcription or mRNA splicing coincident

with, or subsequent to, the gene duplication event. ORF extension

may also be linked to removal, addition, or error-prone recognition of

stop and start codons within a transcript [11,76]. Moreover, exon

shuffling may have played a historical role in linking OTSs to cargo

proteins [77,78]. A recent study in which multiple plastid-directed

proteins have acquired identical transit peptides suggests additional,

yet poorly understood mechanisms by which a polypeptide might

acquire an OTS [79].
P. chromatophora endosymbiont [38]. It is difficult to

comprehend how recipient lineages could conceivably

benefit from organellar integration of newly acquired

prokaryotic proteins if cryptic OTSs found within those

polypeptides, or otherwise generated during or subse-

quent to gene transfer, were not recognizable by eukary-

otic protein translocation machineries. Distantly related

eukaryotes also pass genes to one another, including

membrane-inserted transporters that allow an organism

to acquire new nutrients [39��,40], and liberal recogni-

tion of OTSs from distantly related eukaryotes may

similarly allow benefits to accrue within a given lineage.

Beyond the acquisition of novel genetic information by

HGT, de novo polypeptides originating from previously

non-coding DNA are also potentially subject to organellar

recruitment. The formation of de novo genes, together

with their procurement of OTSs, is poorly understood,

but de novo gene birth continues to present day, including

within primate genomes [41]. Recently, an exciting study

demonstrated the likely mechanism by which a newborn

piscine antifreeze protein acquired its signal sequence

[42��], and as de novo genes continue to be identified by

computational and experimental means, further studies

are required to reveal preferred mechanisms by which

de novo proteins acquire an OTS.

We note here that while permissive recognition of OTSs

may expand the possibilities for adaptation within a

lineage, OTS degeneracy may also serve as an Achilles’

heel to be exploited. Although much remains to be

learned about subcellular targeting of rapidly evolving

effectors that are often synthesized by bacterial and

eukaryotic pathogens, these organisms may abuse cellular

flexibility in OTS recognition while directing their

proteins to host organelles [43–45].
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Preservation and integration of nascent
organelle residents
While we highlight above the potential benefits of new

proteins that may contribute to organellar functions, a novel

polypeptide found within the cell can be initially deleterious

[46], and if the cell cannot properly buffer this variation, the

newly minted organelle resident will be counter-selected. A

robust eukaryotic chaperone system may promote the initial

maintenance of otherwise deleterious proteins within a

population (Figure 1b). Supporting this idea, each common

eukaryotic  translocation pathway, be it mitochondrial,

peroxisomal, nuclear, chloroplastic, or secretory, takes abun-

dant advantage of chaperones that include Hsp70, Hsp90,

and their functional binding partners [47–50]. Chaperones

can even bind directly to OTSs [51]. Beyond their notable

function in protein translocation and their likely role in

promoting subcellular location sampling, chaperones are

thought to act more generally as evolutionary capacitors that

promote evolvability [52,53].

In addition, organelle targeting may provide an initial safe

harbor for recently introduced protein sequences that would

otherwise disrupt cellular activities, suppressing the effects

of gene alteration or addition until further genomic changes,

or new environments, reveal the potential for increased

fitness [54]. Unwanted proteotoxicity  that might arise

from accumulation of unselected nascent polypeptides

can be countered by vigilant proteostasis pathways, such

as organelle-localized AAA domain-containing proteases

or the ER-associated ubiquitin-proteasomal degradation

pathway. Intriguingly, recent evidence indicates that cells

may actively employ organellar targeting to remove patho-

genic polypeptides from the cytosol [55��], supporting

the idea that a cell may use organelles as a ‘dumping ground’

for novel proteins.

The concept of constructive neutral evolution [56,57] may

also help to explain the maintenance of novel visitors to an

organelle before they can make a steadfast contribution

to metabolic and other processes occurring at their new

location. Specifically, by means of promiscuous physical

interactions that might transpire with an existing organelle

resident, the new arrival may buffer a mutation that occurs

within its interaction partner (Figure 2a). The novel

organelle resident would initially provide no benefit

from the perspective of survival or reproduction, except

to suppress the effect of this otherwise deleterious

mutation. Later, stepwise mutations within this new

subunit of a macromolecular complex could result in func-

tionalization and a role in conventional adaptation. Support

for constructive neutral evolution toward complexity

within organelles, and therefore a potential for increased

evolvability, can be found in a recent analysis of the

mitochondrial ribosome [58��].

After establishment of new recruits within an organelle,

some OTSs may be subject to further changes that allow
Current Opinion in Genetics & Development 2019, 58-59:9–16
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Figure 1
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Birth or acquisition of new OTS-containing polypeptides.

(a) Possible mechanisms for cellular acquisition of new OTS-containing genes include (1) HGT from external sources, such as free-living

microorganisms (2) EGT from recently acquired endosymbionts or from established organelles (3) acquisition of OTSs by already existing genes

after gene duplication or by, for example, exon shuffling, and (4) de novo generation of open reading frames that harbor OTSs from sequences

that were once non-coding. (b) Mechanisms for preventing toxicity prompted by novel proteins may include cytosolic degradation, shielding of

protein segments by chaperones, movement of otherwise toxic protein species to ‘safe-harbor’ locations within the cell, or sequestration of

proteins in organelles for potential destruction.
more specific and efficient direction of cargo to its final

destination (Figure 2b). Moreover, for proteins initially

targeted to more than one organelle, dual localization

may be subsequently co-opted by the cell to allow devel-

opmentally regulated or environmentally induced adjust-

ment of organellar proteomes [59,60]. OTSs can also act

beyond their initial duty in trafficking [61], including

during post-translocational folding of mature polypeptides,

suggesting that once a protein becomes firmly entrenched

in a new location, the OTS may be further selected to
Current Opinion in Genetics & Development 2019, 58-59:9–16 
encode for additional functions. So far, there has been scant

examination of how OTSs might be fine-tuned over evolu-

tionary time, yet some evidence exists for signal peptide

adaptation [62].

Future analysis of organelle targeting
sequence generation and evolution
Recent technological advances allow an expanded

understanding of OTS generation and evolution. For

example, deep mutational scanning of existing polypeptides,
www.sciencedirect.com
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Figure 2
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Establishment of new proteins within an organelle.

(a) Constructive neutral evolution may describe how novel organelle-targeted proteins are maintained before integration into organellar activities. (1) A

new initiate to an organelle (purple) weakly interacts with a resident protein or RNA. (2) Without gene-level selective pressure to maintain the organelle

visitor and its biochemical interactions with existing components, the organelle-initiate is lost. (3) However, if a mutation occurs in the binding partner of

the novel organelle resident, the binding event may buffer negative consequences of the mutation, fitness is maintained, and the protein-protein

interaction persists. (4) Stepwise addition by the same mechanism leads to increased subunit composition and potential for adaptive benefits. (b) OTSs

can be under selection following introduction of a protein to a subcellular compartment. (1) Initially, new organelle residents may be targeted to multiple

organelles or transported with low efficiency. (2) After further OTS mutation, protein targeting may, under appropriate selection, be improved in

efficiency and specificity. (3) Selected OTSs may play additional roles in cargo folding, assembly, or function.
high-throughput surveys of known and predicted OTSs, as

well as subsequent machine learning approaches can reveal

features that promote OTS specificity or degeneracy

[63�,64�,65]. Carefully designed experimental evolution

experiments should reveal how a protein may acquire or lose

its localization in the cell by subtle or overt changes to OTS

structure.Moreover, an ever-increasing setof next-generation

sequencingdataobtainedwithinandacrossvariouseukaryotic

clades will enable high-resolution analysis of OTS divergence

and selection at different phylogenetic scales. Close study of

HGT events leading to nascent organelle targeting, perhaps

enriched during the slow conversion of endosymbionts

to organelles containing mosaic proteomes [38,66], will

further inform our view of OTS acquisition and evolution.

Finally, a combination of computational and experimental

methods will allow the identification and subsequent study of

de novo proteins that may have acquired organelle targeting
www.sciencedirect.com 
information [67,68�]. All of these future studies will be

profoundly informative regarding whether promiscuous

organelle targeting of vertically inherited, horizontally trans-

ferred, and de novo emerged proteins is a feature of eukaryotes

that allows increased mobility across phenotypic space.
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